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Abstract. The possibility for agents to agree to disagree is considered
in an extended epistemic-topological framework. In such an enriched con-
text, Aumann’s impossibility theorem is shown to no longer hold. More
precisely, agents with a common prior belief satisfying limit knowledge
instead of common knowledge of their posterior beliefs may actually en-
tertain distinct posterior beliefs. Hence, agents can actually agree to
disagree. In particular, agreeing to disagree with limit knowledge is il-
lustrated within a representative epistemic-topological situation.
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1 Introduction

The so-called agreement theorem by Aumann [1] establishes the impossibility
for two Bayesian agents with a common prior belief to entertain common knowl-
edge of posterior beliefs that are distinct. Understanding two individuals as like-
minded if they are both Bayesian and equipped with exactly the same prior
information, Aumann’s seminal result states that two like-minded individuals
that get access to differing information cannot entertain opposing opinions in
the case of their opinions being common knowledge. In other words, the agents
cannot agree to disagree.

Along these lines Milgrom and Stokey [11] establish an impossibility theo-
rem of speculative trade. Intuitively, their result states that if two traders agree
on a prior efficient allocation of goods, then upon receiving private informa-
tion it cannot be common knowledge that both traders have an incentive to
trade. From an empirical or quasi-empirical point of view, the agreement the-
orem seems quite startling since real world agents do frequently disagree on a
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large variety of issues. It is then natural to scrutinize whether Aumann’s basic
result still holds with weakened or slightly modified assumptions. In this spirit,
Geanakoplos and Polemarchakis [10] drop the assumption of common knowl-
edge of posteriors and show that two Bayesian agents with common priors and
finite information partitions already agree on their posterior beliefs after finitely
many rounds of communicating their respectively updated posteriors back and
forth. Note that, although common knowledge of the posteriors is not needed
prior to the communication procedure, it does actually hold after sameness of
the posteriors has been established. Moreover, Monderer and Samet [12] replace
common knowledge by the weaker concept of common p-belief and establish an
agreement theorem with such an approximation of common knowledge. Indeed,
they show that if the posteriors of Bayesian agents equipped with a common
prior are common p-belief for large enough p, then these posteriors cannot differ
significantly. Besides, Samet [13] drops the implicit negative introspection as-
sumption – which states that agents know what they do not know – and shows
that Aumann’s agreement theorem remains valid with agents ignorant of their
own ignorance. Further works on Aumann’s agreement theorem are surveyed in
Bonanno and Nehring [9].

Here, Aumann’s result is revisited in an extended epistemic-topological frame-
work. The epistemic operator common knowledge is replaced by the epistemic-
topological operator limit knowledge introduced and studied by Bach and Ca-
bessa [7, 8]. Assuming common priors, Bayesian agents, and limit knowledge of
posteriors, we show that the agents’ posteriors may differ. Thus, agents can
indeed agree to disagree.

2 An Epistemic-Topological Approach to Agreeing to
Disagree

Set-based interactive epistemology provides the formal framework in which the
agreement theorem is modelled. Having been introduced and notably developed
by Aumann [1–6], the discipline provides tools to formalize epistemic notions in
interactive situations.

A so-called Aumann structure A = (Ω, (Ii)i∈I , p) consists of a countable set
Ω of possible worlds, which are complete descriptions of the way the world might
be, a finite set of agents I, a possibility partition Ii of Ω for each agent i ∈ I
representing his information, and a common prior belief function p : Ω → [0, 1]
such that

∑
ω∈Ω p(ω) = 1. The cell of Ii containing the world ω is denoted by

Ii(ω) and consists of all worlds considered possible by i at world ω. In other
words, agent i cannot distinguish between any two worlds ω and ω′ that are
in the same cell of his partition Ii. Moreover, an event E ⊆ Ω is defined as a
set of possible worlds. For example, the event of it raining in London contains
all worlds in which it does rain in London. Note that the common prior belief
function p can naturally be extended to a common prior belief measure on the
event space p : P(Ω) → [0, 1] by setting p(E) =

∑
ω∈E p(ω). In this context, it is

supposed that each information set of each agent has non-zero prior probability,
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i.e. p(Ii(ω)) > 0 for all i ∈ I and ω ∈ Ω. Moreover, all agents are assumed to
be Bayesians and to hence update the common prior belief given their private
information according to Bayes’s rule. More precisely, given some event E and
some world ω, the posterior belief of agent i in E at ω is given by p(E | Ii(ω)) =
p(E∩Ii(ω))

p(Ii(ω)) . Farther, an Aumann structure A = (Ω, (Ii)i∈I) is called finite if Ω

is finite and infinite otherwise.
In Aumann’s epistemic framework, knowledge is formalized in terms of events.

More precisely, the event of agent i knowing E, denoted by Ki(E), is defined
as Ki(E) := {ω ∈ Ω : Ii(ω) ⊆ E}. If ω ∈ Ki(E), then i is said to know E
at world ω. Intuitively, i knows some event E if in all worlds he considers pos-
sible E holds. Naturally, the event K(E) =

⋂
i∈I Ki(E) then denotes mutual

knowledge of E among the set I of agents. Letting K0(E) := E, m-order mutual
knowledge of the event E among the set I of agents is inductively defined by
Km+1(E) := K(Km(E)) for all m ≥ 0. Accordingly, mutual knowledge can also
be denoted as 1-order mutual knowledge. Furthermore, an event is said to be
common knowledge among a set I of agents whenever all m-order mutual knowl-
edge of it simultaneously hold. Formally, it is standard to define the event that
E is common knowledge among the set I of agents as CK(E) :=

⋂
m>0 Km(E).

Aumann’s agreement theorem states that if two agents entertain a common
prior belief function and their posterior beliefs in some event are common knowl-
edge, then these posterior beliefs must coincide. In other words, if two agents
with common prior beliefs hold distinct posterior beliefs, then these posterior
beliefs cannot be common knowledge among them. Intuitively, it is impossible
for agents to consent to distinct beliefs. Thus, agents cannot agree to disagree.

Now, the impossibility for agents to agree to disagree is considered from a
topologically enriched epistemic perspective.

In fact, the standard set-based approach to interactive epistemology lacks
a general framework providing some formal notion of closeness between events.
An amended topological dimension could be capable of introducing an agent
perception of closeness of events. In such a more general epistemic-topological
framework, the reasoning of agents may thus also depend on topological instead
of mere epistemic features of the underlying interactive situation.

In this context, Bach and Cabessa [7, 8] consider Aumann structures equip-
ped with topologies on the event space and introduce the operator limit knowl-
edge, which is linked to epistemic features as well as topological aspects of the
event space. More precisely, limit knowledge is defined as the topological limit
of higher-order mutual knowledge.

Definition 1. Let (Ω, (Ii)i∈I , p) be an Aumann structure, T a topology on P(Ω),
and E an event. If the limit point of the sequence (Km(E))m>0 is unique, then
LK(E) := limm→∞Km(E) is the event that E is limit knowledge among the
set I of agents.

Accordingly, limit knowledge of an event E is constituted by – whenever unique
– the limit point of the sequence of iterated mutual knowledge, and thus linked
to both epistemic as well as topological aspects of the event space.
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Limit knowledge can be understood as the event which is approached by the
sequence of iterated mutual knowledge, according to some notion of closeness
between events furnished by a topology on the event space. Thus, the higher
the iterated mutual knowledge, the closer this latter epistemic event is to limit
knowledge.

Note that limit knowledge should not be amalgamated with common knowl-
edge. Indeed, both operators can be perceived as sharing distinct implicative
properties with regards to highest iterated mutual knowledge claims. While com-
mon knowledge bears a standard implicative relation in terms of set inclusion to
highest iterated mutual knowledge, limit knowledge entertains an implicative re-
lation in terms of set proximity with highest iterated mutual knowledge. Besides,
limit knowledge also differs from Monderer and Samet’s [12] notion of common
p-belief. Indeed, common p-belief – as an approximation of common knowledge
in the sense of common almost-knowledge – is implied by common knowledge,
whereas limit knowledge is not.

Actually, it is possible to link limit knowledge to topological reasoning pat-
terns of agents based on closeness of events. Indeed, agents satisfying limit knowl-
edge of some event are in a limit situation arbitrarily close to entertaining all
highest iterated mutual knowledge of this event, and the agents’ reasoning may
be influenced accordingly. Note that a reasoning pattern associated with limit
knowledge depends on the particular topology on the event space, which fixes
the closeness relation between events.

The operator limit knowledge is shown by Bach and Cabessa [7, 8] to be able
to provide relevant epistemic-topological characterizations of solution concepts
in games. Despite being based on the same sequence of higher-order mutual
knowledge claims, the distinguished interest of limit knowledge resides in its
capacity to potentially differ from the purely epistemic operator common knowl-
edge. Notably, it can be proven that such differing situations necessarily require
an infinite event space as well as sequences of higher-order mutual knowledge
that are strictly shrinking.3

In fact, the topologically amended epistemic framework enables agents with
a common prior belief to agree to disagree on their posterior beliefs.

Theorem 1. There exist an Aumann structure A = (Ω, (Ii)i∈I , p) equipped with
a topology T on the event space P(Ω), an event E ⊆ Ω, and worlds ω, ω̂ ∈ Ω
such that ω ∈ LK(

⋂
i∈I{ω′ ∈ Ω : p(E | Ii(ω′)) = p(E | Ii(ω̂))}), as well as both

p(E | Ii(ω̂)) 6= p(E | Ij(ω̂)) and p(E | Ii(ω)) 6= p(E | Ij(ω)) for some agents
i, j ∈ I.

Proof. Consider the Aumann structure A = (Ω, (Ii)i∈I , p), where Ω = {ωn :
n ≥ 0}, I = {Alice,Bob}, IAlice = {{ω2n, ω2n+1} : n ≥ 0}, IBob = {{ω0}} ∪
{{ω2n+1, ω2n+2} : n ≥ 0}, and p : Ω → R is given by p(ωn) = 1

2n+1 for all n ≥ 0.
Note that the common prior belief function p is well defined since

∑
n≥0

1
2n+1 = 1.

Now, consider the event E = {ω2n : n ≥ 1}, and the world ω2 ∈ Ω. Besides,
3 Given some event E, the sequence of higher-order mutual knowledge (Km(E))m>0

is called strictly shrinking if Km+1(E) ( Km(E) for all m ≥ 0.
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for sake of notational convenience, let the event
⋂

i∈I{ω′ ∈ Ω : p(E | Ii(ω′)) =
p(E | Ii(ω2))} be denoted by E′. First of all, observe that p(E | IAlice(ω2)) = 2

3
and p(E | IBob(ω2)) = 1

3 . Moreover, {ω′ ∈ Ω : p(E | IAlice(ω′)) = p(E |
IAlice(ω2)) = 2

3} = Ω \ {ω0, ω1} and {ω′ ∈ Ω : p(E | IBob(ω′)) = p(E |
IBob(ω2)) = 1

3} = Ω \ {ω0}, whence E′ = (Ω \ {ω0, ω1}) ∩ (Ω \ {ω0}) =
Ω \ {ω0, ω1}. Farther, the definitions of the possibility partitions of Alice and
Bob ensure that Km(E′) = Km(Ω \ {ω0, ω1}) = Ω \ {ω0, ω1, . . . , ωm+1}, for
all m > 0. Consequently, the sequence (Km(E′))m>0 is strictly shrinking and
CK(E′) = {ω ∈ Ω :

∧
i∈I Ii(ω) ⊆ E′} = ∅. Now, consider the topology T on

P(Ω) defined by T = {O ⊆ P(Ω) : {ω0, ω1, ω2} 6∈ O} ∪ {P(Ω)}. Then, the
only open neighbourhood of the event {ω0, ω1, ω2} is P(Ω), and all terms of the
sequence (Km(E′))m>0 are contained in P(Ω). Thus (Km(E′))m>0 converges
to {ω0, ω1, ω2}. Moreover, for every event F ∈ P(Ω) such that F 6= {ω0, ω1, ω2},
the singleton {F} is open, and since Km+1(E′) ( Km(E′) for all m > 0, the
strictly shrinking sequence (Km(E′))m>0 will never remain in the open neigh-
bourhood {F} of F from some index onwards. Hence (Km(E′))m>0 does not con-
verge to any such event F . Therefore the limit point {ω0, ω1, ω2} of the strictly
shrinking sequence (Km(E′))m>0 is unique, and LK(E′) = limm→∞Km(E′) =
{ω0, ω1, ω2}. Next, consider the world ω1. Note that ω1 ∈ LK(E′). Also, observe
that p(E | IAlice(ω2)) = 2

3 6=
1
3 = p(E | IBob(ω2)) as well as p(E | IAlice(ω1)) =

0 6= 1
3 = p(E | IBob(ω1)). Finally, taking ω = ω1 and ω̂ = ω2 concludes the

proof. ut

The preceding possibility result counters Aumann’s impossibility theorem in
the sense of showing that agents actually can agree to disagree. More precisely,
agents may hold distinct actual posterior beliefs, while at the same time satis-
fying limit knowledge of their posteriors. Hence, agents may agree in the sense
of satisfying limit knowledge of their posteriors, while at the same time disagree
in the sense of actually entertaining different posterior beliefs.

Generally speaking, the mere fact of topologically enriching the event space
concurrently with replacing the purely epistemic operator common knowledge
by the epistemic-topological operator limit knowledge enables our possibility re-
sult. In such an amended perspective, agents can now be seen to have access to
a further dimension in their reasoning that remarkably permits them to agree
to disagree on their posterior beliefs. In fact, the agents are in a limit situation
of entertaining higher-order mutual knowledge of their posteriors, which, in con-
nection with the particular notion of closeness furnished by the topology, leads
them to actually possess different posterior beliefs.

3 A Representative Example

The extension of the standard set-based approach to interactive epistemology
with a topological dimension has been shown to enable the possibility for agents
to agree to disagree on their posterior beliefs. The question then arises whether
agents can still agree to disagree in interactive situations furnished with topolo-
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gies based on epistemic features. A topology describing a specific agents’ per-
ception of the event space is now presented and is then shown to enable agreeing
to disagree with limit knowledge.

Towards this purpose, suppose an Aumann structure A = (Ω, (Ii)i∈I , p) and
an event E. Farther, for any world ω ∈ Ω, let E′

ω denote the event consisting
of all worlds that induce the same agents’ posterior beliefs in E as ω, i.e. E′

ω =⋂
i∈I{ω′ ∈ Ω : p(E | Ii(ω′)) = p(E | Ii(ω))}. Note that constancy of the agents’

posterior beliefs in E yields an equivalence relation on the set of possible worlds,
and hence every E′

ω represents an equivalence class of worlds. Consequently, the
collection C = {E′

ω : ω ∈ Ω} of all equivalence classes of worlds that induce a
same posterior belief profile forms a partition of Ω. Given some event E and
some index m∗ > 0, the epistemically-based topology TE,m∗ is defined as the
topology on the event space P(Ω) generated by the subbase

{{Km(E′
ω) : m ≥ 0} : ω ∈ Ω}

∪ {P(Ω) \ {Km(E′
ω) : m ≥ 0 and ω ∈ Ω}}

∪ {{Km(E′
ω)} : 0 ≤ m < m∗ and ω ∈ Ω}

∪ {{Km∗+j(E′
ω) : 0 < j ≤ n} : n > 0 and ω ∈ Ω}.

The topology TE,m∗ is illustrated in Figure 1, where the infinite sequence
(Km(E′

ω))m≥0 is represented by a horizontal sequence of points for each ω ∈ Ω,
and open sets of the subbase by circle-type shapes around these points.

P(Ω)

E′
ω K(E′

ω) K2(E′
ω) Km∗

(E′
ω) Km∗+1(E′

ω) Km∗+2(E′
ω) Km∗+3(E′

ω)

Fig. 1. Illustration of the topology TE,m∗
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The topology TE,m∗ reveals a specific agent perception of the event space, ac-
cording to which the agents entertain a more refined distinction between the m∗

first iterated mutual knowledge of their posterior beliefs in E than between the
remaining ones. This specific perception is formally reflected by two separation
properties satisfied by the topology TE,m∗ .

Firstly, given two events X and Y , if X and Y are two distinct terms of a
same sequence (Km(E′

ω))m>0 for some ω ∈ Ω, and both are iterated mutual
knowledge of order strictly smaller than m∗ in this sequence, then X and Y
are T2-separable, and therefore also T0-separable.4 Secondly, if X and Y are
two different elements of a same sequence (Km(E′

ω))m>0 for some ω ∈ Ω, and
both are iterated mutual knowledge of order strictly larger than m∗ in this
sequence, then X and Y are T0-separable, yet not T2-separable. According to
these two separation properties, agents have access to a more refined distinction
between the m∗ first iterated knowledge claims of their posterior beliefs in E than
between the iterated mutual knowledge claims of order strictly larger than m∗.
In other words, iterated mutual knowledge claims are only precisely discerned
up to a given amount of iterations, and thereafter the higher iterations become
less distinguishable for the agents. Also, from a bounded rationality point of
view, the agent perception of higher-order mutual knowledge furnished by the
topology TE,m∗ reflects that people typically lose track from some iteration level
onwards when reasoning about higher-order mutual knowledge.

Farther, the topology TE,m∗ notably satisfies the following epistemic-topolo-
gical property: for any event E′

ω, if the sequence (Km(E′
ω))m>0 is strictly shrink-

ing, then LK(E′
ω) = Km∗

(E′
ω). Indeed, suppose that the sequence (Km(E′

ω))m>0

is strictly shrinking. Then, by definition of TE,m∗ , the only open neighbour-
hoods of Km∗

(E′
ω) are P(Ω) and {Km(E′

ω) : m ≥ 0}. Since both sets contain
all terms of the sequence (Km(E′

ω))m>0, it follows that Km∗
(E′

ω) is a limit
point of the sequence (Km(E′

ω))m>0. To see that this limit point is actually
unique, consider F ∈ P(Ω) such that F 6= Km∗

(E′
ω). Then either F = Km(E′

ω′)
for some m < m∗ and some ω′ ∈ Ω, or F = Km(E′

ω′) for some m > m∗

and some ω′ ∈ Ω, or F = Km∗
(E′

ω′) for some ω′ 6= ω, or F 6= Km(E′
ω′) for

all m ≥ 0 and all ω′ ∈ Ω. These four mutually exclusive cases are now con-
sidered in turn. First of all, if F = Km(E′

ω′) for some m < m∗ and some
ω′ ∈ Ω, then {Km(E′

ω′)} is an open neighbourhood of F . Since the sequence
(Km(E′

ω))m>0 is strictly shrinking, it can then not be the case that the sin-
gleton open neighbourhood {Km(E′

ω′)} of F contains all terms of the sequence
(Km(E′

ω))m>0 from some index onwards. Therefore F is not a limit point of
the sequence (Km(E′

ω))m>0. Secondly, if F = Km(E′
ω′) for some m > m∗ and

some ω′ ∈ Ω, then {Km∗+j(E′
ω′) : 0 < j ≤ m−m∗} is an open neighbourhood

of F . Since the set {Km∗+j(E′
ω′) : 0 < j ≤ m − m∗} is finite, F cannot be a

limit point of the sequence (Km(E′
ω))m>0. Thirdly, if F = Km∗

(E′
ω′) for some

4 Given a topological space (A, T ), two points in A are called T2-separable if there
exist two disjoint T -open neighbourhoods of these two points. Moreover, two points
in A are called T0-separable if there exists a T -open set containing precisely one of
these two points. Note that T2-separability implies T0-separability.
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ω′ 6= ω, then {Kn(E′
ω′) : n ≥ 0} is an open neighbourhood of F . Moreover,

since Km∗
(E′

ω) 6= Km∗
(E′

ω′) = F , it directly follows that E′
ω 6= E′

ω′ . Yet since
C = {E′

ω′′ : ω′′ ∈ Ω} is a partition of Ω, it holds that E′
ω ∩ E′

ω′ = ∅. Moreover,
as Km(E′

ω) ⊆ E′
ω for all m ≥ 0, and Kn(E′

ω′) ⊆ E′
ω′ for all n ≥ 0, as well as

E′
ω ∩ E′

ω′ = ∅, it follows that Km(E′
ω) 6= Kn(E′

ω′) for all m,n ≥ 0. Thus the
open neighbourhood {Kn(E′

ω′) : n ≥ 0} of F contains no term of the sequence
(Km(E′

ω))m>0 whatsoever. Therefore, F is not a limit point of the sequence
(Km(E′

ω))m>0. Fourthly, if F 6= Km(E′
ω′) for all m ≥ 0 and all ω′ ∈ Ω, then

P(Ω) \ {Km(E′
ω) : m ≥ 0 and ω ∈ Ω} is an open neighbourhood of F . Yet

this set contains no term of the sequence (Km(E′
ω))m>0. Thus F is not a limit

point of the sequence (Km(E′
ω))m>0. To summarize, there consequently exists no

F 6= Km∗
(E′

ω) which is a limit point of the sequence (Km(E′
ω))m>0. Therefore,

the limit point Km∗
(E′

ω) of the sequence (Km(E′
ω))m>0 is unique, and thence

LK(E′
ω) = limm→∞Km(E′

ω) = Km∗
(E′

ω). Furthermore, since the sequence
(Km(E′

ω))m>0 is strictly shrinking, CK(E′
ω) =

⋂
m>0 Km(E′

ω) ( Km∗
(E′

ω),
and hence CK(E′

ω) 6= LK(E′
ω).

Finally, the following example describes an interactive situation, in which the
epistemically-based topology TE,m∗ provides a possibility for the agents to agree
to disagree on their posterior beliefs with limit knowledge.

Example 1. Consider the Aumann structure A = (Ω, (Ii)i∈I , p), where Ω =
{ωn : n ≥ 0}, I = {Alice,Bob}, IAlice = {{ω0}, {ω1, ω2}, {ω3, ω4, ω5, ω6},
{ω7, ω8, ω9}} ∪ {{ω2n, ω2n+1} : n ≥ 5}, IBob = {{ω0, ω1, ω2, ω3, ω4}, {ω5, ω6,
ω7, ω8}} ∪ {{ω2n+1, ω2n+2} : n ≥ 4}, and p : Ω → R is given by p(ωn) =

1
2n+1 for all n ≥ 0. Also, consider the event E = {ω1, ω5} ∪ {ω2n : n ≥ 1}
and the world ω10. Besides, for sake of notational convenience, let the event⋂

i∈I{ω′ ∈ Ω : p(E | Ii(ω′)) = p(E | Ii(ω10))} be denoted by E′. First of all,
observe that the computation of the posterior beliefs of Alice and Bob gives
a variety of distinct values for the first ten worlds {ω0, ω1, . . . , ω9}, as well as
p(E | IAlice(ωn)) = 2

3 and p(E | IBob(ωn)) = 1
3 , for all n ≥ 10. It follows that

{ω′ ∈ Ω : p(E | IAlice(ω′)) = p(E | IAlice(ω10))} = Ω \ {ω0, ω1, . . . , ω9} and
{ω′ ∈ Ω : p(E | IBob(ω′)) = p(E | IBob(ω10))} = Ω \ {ω0, ω1, . . . , ω8}, thus E′ =
(Ω\{ω0, ω1, . . . , ω9})∩(Ω\{ω0, ω1, . . . , ω8}) = Ω\{ω0, ω1, . . . , ω9}. Moreover, the
definitions of the possibility partitions of Alice and Bob ensure that Km(E′) =
Ω \{ω0, ω1, . . . , ωm+9}, for all m > 0. Consequently, the sequence (Km(E′))m>0

is strictly shrinking and CK(E′) =
⋂

m>0 Km(E′) = ∅. Now, let m∗ > 0 be
some index and suppose that P(Ω) is equipped with the topology TE,m∗ . Since
the sequence (Km(E′))m>0 is strictly shrinking, the definition of this topology
ensures that LK(E′) = Km∗

(E′) = Ω \ {ω0, ω1, . . . , ωm∗+9}. Consequently, the
computations of the posterior beliefs of Alice and Bob give p(E | IAlice(ω)) = 2

3
and p(E | IBob(ω)) = 1

3 , for all ω ∈ LK(E′). In other words, for all ω ∈ LK(E′),
it holds that p(E | IAlice(ω)) 6= p(E | IBob(ω)).
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4 Conclusion

In an epistemic-topoloigcal framework, agents have been shown to be able to
agree to disagree. More precisely, if Bayesian agents entertain a common prior
belief in a given event as well as limit knowledge of their posterior beliefs in the
event, then their actual posterior beliefs may indeed differ. This possibility result
also holds in interactive situations enriched by a particular epistemically-based
topology revealing a cogent agent perception of the event space.

The topological approach to set-based interactive epistemology, in which
topologies model agent closeness perceptions of events, can be used to describe
various agent reasoning patterns that do not only depend on mere epistemic but
also on topological features of the underlying interactive situation. For instance,
the event It is cloudy in London seems to be closer to the event It is raining in
London than the event It is sunny in London. Now, agents may make identical
decisions only being informed of the truth of some event within a class of close
events. Indeed, Alice might decide to stay at home not only in the case of it
raining outside, but also in the case of events perceived by her to be similar such
as it being cloudy outside.

Moreover, we envision the construction of a more general epistemic-topologi-
cal framework – topological Aumann structures – comprising topologies not only
on the event space but also on the state space. Such an extension permits an
explicit consideration of a notion of closeness between events as well as between
worlds, enabling to model common agent perceptions of the event and state
spaces. In particular, it might be of distinguished interest to base topologies on
first principles such as epistemic axioms or natural closeness properties. In line
with this perspective, the topology provided in Section 3 reflects the natural
agent perception for which iterated mutual knowledge becomes imprecise from
some level onwards.

Besides, in order to model subjective rather than common agent perceptions
of the event and state spaces, the epistemic-topological framework envisioned
here could be amended by assigning specific and potentially distinct topologies
to every agent. A collective topology reflecting a common closeness perception
could then be constructed on the basis of the particular agent topologies, and
limit knowledge be defined in such a global topological context. For instance, by
providing a topology that is coarser than each agent’s one, the meet topology
could be used as a representative collective topology. Alternatively, an agent
specific operator limit knowledge could be defined with respect to each particular
topology, and mutual limit knowledge as their intersection then be considered.

Finally, in a general epistemic-topological framework, various issues can be
addressed. For example, the possibility of agents to agree to disagree with limit
knowledge can be further analyzed for other epistemically-based as well as agent
specific topologies. Furthermore, analogously to the epistemic program in game
theory that attempts to provide epistemic foundations for solution concepts, an
epistemic-topological approach could generate epistemic-topological foundations
for solution concepts. In addition, it could be attempted to develop a theory
of counterfactuals in set-based interactive epistemology founded on a notion of
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similarity of worlds or events furnished by topologies on the state or event space,
respectively.
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