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Abstract We study the relationship between common knowledge and the sequence
of iterated mutual knowledge from a topological point of view. It is shown that com-
mon knowledge is not equivalent to the limit of the sequence of iterated mutual knowl-
edge. On that account the new epistemic operator limit knowledge is introduced and
analyzed in the context of games. Indeed, an example is constructed where the behav-
ioral implications of limit knowledge of rationality strictly refine those of common
knowledge of rationality. More generally, it is then shown that limit knowledge of
rationality is capable of characterizing any solution concept for some appropriate epi-
stemic-topological conditions. Finally, some perspectives of a topologically enriched
epistemic framework for games are discussed.
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1 Introduction

Interactive epistemology provides a general framework in which epistemic notions
such as knowledge and belief can be modelled for situations involving multiple agents.

An extended abstract of a preliminary version of this paper appears under the title “Limit Knowledge of
Rationality” in Aviad Heifetz (ed.), Theoretical Aspects of Rationality and Knowledge: Proceedings of the
Twelfth Conference (TARK 2009), 34–40, ACM.
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This rather recent discipline has been initiated by Aumann (1976) and first been
adopted in the particular context of games by Aumann (1987) as well as by Tan and
Werlang (1988). The objectives of an epistemic approach to game theory consists
in characterizing existing solution concepts in terms of epistemic assumptions, as
well as in proposing new solution concepts by studying the consequences of refined
or novel epistemic hypotheses. Actually, epistemic game theory can be regarded as
complementing classical game theory. While the latter is based on the two basic prim-
itives—game form and choice—the former adds an epistemic framework as a third
elementary component such that knowledge and beliefs can be explicitly modelled in
games. Here, we follow Aumann’s set-based approach to epistemic game theory, as
introduced in Aumann (1976) and developed notably by Aumann (1987, 1995, 1996,
1998a,b, 1999a,b) and Aumann (2005).

A central epistemic concept in game theory is common knowledge. It is used in
basic background assumptions, such as common knowledge of the game form, as well
as in epistemic hypotheses, such as common knowledge of rationality, which in turn
can be applied to epistemic foundations of solution concepts. Originally, the notion
has been introduced by Lewis (1969) as a prerequisite for a rule to become a conven-
tion. Intuitively, some event is said to be common knowledge among a set of agents, if
everyone knows the event, everyone knows that everyone knows the event, everyone
knows that everyone knows that everyone knows the event, etc. Indeed, it has become
standard to define common knowledge as the infinite intersection, or conjunction, of
iterated mutual knowledge claims. Alternatively, it is possible to conceive of com-
mon knowledge as a fixed point by defining common knowledge of some event as
the claim that everyone knows both the event and common knowledge of the event.1

The natural question then arises whether these two definitions are equivalent. In fact,
Barwise (1988) provides a special situation-theoretic model in which the standard and
fixed point views of common knowledge do not coincide. Moreover, van Benthem and
Sarenac (2004) also show the non-equivalence of the two notions within a framework
of epistemic logic with topological semantics.

Apart from comparing distinct conceptions of common knowledge, a further
intriguing and somewhat related question that can be addressed concerns the relation-
ship between the standard definition of common knowledge and the infinite sequence
of iterated mutual knowledge underlying it. Indeed, Lipman (1994) shows that com-
mon knowledge of the particular event rationality is not equivalent to the limit of
iterated mutual knowledge for some specific notion of limit. Here, we also study the
relationship between common knowledge and the limit of the sequence of iterated
mutual knowledge, but from a topological point of view. More precisely, it is shown
that common knowledge is not equivalent to the limit of the sequence of iterated
mutual knowledge, and on that account the new epistemic operator limit knowledge is
introduced as well as analyzed in the context of games.

We proceed as follows. In Sect. 2, the basic framework of set-based epistemic
game theory is presented and the standard definition of common knowledge stated.
Besides, an epistemic foundation for iterated strict dominance involving a weaker

1 Note that such a fixed point view is also implicit in Aumann (1976) meet definition of common knowledge.
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than standard notion of rationality is given for possibly infinite games. Furthermore,
Sect. 3 studies the relationship between common knowledge and the sequence of iter-
ated mutual knowledge from a topological point of view, shows that the concept of
common knowledge genuinely differs from the former’s limit, and defines the new
epistemic operator limit knowledge. Next, Sect. 4 studies some game-theoretic con-
sequences of limit knowledge of the specific event rationality. In particular, a concrete
static infinite game is constructed in which limit knowledge of rationality strictly
refines common knowledge of rationality in terms of solution concepts. In this exam-
ple, the latter epistemic hypothesis implies iterated strict dominance, while the former
entails iterated strict dominance followed by weak dominance. It is then generally
shown that, for any given game and epistemic model of it satisfying some appropriate
epistemic-topological conditions, limit knowledge of rationality is capable of char-
acterizing every solution concept. Due to this universal foundational capability, limit
knowledge of rationality could thus be used for epistemic-topological characteriza-
tions of solution concepts. Moreover, Sect. 5 discusses some perspectives of a general
topological framework for set-based interactive epistemology. Finally, Sect. 6 offers
some concluding remarks.

2 Common knowledge

Before common knowledge is defined formally, the set-based framework for inter-
active epistemology is briefly presented. A so-called Aumann structure A =
(Ω, (Ii )i∈I ) contains a set Ω of possible worlds, which are complete descriptions
of the way the world might be, and an information partition Ii of Ω for each agent
i ∈ I . The cell of Ii containing the world ω is denoted by Ii (ω) and assembles all
worlds considered possible by i at world ω. Intuitively, an agent i cannot distinguish
between any two worlds ω and ω′ that are in the same cell of his partition Ii . Two
such worlds are called indistinguishable for agent i . Alternatively, if Ii (ω) �= Ii (ω

′),
then ω and ω′ are said to be distinguishable for agent i . We then call two worlds ω and
ω′ distinguishable if they are distinguishable for all agents i ∈ I . Moreover, an event
E ⊆ Ω is defined as a set of possible worlds. For example, the event of it raining in
London contains all worlds in which it does in fact rain in London. Farther, an Aumann
structure A = (Ω, (Ii )i∈I ) is called finite if Ω is finite and infinite otherwise.

In Aumann structures knowledge is formalized in terms of events. Indeed, the event
that agent i knows some event E , denoted by Ki (E), is defined as Ki (E) := {ω ∈ Ω :
Ii (ω) ⊆ E}. Intuitively, i knows some event E if in all worlds he considers possible
E holds. If ω ∈ Ki (E), then i is said to know E at world ω. Naturally, the event
K (E) = ⋂

i∈I Ki (E) denotes mutual knowledge of E among the set I of agents.
Iterated mutual knowledge can then be formalized inductively. More precisely, letting
K 0(E) := E, m-order mutual knowledge of the event E among the set I of agents is
defined by K m(E) := K (K m−1(E)) for all m > 0. Accordingly, mutual knowledge
can also be denoted as 1-order mutual knowledge. Different iterated mutual knowledge
claims are related by the following lemma.

Lemma 1 Let A be an Aumann structure and E be some event. For all m′ ≥ m ≥ 0,

K m′
(E) ⊆ K m(E).
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Proof The proof is by induction on m′. First of all, if m′ = 0, then m = m′ = 0,
and thus K m′

(E) ⊆ K m(E). Now, assume that m′ = p′ + 1 for some p′ ≥ 0,
and that K p′

(E) ⊆ K p(E) for all p such that p′ ≥ p ≥ 0. If m = m′, then
K m′

(E) ⊆ K m(E). If m < m′, then m ≤ p′, and hence by the induction hypothesis,
and since the mutual knowledge operator K is monotone with respect to set inclusion,
it follows that K m′

(E) = K p′+1(E) = K (K p′
(E)) ⊆ K (K m(E)) ⊆ K m(E). �

In fact, Lemma 1 generalizes the characteristic property of knowledge, the so-called
truth axiom Ki (E) ⊆ E , to arbitrary higher-order mutual knowledge. The notable con-
trast between knowledge and belief resides in the very fact that false claims cannot
be known, yet can be believed. Moreover, by Lemma 1, any sequence of iterated
mutual knowledge (K m(E))m>0 can be concluded to be either strictly shrinking, i.e.,
K m+1(E) � K m(E) for all m ≥ 0, or eventually constant, i.e., there exists some
index p such that K m(E) = K p(E) for all m ≥ p. The case of sequences of iterated
mutual knowledge being strictly shrinking will be of specific importance in the sequel.

Besides, an event is said to be common knowledge among a set I of agents whenever
all m-order mutual knowledge simultaneously hold. The standard definition formalizes
the concept as follows.

Definition 1 Let A be an Aumann structure and E be some event. CK(E) := ⋂
m>0

K m(E) is the event that E is common knowledge.

Common knowledge of the particular event that all players are rational has been used
in epistemic characterizations of solution concepts in games. A well-known result, e.g.,
Bernheim (1984), Pearce (1984), Tan and Werlang (1988), as well as Börgers (1993),
states that iterated strict dominance is epistemically characterized by common knowl-
edge of rationality with the standard notion of rationality as subjective expected utility
maximization. We now give an epistemic foundation of pure strategy iterated strict
dominance in terms of common knowledge of some weaker than standard rationality
for possibly infinite games. More precisely, we employ a normal form adapted ver-
sion of Aumann (1995) knowledge-based notion of rationality, originally stated for
extensive forms with perfect information. As argued by Aumann (1995) and Aumann
(1996), this notion more general and simpler than standard subjective expected utility
maximization, since the latter implies the former but the former does not imply the
latter, and knowledge-based rationality completely dispenses with probabilities.

First, some standard game-theoretic notation and notions are recalled. In the sequel,
� = (I, (Si )i∈I , (ui )i∈I ) denotes an arbitrary game, i.e., with possibly infinitely many
players and possibly infinite strategy spaces, and A� = (Ω, (Ii )i∈I , (σi )i∈I ) an epi-
stemic model of it. When being employed in the context of games, an Aumann struc-
ture additionally specifies a choice function σi : Ω → Si for each player i ∈ I
that connects the interactive epistemology to the game. The choice function profile
σ : Ω → ×i∈I Si mapping each world to its corresponding strategy profile is then
defined by σ(ω) = (σi (ω))i∈I . Moreover, it is standard to assume that each player
knows his own strategy choice. This so-called measurability assumption seems natural
in the context of game theory, where agents make their choices deliberately and consi-
cously. Aumann and Brandenburger (1995) even denote it as tautologous by pointing
out that knowing one’s own choice is implicit in consciously making a choice. For-
mally, the measurability assumption requires each player’s choice function σi to be
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measurable with respect to Ii , i.e., if two worlds ω and ω′ are in the same cell of player
i’s information partition, then σi (ω) = σi (ω

′).
Next, the weaker than standard notion of rationality used in the sequel is defined.

Definition 2 Let � be a game, A� be an epistemic model of it, and i be some player.
The event that i is rational is defined as

Ri :=
⋂

si ∈Si

(Ω \ Ki ({ω ∈ Ω : ui (si , σ−i (ω)) > ui (σ (ω))})) .

Accordingly, a player i is rational—in a weak sense—whenever for any of his strat-
egies si ∈ Si , he does not know that si would yield him higher utility than his actual
choice. In other words, i is rational at ω if for any of his strategies si ∈ Si he considers
possible a world ω′ ∈ Ii (ω) in which his strategy choice σi (ω

′), being equal to his
actual choice σi (ω) by measurability, could give him at least as much utility as si . The
event R := ⋂

i∈I Ri that all players are rational is called rationality.
In game theory, so-called solution concepts are developed that reduce the strategy

profile space. Formally, a solution concept SC consists of a mapping associating with
each game � a subset SC� ⊆ ×i∈I Si of its strategy profile space. A solution con-
cept thus provides a generic method which does not depend on any particular given
game. Intuitively, a solution concept yields the choices a player should make. One of
the most established game-theoretic solution concepts for the normal form is iterated
strict dominance, which can be defined as follows.

Definition 3 Let � = (I, (Si )i∈I , (ui )i∈I ) be a game. Moreover, let S0
i = Si for all

i ∈ I , and let the sequence (SDk)k≥0 of strategy profile sets be inductively given
by SD0 = ×i∈I S0

i and SDk+1 = ×i∈I SDk+1
i , where SDk+1

i = SDk
i \ {si ∈ SDk

i :
there exists s′

i ∈ SDk
i such that ui (si , s−i ) < ui (s′

i , s−i ), for all s−i ∈ SDk
−i }, for

all i ∈ I . The solution concept iterated strict dominance is defined as ISD� :=⋂
k≥0 SDk .

Note that Dufwenberg and Stegeman (2002) study iterated strict dominance for
arbitrary static games in a non-epistemic context, unveiling potential ill-behaviour. It
is shown that iterated strict dominance can be order-dependent, return an empty set
of strategy profiles, or fail to yield a maximal reduction after countably many steps.
Moreover, they prove the existence and uniqueness of a non-empty maximal reduc-
tion by requiring compactness of the players’ strategy spaces and continuity of the
utility functions. However, according to Definition 3, order dependence is no longer a
possible problem, since at each round, all the remaining strictly dominated strategies
are eliminated.

We now give an epistemic foundation of pure strategy iterated strict dominance
in terms of common knowledge of rationality for possibly infinite games with the
weaker than standard concept of knowledge-based rationality. Note that in Proposi-
tion 1 below, as well as in all results of Sect. 4, common knowledge of the structure
of the game is endorsed as an implicit background assumption.

Proposition 1 Let � be a game and A� be an epistemic model of it. Then,
σ(CK(R)) ⊆ ISD� .
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Proof By induction, we prove that σ(K m(R)) ⊆ SDm+1, for all m ≥ 0. It then follows
that σ(CK(R)) = σ(

⋂
m>0 K m(R)) = σ(

⋂
m≥0 K m(R)) ⊆ ⋂

m≥0 σ(K m(R)) ⊆
⋂

m≥0 SDm+1 = ⋂
m>0 SDm = ⋂

m≥0 SDm = ISD� . First of all, consider (si )i∈I ∈
σ(K 0(R)) = σ(R). Then, there exists ω ∈ R = ⋂

i∈I Ri such that σ(ω) = (si )i∈I .
Hence, by definition of Ri and measurability of σi , for all si ∈ Si , there exists ω′ ∈
Ii (ω) such that ui (si , σ−i (ω

′)) ≤ ui (σ (ω′)) = ui (σi (ω), σ−i (ω
′)). It follows that

σi (ω) ∈ SD1
i for all i ∈ I , and thus σ(ω) = (si )i∈I ∈ ×i∈I SD1

i = SD1. Therefore,
σ(K 0(R)) ⊆ SD1 obtains. Now, assume σ(K m(R)) ⊆ SDm+1 for some m > 0, and
let (si )i∈I ∈ σ(K m+1(R)). Then, there exists ω ∈ K m+1(R) such that σ(ω) = (si )i∈I .
Hence, Ii (ω) ⊆ K m(R), and thus, by the induction hypothesis, σ(Ii (ω)) ⊆ SDm+1

obtains. Besides, since ω ∈ Ri , for all si ∈ SDm+1
i there exists ω′ ∈ Ii (ω) such that

ui (si , σ−i (ω
′)) ≤ ui (σ (ω′)) = ui (σi (ω), σ−i (ω

′)). Yet since σ(Ii (ω)) ⊆ SDm+1,
each ω′ ∈ Ii (ω) induces σ−i (ω

′) ∈ SDm+1
−i , which in turn implies that σi (ω) ∈ SDm+2

i

for all i ∈ I , and consequently (si )i∈I = σ(ω) ∈ ×i∈I SDm+2
i = SDm+2. Therefore,

σ(K m+1(R)) ⊆ SDm+2 holds, which concludes the proof. �

3 Limit knowledge

The sequence of iterated mutual knowledge constitutes the essential ingredient of com-
mon knowledge. Indeed, according to the standard definition, common knowledge of
an event is the countably infinite intersection of all successive higher-order mutual
knowledge of the event. Thence, a natural question to be addressed is to clarify the
relationship between common knowledge and the possible limit points of the sequence
of higher-order mutual knowledge, from a topological point of view. In fact, we show
that these two concepts are closely related for finite, yet do substantially differ for
infinite Aumann structures.

First of all, for any finite Aumann structure and any topology on the event space,
common knowledge of an event E is always a limit point of the sequence of higher-
order mutual knowledge of E , as established by the following result.

Proposition 2 Let A be a finite Aumann structure, T be a topology on P(Ω), and E
be some event. Then, CK(E) is a limit point of (K m(E))m>0.

Proof Note that since Ω is finite, its power set P(Ω) is also finite. Moreover, Lemma
1 ensures that K m+1(E) ⊆ K m(E) for all m > 0. Thus, by finiteness of P(Ω),
the sequence (K m(E))m>0 is eventually constant, i.e., there exists some index p
such that K m(E) = K p(E) for all m ≥ p. Thence CK(E) = ⋂

m>0 K m(E) =⋂
m≥p K m(E) = K p(E). Moreover, for any T -open neighbourhood N of CK(E), it

holds that K m(E) = K p(E) = CK(E) ∈ N , for all m ≥ p. Therefore, CK(E) is a
limit point of the sequence (K m(E))m>0. �

Note that the sequence (K m(E))m>0 may converge to multiple limit points, CK(E)

always being one of them. In particular, if P(Ω) is equipped with a Hausdorff topology,
then CK(E) is equal to the unique limit of (K m(E))m>0. Since the discrete topology
is the only Hausdorff topology available for finite spaces, the event space P(�) being
equipped with the discrete topology ensures that limm→∞ K m(E) = CK(E).
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Now, infinite Aumann structures are considered. In this case, the following result
shows that, if the sequence of iterated mutual knowledge is eventually constant, then
common knowledge is always one of its limit points.

Proposition 3 Let A be an infinite Aumann structure, T be a topology on P(Ω), and
E be some event. If (K m(E))m>0 is eventually constant, then CK(E) is a limit point
of (K m(E))m>0.

Proof Suppose that the sequence (K m(E))m>0 is eventually constant from index p
onwards. By Lemma 1, it follows that CK(E) = ⋂

m>0 K m(E) = ⋂
m>p K m(E) =

K p(E). Now let N be a T -open neighborhood of CK(E). Since both K m(E) =
K p(E) for all m ≥ p and K p(E) = CK(E), it follows that K m(E) ∈ N for all
m ≥ p. Therefore, CK(E) is a limit point of the sequence (K m(E))m>0. �

Accordingly, it follows that common knowledge and the limit of iterated mutual
knowledge can only possibly be distinct in the case of the sequence of iterated mutual
knowledge not being eventually constant. Since the latter sequence either is eventu-
ally constant or strictly shrinking, potential differences of the two concepts necessarily
require the strictly shrinking condition to be met.

In case of the sequence of iterated mutual knowledge being strictly shrinking, com-
mon knowledge and its topological limit may indeed differ.

Proposition 4 There exist an infinite Aumann structure A, a topology on the event
space P(Ω), and some event E, such that CK(E) �= limm→∞ K m(E).

Proof Consider the infinite Aumann structure A = (N, (Ii )i∈{Alice,Bob}) given by

IAlice = {{0}, {1, 3}, {2, 4}, {5, 7}, {6, 8}, {9, 11}, {10, 12}, . . .},
IBob = {{0, 2}, {1}, {3, 5}, {4, 6}, {7, 9}, {8, 10}, {11, 13}, . . .}.

Let E be the event N \ {0}. Then, KAlice(E) = N \ {0} and KBob(E) = N \ {0, 2},
thus K 1(E) = K (E) = KAlice(E) ∩ KBob(E) = N \ {0, 2}. It follows by induc-
tion that K m(E) = N \ {0, 2, . . . , 2m} for all m > 0. Consequently K m+1(E) �

K m(E) for all m > 0, i.e., the sequence (K m(E))m>0 is strictly shrinking. Moreover,
CK(E) = ⋂

m>0 K m(E) = ⋂
m>0 N \ {0, 2, . . . , 2m} = {2n + 1 : n ≥ 0}. Now,

let L ⊆ Ω be some event different from CK(E), and suppose that the event space
P(N) is equipped with the topology T = {O ⊆ P(N) : L �∈ O} ∪ {P(N)}. Then,
the only T -open neighbourhood of L is P(N), and, since all terms of the sequence
(K m(E))m>0 are contained in P(N), it follows that L is a limit point of the sequence
(K m(E))m>0. Moreover, L is actually the unique limit point of (K m(E))m>0. Indeed,
since (K m(E))m>0 satisfies the strictly shrinking condition, for any event F �= L , the
elements of (K m(E))m>0 will never all be contained in the T -open neighbourhood {F}
of F from some index onwards, showing that F is not a limit point of (K m(E))m>0.
Hence, limm→∞ K m(E) = L . Yet since L was precisely chosen to be different from
CK(E), it follows that limm→∞ K m(E) �= CK(E). �

The following example shows that common knowledge may even differ from the
unique limit of the sequence of higher-order mutual knowledge in the case of so-called
well-behaved—i.e., completely metrizable and Hausdorff—topologies.
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Example 1 Let A = (N, IAlice, IBob) be the infinite Aumann structure described in
the proof of Proposition 4, and E be the event N \ {0}. Then, as shown in the proof
of Proposition 4, K m(E) = N \ {0, 2, . . . , 2m} and CK(E) = {2n + 1 : n ≥ 0}.
Consider farther the Cantor space {0, 1}N of functions from N to {0, 1} equipped with
its usual topology, i.e., the product topology of the discrete topology on {0, 1}. This
space is Polish, i.e., Hausdorff and completely metrizable, and the induced metric is
defined by d( f, g) = 2−r , where r = min{n : f (n) �= g(n)}. Consider finally the sets
F1 = {2n : n ≥ 0} and F2 = {2n+1 : n ≥ 0}, and the bijection f : P(N) −→ {0, 1}N
defined by

f (F) =
⎧
⎨

⎩

χF if F �= F1, F2
χF2 if F = F1
χF1 if F = F2 ,

where χA denotes the characteristic function of A. Now, suppose that the event space
P(N) is equipped with the topology T defined by letting O ∈ T if and only if f (O) is
an open set of the Cantor space. Since f is an homeomorphism from P(N) to {0, 1}N,
the topological space (P(N), T ) is also Polish, and hence every sequence converges
to at most one limit point. We next prove that the sequence (χK m (E))m>0 converges
to χF2 in the Cantor space {0, 1}N. First of all, the proof of Proposition 4 ensures that
χK m (E) = χN\{0,2,...,2m} for all m > 0. Moreover, observe that d(χK m (E), χF2) =
2−(m+1). Hence, for any ε > 0, it holds that d(χK m (E), χF2) = 2−(m+1) < ε for all
m > log2(

1
ε
)−1. Therefore, limm→∞ χK m (E) = χF2 . Since f is a homeomorphism, it

follows that limm→∞ K m(E) = limm→∞ f −1(χK m (E)) = f −1(limm→∞ χK m (E)) =
f −1(χF2) = F1 �= CK(E), yielding the desired property. �

The existence of situations in which the topological limit of the sequence of iter-
ated mutual knowledge differs from common knowledge motivates the introduction
of a novel epistemic concept based on the notion of topological limit. Indeed, limit
knowledge is defined as follows.

Definition 4 Let A be an Aumann structure, T be a topology on the event space P(Ω),
and E be some event. If the limit point of (K m(E))m>0 is unique, then LK(E) :=
limm→∞ K m(E) is the event that E is limit knowledge.

Accordingly, limit knowledge of an event E is constituted by—whenever unique—
the limit point of the sequence of iterated mutual knowledge, and thus linked to both
epistemic features as well as topological aspects of the event space.

Limit knowledge can be understood as the event which is approached by the
sequence of iterated mutual knowledge, according to some notion of closeness between
events furnished by a topology on the event space. Thus, the higher the iterated mutual
knowledge, the closer this latter epistemic event is to limit knowledge.

Although being more and more proximal to iterated mutual knowledge the higher
the iteration, it is possible—depending on the topology —that limit knowledge is not
included in all higher-order mutual knowledge or even in the underlying event itself.
Therefore, limit knowledge does not a priori inherit the purely epistemic properties
of higher-order mutual knowledge or even knowledge. Actually, agents entertaining
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limit knowledge of some event might notably be in situations in which the event does
not hold, while at the same time being arbitrarily close to the highest iterated mutual
knowledge of the event.

However, of specific relevance are the situations in which limit knowledge indeed
strictly refines common knowledge. In those cases, limit knowledge does imply all iter-
ated mutual knowledge and can be interpreted as some kind of highest iterated mutual
knowledge. Note that Example 2 below provides an illustration where limit knowledge
is a strict refinement of common knowledge and induces behavioral consequences that
cogently differ from the latter.

Besides, even if limit knowledge should not be amalgamated with common knowl-
edge, both operators can be perceived as sharing similar implicative properties with
regards to highest iterated mutual knowledge claims. Indeed, while common knowl-
edge bears a standard implicative relation in terms of set inclusion to highest iterated
mutual knowledge, limit knowledge can be considered to entertain an implicative rela-
tion in terms of set proximity with highest iterated mutual knowledge. Farther, note
that limit knowledge becomes interesting as a possible refinement of common knowl-
edge precisely in circumstances of the sequence of iterated mutual knowledge being
strictly shrinking, i.e., whenever common knowledge actually requires infinitely many
interactive knowledge claims to be computed.

In fact, it is possible to link limit knowledge to topological reasoning patterns of
agents based on closeness of events. Indeed, agents satisfying limit knowledge of
some event can intuitively be seen to be in a kind of limit situation arbitrarily close
to entertaining all highest iterated mutual knowledge of this event, and this situa-
tion may influence the agents’ reasoning. For instance, since limit knowledge can
be regarded as entertaining an implicative relation of proximity with highest iterated
mutual knowledge claims, agents being in a situation of limit knowledge and bas-
ing their reasoning on closeness of events might therefore infer all highest iterated
mutual knowledge claims. In general, note that a reasoning pattern associated with
limit knowledge depends on the particular topology on the event space, which fixes
the closeness relation between events and thus also determines the limit knowledge
event.

Finally, generalizations of the concept of limit knowledge could be conceived to
overcome the undefinability of this operator in cases of non unique limit points. For
instance, multiple-limit knowledge of E could be defined as the union of all limit points
of (K m(E))m>0.

4 Limit knowledge of rationality

The new epistemic operator limit knowledge can be used in the context of games.
Indeed, we now illustrate that limit knowledge is capable of refining common knowl-
edge in terms of solution concepts. More precisely, a Cournot-type game is constructed
where the application of iterated strict dominance followed by weak dominance,
denoted by (ISD+WD)� for a given game �, is a strict refinement of iterated strict

123



432 C. W. Bach, J. Cabessa

Fig. 1 The utility function uClaire and u Donald of game γ

dominance.2 Then, an epistemic Aumann model of this game is given such that the
event common knowledge of rationality precisely reveals all the possible strategy
profiles that survive iterated strict dominance, while limit knowledge of rationality
conveys the unique strategy profile in accordance with iterated strict dominance fol-
lowed by weak dominance. Moreover, in this case, limit knowledge of rationality being
strictly included in common knowledge of rationality is thus being interpretable as
some kind of highest iterated mutual knowledge.

Example 2 Consider the game � = (I, (Si )i∈I , (ui )i∈I ) with player set I = {Alice,
Bob, Claire, Donald}, strategy sets SAlice=SBob=[0, 1], SClaire = {U, D}, SDonald =
{L , R}, and utility functions ui : SAlice × SBob × SClaire × SDonald → R for all i ∈ I ,
defined as uAlice(x, y, v, w) = x(1 − x − y) and uBob(x, y, v, w) = y(1 − x − y), as
well as uClaire(x, y, v, w) and uDonald(x, y, v, w) as given in Fig. 1.

Solving the game by iterated strict dominance—requiring infinitely many elim-
ination rounds—yields the sequence of successively surviving strategy profile sets([an, bn]2×{U, D} × {L , R})n≥0, where [a0, b0] = [0, 1], [an+1, bn+1] = [ an+bn

2 , bn]
if n is odd, and [an+1, bn+1] = [an, an+bn

2 ] if n is even. The non-unique solution of the
game is thus given by the remaining four strategy profiles ISD� = ⋂

n≥0

([an, bn]2 ×
{U, D} × {L , R}) = { 1

3

} × { 1
3

} × {U, D} × {L , R}. However, it is possible to fur-
ther restrict the remaining strategy sets of Claire and Donald by a weak dominance
argument—a potential refinement that only emerges after applying iterated strict dom-
inance. Indeed, in the set ISD� the strategies D and R are weakly dominated by U
and L for Claire and Donald, respectively. Therefore, iterated strict dominance fol-
lowed by weak dominance yields the singleton set (ISD + WD)� = {( 1

3 , 1
3 , U, L)} as

a possible strictly refined solution of the game.
Before turning towards the epistemic Aumann model of this game, some prelimi-

nary observations are needed. Note that, by definition of the utility functions, the best
response strategy of Alice to an opponents’ strategy combination only depends on
Bob’s choice, and vice versa. More precisely, Alice’s and Bob’s best response functions
bAlice : [0, 1]×{U, D}×{L , R} → [0, 1] and bBob : [0, 1]×{U, D}×{L , R} → [0, 1]
are given by bAlice(y, v, w) = 1−y

2 and bBob(x, v, w) = 1−x
2 , respectively. Hence, the

2 Formally, given a game �, iterated strict dominance followed by weak dominance is defined as
(ISD+WD)� := ×i∈I (ISD�

i \ {si ∈ ISD�
i : there exists s′

i ∈ ISD�
i such that ui (si , s−i ) ≤ ui (s

′
i , s−i )

for all s−i ∈ ISD�−i and ui (si , s′−i ) < ui (s
′
i , s′−i ) for some s′−i ∈ ISD�−i }).
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set of all strategy profiles in which Alice and Bob simultaneously play best responses
is given by { 1

3 }× { 1
3 }× {U, D}× {L , R}. On the basis of these two functions, we now

describe an infinite sequence (sn
Alice, sn

Bob)n≥0 of strategy combinations for Alice and
Bob which will be central to the construction of our epistemic Aumann model. This
sequence is defined for all n ≥ 0 by induction as follows.

(
s0

Alice, s0
Bob

)
= (0, 1)

(
s1

Alice, s1
Bob

)
=

(

0,
1

2

)

(
s2n+2

Alice , s2n+2
Bob

)
=

(
1 − s2n+1

Bob

2
, s2n+1

Bob

)

(
s2n+3

Alice , s2n+3
Bob

)
=

(

s2n+2
Alice ,

1 − s2n+2
Alice

2

)

This infinite sequence (sn
Alice, sn

Bob)n≥0 of strategy combinations for Alice and Bob is
illustrated in Fig. 2. The depicted points indicate its first few elements. Note that the

terms
(

s2n+2
Alice , s2n+2

Bob

)
and

(
s2n+3

Alice , s2n+3
Bob

)
are given by the projections of their prede-

cessors on Alice’s and Bob’s best response curves, respectively. Farther, observe that
the sequence converges to

( 1
3 , 1

3

)
.

Next, consider the epistemic Aumann model A� = (Ω, (Ii )i∈I , (σi )i∈I ) of �,
where the countable set of all possible worlds is given by

Ω = {α, β, γ, δ, α0, β0, γ0, δ0, α1, β1, γ1, δ1, α2, β2, γ2, δ2, . . .},

Fig. 2 The infinite sequence
(Sn

Alice, Sn
Bob)n≥0 of strategy

combinations for Alice and Bob
is convergent
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the players’ information partitions are specified by

IAlice = {{α, β, γ, δ}} ∪
{{α2n, β2n, γ2n, δ2n, α2n+1, β2n+1, γ2n+1, δ2n+1} : n ≥ 0} ,

IBob = {{α, β, γ, δ}, {α0, β0, γ0, δ0}} ∪
{{α2n−1, β2n−1, γ2n−1, δ2n−1, α2n, β2n, γ2n, δ2n} : n > 0} ,

IClaire = {{α, β}, {γ, δ}} ∪
{{αn, βn} : n ≥ 0} ∪ {{γn, δn} : n ≥ 0} ,

IDonald = {{α, γ }, {β, δ}} ∪
{{αn, γn} : n ≥ 0} ∪ {{βn, δn} : n ≥ 0} ,

and the choice function σ = (σAlice, σBob, σClaire, σDonald) : Ω → ×i∈I Si assembling
all the players’ choice functions is defined for all n ≥ 0 by:

σ(α) = (1/3, 1/3, U, L) σ (αn) = (sn
Alice, sn

Bob, U, L)

σ (β) = (1/3, 1/3, U, R) σ (βn) = (sn
Alice, sn

Bob, U, R)

σ (γ ) = (1/3, 1/3, D, L) σ (γn) = (sn
Alice, sn

Bob, D, L)

σ (δ) = (1/3, 1/3, D, R) σ (δn) = (sn
Alice, sn

Bob, D, R).

By definition of the sequence (sn
Alice, sn

Bob)n≥0, the two equalities s2n
Alice = s2n+1

Alice and
s2n+1

Bob = s2n+2
Bob hold for all n ≥ 0, and therefore our epistemic Aumann model satisfies

the standard measurability requirement for the players’ choice functions.
We now analyze the players’ rationality. First of all, consider Alice and note that she

is rational at worlds α, β, γ and δ. By construction of the sequence (sn
Alice, sn

Bob)n≥0,
if ω is a world such that (σAlice(ω), σBob(ω)) = (s2n

Alice, s2n
Bob) for some n ≥ 0, then

uAlice(σ (ω)) = uAlice(bAlice(σ−Alice(ω)), σ−Alice(ω)) ≥ uAlice(x, σ−Alice(ω)), for all
x ∈ SAlice. It follows that Alice is rational at every world ω′ ∈ IAlice(ω). By defi-
nition of IAlice, since each cell contains a world ω such that (σAlice(ω), σBob(ω)) =
(s2n

Alice, s2n
Bob) for some n ≥ 0, it follows that RAlice = Ω . Second, Bob is shown not to

be rational at every possible world. In fact, his strategies σBob(α0), σBob(β0), σBob(γ0)

and σBob(δ0) all equal 1, which in turn is strictly dominated by any y ∈ (0, 1), thus
α0, β0γ0, δ0 �∈ RBob. Analogous reasoning as for Alice allows to conclude that Bob
is rational at all remaining worlds. Therefore, RBob = Ω \ {α0, β0, γ0, δ0}. Finally,
Claire and Donald are rational at every possible world. Indeed, observe that Claire
is rational at α, since α ∈ IClaire(α) and uClaire(σ (α)) ≥ uClaire(D, σ−Claire(α)),
where D is her only alternative strategy. As β ∈ IClaire(α), it follows that Claire is
also rational at β. Similar arguments hold for Claire’s rationality at worlds γ and δ.
Analogously, Claire is rational at all other possible worlds αn, βn, γn and δn , for all
n ≥ 0. Donald’s rationality at each world is obtained in the same manner. There-
fore, RClaire = RDonald = Ω and the event of all players being rational is given by
R = ⋂

i∈I Ri = Ω \ {α0, β0, γ0, δ0}.
It follows that K (R) = ⋂

i∈I Ki (R) = Ω \ {α0, β0, γ0, δ0, α1, β1, γ1, δ1}, and by
induction K m(R) = Ω \ {α0, β0, γ0, δ0, α1, β1, γ1, δ1, . . . , αm, βm, γm, δm} for all
m > 0. Therefore, CK(R) = ⋂

m>0 K m(R) = {α, β, γ, δ}. Besides, suppose the event
space P(Ω) to be equipped with the topology T = {O ⊆ P(Ω) : {α} �∈ O}∪{P(Ω)}.
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Then, the only T -open neighbourhood of the event {α} is P(Ω), and all terms of the
sequence (K m(R))m>0 are contained in P(Ω). Thus (K m(R))m>0 converges to {α}.
Moreover, any singleton {F} �= {{α}} is T -open, and, since K m+1(R) � K m(R)

for all m > 0, the strictly shrinking sequence (K m(R))m>0 will never remain in the
open neighbourhood {F} of F from some index onwards. Hence, (K m(R))m>0 does
not converge to any such event F . Therefore the limit (K m(R))m>0 is unique, and
LK(R) = limm→∞(K m(R))m>0 = {α}.

Farther, σ(CK(R)) = {σ(α), σ (β), σ (γ ), σ (δ)} = { 1
3 }×{ 1

3 }×{U, D}×{L , R} =
ISD� , while σ(LK(R)) = {σ(α)} = {( 1

3 , 1
3 , U, L)} = (ISD + WD)� . Hence, the solu-

tion in accordance with LK(R) is a strict refinement of the solution induced by CK(R).
�

The preceding example describes a particular epistemic-topological epistemic
model of a given game such that limit knowledge of rationality is a strict refinement
of common knowledge of rationality in terms of solution concepts.

More generally, we now show that for any game and epistemic Aumann model of it
such that the sequence of iterated mutual knowledge of rationality is strictly shrinking,
every solution concept can be epistemic-topologically characterized by limit knowl-
edge of rationality.

Theorem 1 Let � be a game, A� be an epistemic Aumann model of it such that the
sequence (K m(R))m>0 is strictly shrinking, and SC be some solution concept. Then,
there exists a topology on P(Ω) such that σ(LK(R)) ⊆ SC� .

Proof Consider the event F = σ−1(SC�) = {ω ∈ Ω : σ(ω) ∈ SC�}. Then σ(F) ⊆
SC� . Now, suppose the event space P(Ω) to be equipped with the topology T = {O ⊆
P(Ω) : F �∈ O} ∪ {P(Ω)}. By definition of T , the only T -open neighbourhood of F
is P(Ω), and thus the sequence (K m(R))m>0 converges to F . Besides, for every event
E �= F , the singleton {E} is open, and, since satisfying the strictly shrinking condi-
tion, (K m(R))m>0 will never remain in the T -open neighbourhood {E} of E from
some index onwards. Consequently, (K m(R))m>0 does not converge to E . It follows
that the limit of (K m(R))m>0 is unique, and LK(R) = limm→∞(K m(R))m>0 = F .
Therefore, σ(LK(R)) = σ(F) ⊆ SC� . �

As a matter of fact, limit knowledge of rationality can provide an epistemic-
topological foundation for any game-theoretic solution concept. This universal char-
acterization capability is enabled by choosing a tailored topology on the event space
such that the epistemic-topological hypothesis gives a foundation for the desired solu-
tion concept. However, particular attention could be drawn to topologies on the event
space that are plausible, such as topologies revealing some kind of underlying agent
perceptions or reasoning patterns, as well as natural extension of implicit topologies
on the state space.

In general, analogous to the epistemic program in game theory, which provides
epistemic characterizations for solution concepts, an epistemic-topological approach
to game theory is capable of epistemic-topologically characterizing solution con-
cepts. Moreover, new solution concepts might be discovered by specific epistemic-
topological assumptions.
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5 Discussion

5.1 Topological Aumann structures

Aumann structures provide an abstract framework, in which the reasoning of agents
about events on the basis of epistemic assumptions can be formalized. However,
amending the epistemic framework by a topological dimension provides additional
structure, enabling models of richer agent perceptions of the event and state spaces,
as well as models of ample agent reasoning patterns that do not only depend on mere
epistemic but also on topological features of the underlying interactive situation.

For instance, the event It is cloudy in London seems to be closer to the event It
is raining in London than the event It is sunny in London. Now, agents may make
identical decisions only being informed of the truth of some event within a class of
close events. Indeed, Alice might decide to stay at home not only in the case of it
raining outside, but also in the case of events perceived by her to be similar such as it
being cloudy outside.

Actually, we envision the construction of a general topological framework—
topological Aumann structures—for set-based interactive epistemology which com-
prises topologies on the state and event spaces.

Definition 5 A topological Aumann structure is a tuple AT = (A, T Ω, T P(Ω)),
where A = (Ω, (Ii )i∈I ) is an Aumann structure, T Ω is a topology on the state
space Ω , and T P(Ω) is a topology on the event space P(Ω).

Accordingly, a topological component is added to the epistemic analysis of inter-
active situations. It thus becomes possible to model closeness of possible worlds as
well as closeness of events.

Farther, it seems natural to require the topologies on the event space to depend on
the topologies on the state space, and to thus restrict the class of topologies admissible
on the event space. Indeed, topologies on spaces of subsets of a given topological
space X are typically defined in terms of the topology of X , such as the Hausdorff
or Vietories topologies. For instance, topologies on the event space could be given by
these extensions of the topological framework in line with the usual measure-theoretic
structure the state space.

Note that our topological approach to study the sequence of iterated mutual knowl-
edge, compare it with common knowledge, and to define the new epistemic operator
limit knowledge, serves as a first step towards such an topologically enriched epistemic
framework.

5.2 Epistemically plausible topologies

Topologies representing epistemic features of a given underlying interactive situation
or revealing particular agent perception patterns of the event or state spaces can be
studied within the framework of topological Aumann structures.

For example, consider the partition topology on the state space generated by the
basis B = {O ⊆ Ω : O = ⋂

i∈I Ii (ω) for some ω ∈ Ω}. Accordingly, every basic
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open set can thus be written as an intersection of the agents’ possibility sets and inter-
preted as some kind of bundled, refined information of the agents. Notably, the parti-
tion topology represents the indistinguishability of worlds by all agents in topological
terms. More precisely, any two possible worlds ω and ω′ are indistinguishable by all
agents if and only if ω and ω′ are not separable, i.e., there do not exit two disjoint open
sets O and O ′ such that ω ∈ O and ω′ ∈ O ′. Equivalently, two possible worlds are
distinguishable by some agents if and only if the two worlds are Hausdorff-separable.
Hence, the partition topology precisely reflects informational indistinguishability in
terms of closeness.

A further example of a topology representing epistemic features of the interac-
tive situation is based on the notion of common truism. An event T ⊆ Ω is called
common truism if and only if CK(T ) = T . Intuitively, a common truism event is
directly commonly known, i.e., it cannot occur without being commonly known, and
can hence be understood as a reliable piece of information that all agents receive
in public announcement or joined observation type situations. In fact, Binmore aand
Brandenburger (1990) already remark that the set of all common truisms form a topol-
ogy. Notably, the common truism topology on the state space exhibits the property
that two possible worlds ω and ω′ are separable if and only if there exist two disjoint
common truisms T and T ′ such that ω ∈ T and ω′ ∈ T ′. Thus, worlds are separated
by two different pieces of mutually exclusive self-evident information that consider-
ably distinguish them in the sense that there exists no world whatsoever at which both
pieces of information simultaneously hold.

5.3 Epistemic-topological characterizations of solution concepts

According to Theorem 1, limit knowledge of rationality can provide an epistemic-
topological foundation for any game-theoretic solution concept. Therefore, an epi-
stemic-topological approach to game theory can epistemic-topologically characterize
solution concepts via limit knowledge of rationality. Relevant topological reasoning
patterns of players in accordance with some given solution concept could thus be
unveiled. Alternatively, solution concepts in accordance with limit knowledge of ratio-
nality could be derived, for some given topological assumptions. It might be of par-
ticular interest to explore the game-theoretic consequences of epistemically-plausible
topologies being defined on the basis of underlying perception or reasoning patterns of
the event space by the players, potentially revealing interesting new solution concepts.

As an example, a plausible epistemic-topological foundation for the solution con-
cept k-times strict dominance SDk is given now. Suppose a game in normal form �

and some epistemic model A� of it such that the sequence (K m(R))m>0 is strictly
shrinking. Consider the topology T on P(Ω) induced by the subbase

{{K m(R) : m > 0},P(Ω) \ {K m(R) : m > 0}}
∪ {{K m(R)} : m < k − 1

}

∪
{
{K k(R), K k+1(R), . . . , K n(R)} : n > k − 1

}
.
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This topology can be argued to be epistemically plausible in the sense that it satisfies
the following four properties.

1. If E is a term of the sequence (K m(R))m>0 and F is not (or vice versa), then E
and F are T2-separable.3

2. If E and F are two distinct terms of (K m(R))m>0 of index strictly smaller than
k − 1, then E and F are T2-separable.

3. If E and F are two distinct terms of (K m(R))m>0 of index strictly larger than
k − 1, then E and F are T0-separable.4

4. If E = K k−1(R) and F is another term of (K m(R))m>0 (or vice versa), then E
and F are T0-separable.

These properties reflect a particular perception of the event space, where the agents’
topological distinction between the first (k−2)-order knowledge of rationality is stron-
ger than between the remaining higher-order mutual knowledge. By definition of T ,
it follows that LK(R) = K k−1(R) and therefore the proof of Proposition 1 ensures
that σ(LK(R)) ⊆ SDk . In this sense, T provides a plausible epistemic-topological
foundation for the solution concept SDk .

5.4 Counterfactuals

Closeness of possible worlds can be quantified within the framework of topological
Aumann structures. Indeed, metrizable or pseudo-metrizable topologies on the state
space induce a distance measure for possible worlds. For instance, consider the pseudo-
metric d : Ω × Ω → R, defined by d(ω, ω′) = k for all ω,ω′ ∈ Ω , where k equals
the number of agents being able to distinguish between ω and ω′. This pseudo-metric
provides a closeness measure for possible worlds and induces a topological Aumann
structure AT equipped with the partition topology on the state space.

Now, a notion of closeness of worlds is typically needed for theories of counter-
factual reasoning. Hence, the enriched framework of topological Aumann structures
could be used to model counterfactual knowledge and reasoning in set-based interac-
tive epistemology. For instance, if some event E does not hold at the actual world ω,
the reasoning of an agent i may depend on whether E is nevertheless close to what
he actually considers possible, i.e., on whether all worlds contained in E are closer to
every world ω′ ∈ Ii (ω) than all worlds contained in Ω\(E ∪ Ii (ω)).

6 Conclusions

The standard game-theoretic concept of common knowledge has been shown to dif-
fer from the topological limit of the sequence of iterated mutual knowledge, and, on
the basis of this result, the new epistemic operator limit knowledge introduced. The

3 Given a topological space (X, T ) two points a, b ∈ X are called T2-separable if there exist two disjoint
T -neighbourhoods Na and Nb of a and b, respectively.
4 Given a topological space (X,T ) two points in X are called T0-separable if there exists an T -open set
containing precisely one of the two points.

123



Common knowledge and limit knowledge 439

specific hypothesis limit knowledge of rationality turns out to be capable of episte-
mic-topological characterizations of solution concepts in games. Hence, analogous to
the epistemic program in game theory that attempts to provide epistemic foundations
for solution concepts, our epistemic-topological approach to game theory could gen-
erate epistemic-topological foundations for solution concepts via limit knowledge of
rationality.

More generally, the notion of topological Aumann structure envisioned here pro-
vides a topological component to the epistemic analysis of interactive situations. Such
an extended epistemic-topological framework thus enables models of richer agent
perceptions of the event and state spaces, as well as models of ample agent reasoning
patterns that do not only depend on mere epistemic but also on topological features of
the underlying interactive situation.

Finally, the topological approach to set-based interactive epistemology initiated
here can be extended in various directions. Indeed, epistemic-topological reasoning
patterns of players underlying solution concepts or leading to new solution concepts
may be unveiled. Besides, based on the notion of closeness of possible worlds, fur-
nished by topological properties of the state space, a theory of counterfactuals could
be developed. Farther, Aumann’s (1976) seminal impossibility result on agreeing to
disagree can be reconsidered with limit knowledge instead of common knowledge of
the agents’ posteriors beliefs.
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