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Abstract

Epistemic game theory scrutinizes the re-
lationship between knowledge, belief and
choice of rational players. Here, the re-
lationship between common knowledge and
the limit of higher-order mutual knowledge
is studied from a topological point of view.
More precisely, the new epistemic operator
limit knowledge defined as the topological
limit of higher-order mutual knowledge is in-
troduced. We then show that limit knowl-
edge of the specific event rationality can be
used for epistemic-topological characteriza-
tions of solution concepts in games. As a
first step towards this scheme, we construct
a game where limit knowledge of rationality
appears to be a cogent strict refinement of
common knowledge of rationality in terms of
solution concepts. More generally, it is shown
that for any given game and epistemic model
of it satisfying some specific condition, every
possible epistemic hypothesis as well as as ev-
ery solution concept can be characterized by
limit knowledge of rationality for some ap-
propriate topology.

1 Introduction

Epistemic game theory scrutinizes the relationship be-
tween knowledge, belief, and action of rational game-
playing agents. The basic problem addressed is the
description of the players’ choices in a given game rela-
tive to various epistemic assumptions. More precisely,
it is attempted to characterize existing game-theoretic
solution concepts in terms of epistemic assumptions
as well as to propose novel solution concepts by study-
ing the implications of refined or new epistemic hy-
potheses. Here, we follow the set-based approach to
epistemic game theory as introduced and notably de-

veloped by Aumann (1976), (1987), (1995), (1999a),
(1999b) and (2005).

A central concept in epistemic game theory is com-
mon knowledge. It is used in basic background as-
sumptions, such as common knowledge of the game
structure, or in epistemic hypotheses, such as com-
mon knowledge of rationality, that can be employed
to epistemically characterize solution concepts. Origi-
nally, the notion has been introduced by Lewis (1969)
as a prerequisite for a rule to become a convention. In-
tuitively, some event is regarded as common knowledge
among a set of agents, if everyone knows the event, ev-
eryone knows that everyone knows the event, everyone
knows that everyone knows that everyone knows the
event, etc. Following Lewis’s (1969) original proposi-
tion, it has become standard to define common knowl-
edge as the infinite intersection, or conjunction, of it-
erated mutual knowledge claims. Yet, an eminent al-
ternative view of common knowledge as a fixed point
also exists. Accordingly, common knowledge of some
event is defined as the claim that everyone knows both
the event and common knowledge of the event.

The natural question then arises whether these two
definitions are equivalent. Barwise (1988) provides a
special situation-theoretic model in which the stan-
dard and fixed point views of common knowledge do
not coincide. Moreover, van Benthem and Sarenac
(2005) show the non-equivalence of the two notions in
the general framework of epistemic logic with a topo-
logical semantics.

A further question that can be addressed concerns
the relationship between the standard definition of
common knowledge and the infinite sequence of iter-
ated mutual knowledge underlying it. Indeed, Lipman
(1994) considers a specific notion of limit such that
common knowledge of the particular event rational-
ity is not equivalent to the limit of iterated mutual
knowledge of rationality. Here, a topological approach
to set-based epistemic game theory is pursued and it
is shown that common knowledge is not equivalent to
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the topological limit of the sequence of iterated mutual
knowledge. On the basis of this observation the new
epistemic operator limit knowledge is introduced, and
some consequences of limit knowledge of the specific
event rationality are scrutinized for games.

2 Common Knowledge

Before common knowledge is defined formally, the
set-based framework for interactive epistemology is
presented. A so-called Aumann structure A =
(Ω, (Ii)i∈I) consists of a set Ω of possible worlds, which
are complete descriptions of the way the world might
be, and a possibility partition Ii of Ω for each agent
i ∈ I representing his information. An event E ⊆ Ω
is defined as a set of possible worlds. For example,
the event of it raining in London contains all worlds in
which it does rain in London. The cell of Ii containing
the world ω is denoted by Ii(ω) and contains all worlds
considered possible by i at world ω. In other words,
the agent i cannot distinguish between any two worlds
ω and ω′ that are in the same cell of his partition
Ii. Farther, an Aumann structure A = (Ω, (Ii)i∈I) is
called finite if Ω is finite and infinite otherwise.

The event of agent i knowing E, denoted by Ki(E),
is defined as Ki(E) := {ω ∈ Ω : Ii(ω) ⊆ E}. If ω ∈
Ki(E), then i is said to know E at world ω. Intuitively,
i knows some event E if in all worlds he considers possi-
ble E holds. Naturally, the event K(E) =

⋂
i∈I Ki(E)

then denotes mutual knowledge of E among the set
I of agents. Letting K0(E) := E, m-order mutual
knowledge of the event E among the set I of agents is
inductively defined by Km(E) := K(Km−1(E)) for all
m > 0. Accordingly, mutual knowledge can also be de-
noted as 1-order mutual knowledge. Different higher-
order mutual knowledge, also called iterated mutual
knowledge, are related by the following lemma:

Lemma 2.1. For all m′ ≥ m ≥ 0, Km′
(E) ⊆ Km(E).

Proof. The proof is by induction on m′. First of all,
suppose m′ = 0. Then m = m′ = 0, and obviously
Km′

(E) ⊆ Km(E). Now, suppose m′ = p + 1, for
some p ≥ 0. If m = m′ = p + 1, then obviously
Km′

(E) ⊆ Km(E). If m = p, then by definition
of the knowledge operator, Km′

(E) = Kp+1(E) =
K(Kp(E)) ⊆ Kp(E) = Km(E). If m ≤ p, then by the
induction hypothesis, and since the mutual knowledge
operator K is monotone with respect to set inclusion,
it follows that Km′

(E) = Kp+1(E) = K(Kp(E)) ⊆
K(Km(E)) ⊆ Km(E).

An event is said to be common knowledge among a set
I of agents whenever all m-order mutual knowledge si-
multaneously hold. The standard definition formalizes
this concept as follows.

Definition 2.2. CK(E) :=
⋂

m>0 Km(E) is the event
that E is common knowledge among the set I of
agents.

Common knowledge of the particular event that all
players are rational has been used in epistemic char-
acterizations of solution concepts in games. A well-
known result states that common knowledge of ratio-
nality implies iterated strict dominance, as provided,
for example, by Tan and Werlang (1988) for finite
games and involving the standard notion of rational-
ity as subjective expected utility maximization. Below
we give an epistemic characterization of pure strategy
iterated strict dominance for possibly infinite games
and in terms of common knowledge of some weaker ra-
tionality. The latter is adapted from Aumann’s (1995)
knowledge-based extensive form notion which has been
argued by Aumann (1995) and (1996) to be simpler
and more general than the subjective expected utility
maximization one. Iterated strict dominance in pure
strategies as well as our modified concept of rational-
ity will serve in the next section to illustrate that our
new epistemic operator limit knowledge is capable of
cogent implications for games.

Towards this purpose, some standard game-theoretic
notation and notions are recalled. A game in normal
form Γ = (I, (Si)i∈I , (ui)i∈I) consists of a possibly in-
finite set of players I, as well as, for each player i ∈ I,
a possibly infinite strategy space Si and a utility func-
tion ui : ×i∈ISi → R that assigns to each strategy
profile (si)i∈I ∈ ×i∈ISi a real number ui((si)i∈I) as
payoff.

A solution concept SC is a mapping associating with
each game Γ a subset of its strategy profiles SCΓ ⊆
×i∈ISi. Note that a solution concept thus is a generic
method which does not depend on any particular given
game.

An epistemic model of a game Γ is an Aumann struc-
ture AΓ = (Ω, (Ii)i∈I , (σi)i∈I) that additionally speci-
fies for each player i ∈ I a choice function σi : Ω → Si,
connecting the interactive epistemology to the game.
The choice function profile σ : Ω → ×i∈ISi mapping
each world to its corresponding strategy profile is then
defined by σ(ω) = (σi(ω))i∈I . Moreover, it is stan-
dard and seems natural to assume that each player
knows his own strategy choice, which is formally ex-
pressed by requiring each player’s choice function σi to
be measurable with respect to Ii.1 This so-called mea-
surability assumption has even been denoted as tau-
tologous by Aumann and Brandenburger (1995) who
point out that knowing one’s own choice is implicit in
consciously making a choice.

1More precisely, if two worlds ω and ω′ are in the same
cell of player i’s possibility partition, then σi(ω) = σi(ω

′).
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Next, the adapted notion of rationality used in the
sequel is defined.

Definition 2.3. The event that player i is rational is
given by

Ri :=
⋂

si∈Si

(Ki({ω ∈ Ω : ui(si, σ−i(ω)) > ui(σ(ω))})){,

and rationality is the event R :=
⋂

i∈I Ri.

In words, a player i is rational whenever for any of
his strategies si ∈ Si, he does not know that si would
yield him higher utility than his actual choice.

Furthermore, given an arbitrary game in normal form,
the solution concept iterated strict dominance (ISD)
in pure strategies can be defined as follows.

Definition 2.4. Suppose an arbitrary game in nor-
mal form Γ = (I, (Si)i∈I , (ui)i∈I). Let S0

i = Si for
all i ∈ I, and let the sequence (SDk)k≥0 of strategy
profile sets be inductively given by SD0 = ×i∈IS

0
i and

SDk+1 = ×i∈ISDk+1
i , where SDk+1

i = SDk
i \ {si ∈

SDk
i : there exists s′i ∈ SDk

i such that ui(si, s−i) <
ui(s′i, s−i), for all s−i ∈ SDk

−i}, for all i ∈ I. Then,
ISDΓ :=

⋂
k≥0 SDk.

The possible problem of order dependence of ISD, as
pointed out, for instance, by Dufwenberg and Stege-
man (2002), is avoided by our definition, since at each
round, all remaining strictly dominated strategies are
eliminated.

The preceding two definitions now permit an epistemic
characterization of pure strategy iterated strict dom-
inance in terms of common knowledge of rationality.
Note that in Proposition 2.5 below, as well as in all
results of Section 3, common knowledge of the struc-
ture of the game is taken to be an implicit background
assumption.

Proposition 2.5. Let AΓ be an epistemic model of an
arbitrary game in normal form Γ. Then, σ(CK(R)) ⊆
ISDΓ.

Proof. By induction, we prove that σ(Km(R)) ⊆
SDm+1, for all m ≥ 0. It then follows that
σ(CK(R)) = σ(

⋂
m>0 Km(R)) = σ(

⋂
m≥0 Km(R)) ⊆⋂

m≥0 σ(Km(R)) ⊆
⋂

m≥0 SDm+1 =
⋂

m>0 SDm =⋂
m≥0 SDm = ISDΓ, concluding the proof. First of

all, consider (si)i∈I ∈ σ(K0(R)) = σ(R). Then, there
exists ω ∈ R =

⋂
i∈I Ri such that σ(ω) = (si)i∈I .

Hence, by definition of Ri and measurability of σi,
for all si ∈ Si, there exists ω′ ∈ Ii(ω) such that
ui(si, σ−i(ω′)) ≤ ui(σ(ω′)) = ui(σi(ω), σ−i(ω′)). It
follows that σi(ω) ∈ SD1

i for all i ∈ I, thus σ(ω) ∈
×i∈ISD1

i = SD1. Therefore, σ(K0(R)) ⊆ SD1.
Now, assume σ(Km(R)) ⊆ SDm+1 for some m > 0,
and let (si)i∈I ∈ σ(Km+1(R)). Then, there exists

ω ∈ Km+1(R) such that σ(ω) = (si)i∈I . Hence
Ii(ω) ⊆ Km(R), and thus by the induction hypoth-
esis, σ(Ii(ω)) ⊆ SDm+1. Besides, since ω ∈ Ri, for
all si ∈ SDm+1

i there exists ω′ ∈ Ii(ω) such that
ui(si, σ−i(ω′)) ≤ ui(σ(ω′)) = ui(σi(ω), σ−i(ω′)). Yet
since σ(Ii(ω)) ⊆ SDm+1, each ω′ ∈ Ii(ω) induces
σ−i(ω′) ∈ SDm+1

−i , which in turn implies that σi(ω) ∈
SDm+2

i for all i ∈ I, and thus (si)i∈I = σ(ω) ∈
×i∈ISDm+2

i = SDm+2. Therefore, σ(Km+1(R)) ⊆
SDm+2.

3 Limit Knowledge

According to the standard definition, common knowl-
edge of an event is the countably infinite intersection
of all successive higher-order mutual knowledge of the
event. Thence, a natural question to be addressed is
to clarify the relationship between common knowledge
and the possible limit points of the sequence of higher-
order mutual knowledge from a topological point of
view. In fact it can be shown that these two concepts
are closely related in the case of finite Aumann struc-
tures, but do substantially differ for infinite Aumann
structures, as illustrated, for instance in Example 3.2
below. The existence of situations in which a unique
limit point of the sequence of iterated mutual knowl-
edge differs from common knowledge motivates the fol-
lowing definition of the new epistemic operator limit
knowledge.

Definition 3.1. Let (Ω, (Ii)i∈I) be an Aumann struc-
ture, T a topology on P(Ω), and E an event. If the
limit point of the sequence (Km(E))m>0 is unique,
then LK(E) := limm→∞Km(E) is the event that E
is limit knowledge among the set I of agents.

With limit knowledge, a novel operator is proposed
that can be employed for epistemic characterizations
of existing or new game-theoretic solution concepts,
as initiated below. In this context, situations in which
limit knowledge differs from common knowledge are of
distinguished interest. It can be shown that such sit-
uations necessarily involve sequences of iterated mu-
tual knowledge that are strictly shrinking.2 Note that
the expressive power of limit knowledge is severely re-
stricted in case of the discrete topology. Indeed, it
can be shown that limit knowledge is not defined if
the sequence of iterated mutual knowledge is strictly
shrinking, and is equal to common knowledge other-
wise.

A possible application of limit knowledge is given by
2In the sequel, given some event E, the sequence of it-

erated mutual knowledge (Km(E))m>0 is said to be even-
tually constant if there exists some index p such that
Km(E) = Kp(E) for all m ≥ p. Moreover, it is called
strictly shrinking if Km+1(E) ( Km(E) for all m ≥ 0.
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the following example where limit knowledge of ratio-
nality indeed appears to be a cogent strict refinement
of common knowledge of rationality in terms of solu-
tion concepts.

Example 3.2. Consider the Cournot-type game Γ =
(I, (Si)i∈I , (ui)i∈I) in normal form with player set
I = {Alice,Bob,Claire,Donald}, strategy sets SAlice =
SBob = [0, 1], SClaire = {U,D}, SDonald = {L,R}, and
utility functions ui : SAlice×SBob×SClaire×SDonald →
R for all i ∈ I, defined as uAlice(x, y, v, w) = x(1 −
x − y) and uBob(x, y, v, w) = y(1 − x − y), as well as
uClaire(x, y, v, w) and uDonald(x, y, v, w) given as fol-
lows:

Claire

Donald

L R

U (2, 1) (1, 1)

D (2, 2) (2, 3)

for all (x, y) 6= (1
3 , 1

3 )

Claire

Donald

L R

U (2, 3) (2, 2)

D (1, 1) (2, 1)

for (x, y) = ( 1
3 , 1

3 )

Solving the game by iterated strict dominance yields
ISDΓ =

⋂
n≥0

(
[an, bn]2 × {U,D} × {L,R}

)
= { 1

3} ×
{ 1

3} × {U,D} × {L,R}. Yet in this solution, it is pos-
sible to further restrict the remaining strategy sets
of Claire and Donald by a weak dominance argu-
ment, leaving the singleton set (ISD + WD)Γ =
{( 1

3 , 1
3 , U, L)} as a possible strictly refined solution of

the game.3

Before turning towards the epistemic model of this
game, some preliminary observations are needed. Note
that Alice’s and Bob’s best response functions bAlice :
[0, 1] × {U,D} × {L,R} → [0, 1] and bBob : [0, 1] ×
{U,D} × {L,R} → [0, 1] are given by bAlice(y, v, w) =
1−y
2 and bBob(x, v, w) = 1−x

2 , respectively. On the ba-
sis of these two functions, we now describe an infinite
sequence (sn

Alice, s
n
Bob)n≥0 of strategy combinations for

Alice and Bob which will be central to the construction
of our epistemic model. This sequence is defined for

3Formally, given a game Γ, iterated strict domi-
nance followed by weak dominance is defined as (ISD +
WD)Γ = ×i∈I(ISDΓ

i \ {si ∈ ISDΓ
i : there exists s′i ∈

ISDΓ
i such that ui(si, s−i) ≤ ui(s

′
i, s−i), for all s−i ∈

ISDΓ
−i and ui(si, s

′
−i) < ui(s

′
i, s

′
−i) for some s′−i ∈

ISDΓ
−i}).

all n ≥ 0 by induction as follows.(
s0
Alice, s

0
Bob

)
= (0, 1)(

s1
Alice, s

1
Bob

)
=

(
0,

1
2

)
(
s2n+2
Alice , s2n+2

Bob

)
=

(
1− s2n+1

Bob

2
, s2n+1

Bob

)
(
s2n+3
Alice , s2n+3

Bob

)
=

(
s2n+2
Alice ,

1− s2n+2
Alice

2

)
,

Note that this sequence converges to (1
3 , 1

3 ).

Next an epistemic model AΓ = (Ω, (Ii)i∈I , (σi)i∈I) is
proposed for the game. First of all, the countable set
of worlds is given by:

Ω = {α, β, γ, δ, α0, β0, γ0, δ0, α1, β1, γ1, δ1, α2, β2, γ2, δ2, . . .}.

Second, the possibility partitions are specified as fol-
lows:

IAlice = {{α, β, γ, δ}}∪
{{α2n, β2n, γ2n, δ2n, α2n+1, β2n+1, γ2n+1, δ2n+1} : n ≥ 0}

IBob = {{α, β, γ, δ}, {α0, β0, γ0, δ0}}∪
{{α2n−1, β2n−1, γ2n−1, δ2n−1, α2n, β2n, γ2n, δ2n} : n > 0}

IClaire = {{α, β}, {γ, δ}}∪
{{αn, βn} : n ≥ 0} ∪ {{γn, δn} : n ≥ 0}

IDonald = {{α, γ}, {β, δ}}∪
{{αn, γn} : n ≥ 0} ∪ {{βn, δn} : n ≥ 0}

Finally, the function σ =
(σAlice, σBob, σClaire, σDonald) : Ω → ×i∈ISi as-
sembling all the players’ choice functions is defined
for all n ≥ 0 by:

σ(α) = (1/3, 1/3, U, L) σ(αn) = (sn
Alice, s

n
Bob, U, L)

σ(β) = (1/3, 1/3, U, R) σ(βn) = (sn
Alice, s

n
Bob, U, R)

σ(γ) = (1/3, 1/3, D, L) σ(γn) = (sn
Alice, s

n
Bob, D, L)

σ(δ) = (1/3, 1/3, D, R) σ(δn) = (sn
Alice, s

n
Bob, D, R)

By definition of the sequence (sn
Alice, s

n
Bob)n≥0, the two

equalities s2n
Alice = s2n+1

Alice and s2n+1
Bob = s2n+2

Bob hold for
all n ≥ 0, and therefore our epistemic model satisfies
the standard measurability requirement for the play-
ers’ choice functions.

We now describe the players’ rationality in this
epistemic model. First, consider Alice. Note that
she is rational at worlds α, β, γ and δ. Moreover,
by construction of the sequence (sn

Alice, s
n
Bob)n≥0,

if ω is a world such that (σAlice(ω), σBob(ω)) =
(s2n

Alice, s
2n
Bob) for some n ≥ 0, then

uAlice(σ(ω)) = uAlice(bAlice(σ−Alice(ω)), σ−Alice(ω)) ≥
uAlice(x, σ−Alice(ω)), for all x ∈ SAlice. Hence, Alice is

37



rational at every world ω′ ∈ IAlice(ω). By definition
of IAlice, since each cell contains a world ω such that
(σAlice(ω), σBob(ω)) = (s2n

Alice, s
2n
Bob) for some n ≥ 0,

it follows that RAlice = Ω. Second, Bob is shown not
to be rational at every possible world. In fact, his
strategies σBob(α0), σBob(β0), σBob(γ0) and σBob(δ0)
all equal 1, which in turn is strictly dominated by
any y ∈ (0, 1), thus α0, β0γ0, δ0 6∈ RBob. Analogous
reasoning as for Alice permits to conclude that
Bob is rational at all remaining worlds. Therefore,
RBob = Ω\{α0, β0, γ0, δ0}. Finally, Claire and Donald
are rational at every possible world. Indeed, observe
that Claire is rational at α, since α ∈ IClaire(α) and
uClaire(σ(α)) ≥ uClaire(D,σ−Claire(α)), while D being
her only alternative strategy. As β ∈ IClaire(α),
it follows that Claire is also rational at β. Similar
arguments hold for Claire’s rationality at worlds γ
and δ. Analogously, Claire is rational at all other
possible worlds αn, βn, γn and δn, for all n ≥ 0.
Donald’s rationality at each world is obtained in the
same manner. Therefore, RClaire = RDonald = Ω and
the event of all players being rational is given by
R =

⋂
i∈I Ri = Ω \ {α0, β0, γ0, δ0}. Consequently, the

sequence (Km(R))m>0 is strictly shrinking and the
event common knowledge of rationality is given by
CK(R) =

⋂
m>0 Km(R) = {α, β, γ, δ}.

Besides, consider the topology on P(Ω) given by
{O ⊆ P(Ω) : {α} 6∈ O} ∪ {P(Ω)}. Then, the only
open neighbourhood of the event {α} is P(Ω), and all
terms of the sequence (Km(R))m>0 are contained in
P(Ω). Thus (Km(R))m>0 converges to {α}. More-
over, any singleton {F} 6= {{α}} is open, and since
Km+1(R) ( Km(R) for all m > 0, the sequence
(Km(R))m>0 will never remain in the open neighbour-
hood {F} of F from some index onwards. Hence
(Km(R))m>0 does not converge to any such event
F . Therefore the limit (Km(R))m>0 is unique, and
LK(R) = limm→∞(Km(R))m>0 = {α}.

Finally, σ(CK(R)) = {σ(α), σ(β), σ(γ), σ(δ)} = { 1
3}×

{ 1
3} × {U,D} × {L,R} = ISDΓ, while σ(LK(R)) =
{σ(α)} = {( 1

3 , 1
3 , U, L)} = (ISD + WD)Γ. Hence, the

solution in accordance with LK(R) is a strict refine-
ment of the solution induced by CK(R).

The preceding example describes a particular topolog-
ical epistemic model of a given game such that limit
knowledge of rationality is a refinement of common
knowledge of rationality in terms of solution concepts.
In fact, we now generally show that, for any given game
and epistemic model of it satisfying the strictly shrink-
ing condition with respect to iterated mutual knowl-
edge of rationality, every possible event as well as every
solution concept can be characterized by limit knowl-
edge of rationality for some appropriate topology.
Theorem 3.3. Let Γ be a normal form and AΓ an

epistemic model of it such that (Km(R))m>0 is strictly
shrinking.

1. Let E be any event. Then, there exists a topology
on P(Ω) such that LK(R) = E.

2. Let SC be any solution concept. Then, there exists
a topology on P(Ω) such that σ(LK(R)) ⊆ SCΓ.

Proof.

1. Suppose the topology on P(Ω) given by T = {O ⊆
P(Ω) : E 6∈ O} ∪ {P(Ω)}. By definition of T , the
only open neighbourhood of E is P(Ω), and thus
(Km(R))m>0 converges to this point. Also, for ev-
ery F 6= E, the singleton {F} is open, and by the
strictly shrinking condition on (Km(R))m>0, this
sequence will never remain in the open neighbour-
hood {F} of F from some index onwards. Hence
the sequence (Km(R))m>0 does not converge to
F . Therefore, the limit of (Km(E))m>0 is unique,
and LK(R) = limm→∞(Km(R))m>0 = E.

2. Consider the event F = σ−1(SCΓ) = {ω ∈ Ω :
σ(ω) ∈ SCΓ}. Hence, σ(F ) ⊆ SCΓ. Now, sup-
pose the topology on P(Ω) given by T ′ = {O ⊆
P(Ω) : F 6∈ O} ∪ {P(Ω)}. It then follows that
LK(R) = limm→∞(Km(R))m>0 = F . Therefore,
σ(LK(R)) = σ(F ) ⊆ SCΓ.

Epistemic hypotheses being particular events, the
above theorem shows that limit knowledge of ratio-
nality can be used as a topological foundation for
any epistemic hypothesis as well as an epistemic-
topological foundation for any solution concept. Ob-
serve that Theorem 3.3 can be refined towards equality
in the sense that for any epistemic model AΓ fulfill-
ing its assumptions as well as the additional condi-
tion σ(Ω) ⊇ SCΓ, there exists a topology such that
σ(LK(R)) = SCΓ. In other words, if the epistemic
model furnishes a choice function σ that covers all
possible strategy profiles given by the solution concept
SC, then the choices in accordance with limit knowl-
edge of rationality equal the ones permissible under
SC. In this case, limit knowledge of rationality thus
provides an exact epistemic-topological foundation for
the given solution concept. Farther note that this uni-
versal characterization capability of limit knowledge of
rationality indispensably requires the strictly shrink-
ing condition to hold. Hence, the expressive power of
this epistemic operator is somewhat countered by this
significant constraint.

Moreover, the proof of Theorem 3.3 actually provides
a generic method to construct a topology such that
limm→∞(Km(R))m>0 = σ−1(SCΓ). The definition of
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this topology is completely independent from the spe-
cific game considered. However, the convergence prop-
erties of the sequence (Km(R))m>0 according to this
topology do depend on the underlying game. More
precisely, while the definition of this topology ensures
that σ−1(SCΓ) is always a limit point of the sequence
(Km(R))m>0, the uniqueness of this limit point does
require the strictly shrinking condition of this sequence
to hold, which in turn is related to the structure of the
game. Thus the well-definedness and characterization
capability of limit knowledge of rationality do depend
on the underlying game. Note in this context that it
could be of interest to investigate a weakened defini-
tion of limit knowledge involving multiple limit points,
in order to extend its characterization capability even
to situations where the strictly shrinking condition is
violated.

4 Discussion

Limit knowledge can be understood as the event which
is approached by the sequence of iterated mutual
knowledge, according to some notion of closeness be-
tween events. In other words, the higher the iterated
mutual knowledge, the closer the respective event is to
limit knowledge. Yet, limit knowledge should not be
seen as any kind of highest iterated mutual knowledge,
since it possibly contains worlds that do not belong to
any higher-order mutual knowledge.

Generally, epistemic hypotheses revealing some in-
formational mental states of the players are of spe-
cial interest for epistemic characterizations of solution
concepts. Note that limit knowledge of rationality
can also be associated with a kind of reasoning pat-
tern of the agents. Indeed, by definition LK(R) =
limm→∞Km(R), hence it follows that LK(R) holds
i.e. the actual world ω belongs to LK(R), if and only
if there exists some event E such that both ω ∈ E and
E = limm→∞Km(R), meaning that everyone consid-
ers possible a true event which is the topological limit
of the sequence (Km(R))m>0. Hence ω ∈ LK(R) can
be interpreted as everyone considering possible a true
event which is eventually topologically indistinguish-
able from all remaining higher-order mutual knowledge
of rationality. In contrast to common knowledge of ra-
tionality, the informational mental states of agents in
accordance with limit knowledge of rationality do not
enable to infer their precise behaviour, but it appears
plausible to claim that such mental states significantly
influence the agents’ subsequent choices.

Theorem 3.3 ensures that several implications of limit
knowledge of rationality for epistemic hypotheses as
well as for solution concepts in games could be rel-
evant. This epistemic-topological insight can be ap-

prehended from two different angles. A first approach
would study possible topological characterizations via
limit knowledge of rationality for a given epistemic hy-
pothesis or solution concept. Relevant topological rea-
soning patterns of the agents in accordance with some
given epistemic hypothesis or solution concept could
thus be unveiled. Also, seeking conditions for solution
concepts which have not yet been epistemically charac-
terized offers an interesting path for further research.
Note that Example 3.2 is in line with this first angle,
since the involved topology has been chosen in order
to make LK(R) correspond precisely to the event that
the solution concept ISD + WD is played. Yet, the
particular topological characterization of ISD + WD
given in Example 3.2 may possibly appear somewhat
artificial. The exploration of further topological char-
acterizations of ISD + WD could thus be of interest.

A second approach would derive the epistemic hy-
potheses or solution concepts in accordance with limit
knowledge of rationality, for some given topology. It
might be of particular interest to explore the game-
theoretic consequences of topologies being defined on
the basis of relevant descriptions of the event space
or revealing cogent underlying reasoning patterns of
the agents. Such topologies could be called epistem-
ically plausible. Solution concepts characterizable in
this way might be argued to gain in credibility com-
pared to ones that are not. Also, in a more general
sense, epistemically plausible topologies could poten-
tially uncover new interesting epistemic hypotheses or
solution concepts.

An instance of a epistemically plausible topological
foundation for the solution concept n-times strict dom-
inance in pure strategies SDn is given now. Suppose a
game in normal form Γ and some epistemic model AΓ

of it such that the sequence (Km(R))m>0 is strictly
shrinking. Given some index m∗ > 0, consider the
topology T on P(Ω) induced by the subbase{

{Km(R) : m > 0}, {Km(R) : m > 0}{
}
∪

{{Km(R)} : m < m∗} ∪{
{Km∗+1(R),Km∗+2(R), . . . ,Kn(R)} : n > m∗

}
.

This topology can be argued to be plausible in the
sense that it satisfies the following four properties.
First, if E is a term of the sequence (Km(R))m>0

and F is not (or vice versa), then E and F are T2-
separable.4 Second, if E and F are two distinct terms
of (Km(R))m>0 of index strictly smaller than m∗, then
E and F are T2-separable. Third, if E and F are two
distinct terms of (Km(R))m>0 of index strictly larger

4Given a topological space (X, T ), two points in X are
called T2-separable if there exist two disjoint T -open neigh-
bourhoods of these two points.
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than m∗, then E and F are T0-separable but not T2-
separable.5 Fourth, if E = Km∗

(R) and F is any
other term of (Km(R))m>0 (or vice versa), then E
and F are T0-separable but not T2-separable. These
properties reflect a particular perception of the event
space, where the agents’ topological distinction be-
tween the first (m∗−1)-order knowledge of rationality
is stronger than between the remaining higher-order
mutual knowledge. By definition of T , it follows that
LK(R) = Km∗

(R) and hence σ(LK(R)) ⊆ SDm∗+1

obtains, by an argument used in the proof of Propo-
sition 2.5. In this sense, T provides a plausible
epistemic-topological characterization of the solution
concept SDn, where n = m∗ + 1.

5 Conclusion

The topological approach to epistemic game theory ini-
tiated here furnishes an enriched framework to inter-
active epistemology. Similar to the epistemic program
that attempts to provide epistemic foundations for so-
lution concepts, a topological approach to epistemic
game theory could generate a topological foundation
for epistemic hypotheses, as well as an epistemic-
topological foundation for solution concepts. Besides,
additional insights into the agents’ reasoning might be
yielded. Farther, the topological methodology used
here could be generalized to analyze the relation be-
tween any two given operators one of which is defined
in topological terms. Possible future work could also
focus on studying epistemically plausible topologies
and subsequently scrutinizing the implications of limit
knowledge of rationality for games.

In a more general sense, it is envisioned to construct a
general topological framework for Aumann structures
to enrich the epistemic analysis of games. Such an
amplification comprises topologies for the state space
as well as for the event space. These two components
together would then constitute a topological Aumann
structure, in which their relationship to each other as
well as to epistemic operators and solution concepts
could be studied. Also, a general topological frame-
work is capable of phrasing and reflecting the epis-
temic properties of an interactive situation in topolog-
ical terms.

5Given a topological space (X, T ), two points in X are
called T0-separable if there exists a T -open set containing
one but not both of these two points.
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Sémiologiques, Université de Neuchâtel.
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