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Abstract. The algebraic study of formal languages shows that ω-rational
languages are exactly the sets recognizable by finite ω-semigroups. Within
this framework, we provide a construction of the algebraic counterpart of
the Wagner hierarchy. We adopt a hierarchical game approach, by trans-
lating the Wadge theory from the ω-rational language to the ω-semigroup
context.

More precisely, we first define a reduction relation on finite pointed
ω-semigroups by means of a Wadge-like infinite two-player game. The
collection of these algebraic structures ordered by this reduction is then
proven to be isomorphic to the Wagner hierarchy, namely a decidable
and well-founded partial ordering of width 2 and height ωω.
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1 Introduction

This paper stands at the crossroads of two mathematical fields, namely the
algebraic theory of ω-automata, and hierarchical games, in descriptive set theory.

The basic interest of the algebraic approach to automata theory consists in the
equivalence between Büchi automata and finite ω-semigroups [12] – an extension
of the concept of a semigroup. These mathematical objects indeed satisfy several
relevant properties. Firstly, given a finite Büchi automaton, one can effectively
compute a finite ω-semigroup recognizing the same ω-language, and vice versa.
Secondly, among all finite ω-semigroups recognizing a given ω-language, there
exists a minimal one – called the syntactic ω-semigroup –, whereas there is
no convincing notion of Büchi (or Muller) minimal automaton. Thirdly, finite
ω-semigroups provide powerful characteristics towards the classification of ω-
rational languages; for instance, an ω-language is first-order definable if and
only if it is recognized by an aperiodic ω-semigroup [7,10,18], a generalization to
infinite words of Schützenberger, and McNaughton’s and Papert famous results
[9,16]. Even some topological properties (being open, closed, clopen, Σ0

2, Π0
2,

Δ0
2) can be characterized by algebraic properties on ω-semigroups (see [12,14]).
Hierarchical games, for their part, aim to classify subsets of topological spaces.

In particular, the Wadge hierarchy [19] (defined via the Wadge games) appeared
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to be specially interesting to computer scientists, for it shed a light on the study
of classifying ω-rational languages. The famous Wagner hierarchy [20], known as
the most refined classification of ω-rational languages, was proven to be precisely
the restriction of the Wadge hierarchy to these ω-languages.

However, Wagner’s original construction relies on a graph-theoretic analysis
of Muller automata, away from the set theoretical and the algebraic frame-
works. Olivier Carton and Dominique Perrin [2,3,4] investigated the algebraic
reformulation of the Wagner hierarchy, a work carried on by Jacques Duparc
and Mariane Riss [6]. But this new approach is not yet entirely satisfactory, for
it fails to define precisely the algebraic counterpart of the Wadge (or Wagner)
preorder on finite ω-semigroups.

Our paper fill this gap. We define a reduction relation on subsets of finite
ω-semigroups by means of an infinite game, without any direct reference to the
Wagner hierarchy. We then show that the resulting algebraic hierarchy is iso-
morphic to the Wagner hierarchy, and in this sense corresponds to the algebraic
counterpart of the Wagner hierarchy. In particular, this classification is a refine-
ment of the hierarchies of chains and superchains introduced in [2,4]. We finally
prove that this algebraic hierarchy is also decidable.

2 Preliminaries

2.1 ω-Languages

Given a finite set A, called the alphabet, then A∗, A+, Aω , and A∞ denote
respectively the sets of finite words, nonempty finite words, infinite words, and
finite or infinite words, all of them over the alphabet A. Given a finite word u
and a finite or infinite word v, then uv denotes the concatenation of u and v.
Given X ⊆ A∗ and Y ⊆ A∞, the concatenation of X and Y is denoted by XY .

We refer to [12, p.15] for the definition of ω-rational languages. We recall
that ω-rational languages are exactly the ones recognized by finite Büchi, or
equivalently, by finite Muller automata [12].

For any set A, the set Aω can be equipped with the product topology of the
discrete topology on A. The class of Borel subsets of Aω is the smallest class con-
taining the open sets, and closed under countable union and complementation.

2.2 ω-Semigroups

The notion of an ω-semigroup was first introduced by Pin as a generalization
of semigroups [11,13]. In the case of finite structures, these objects represent
a convincing algebraic counterpart to automata reading infinite words: given
any finite Büchi automaton, one can build a finite ω-semigroup recognizing (in
an algebraic sense) the same language, and conversely, given any finite ω-semi-
group recognizing a certain language, one can build a finite Büchi automaton
recognizing the same language.
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Definition 1 (see [12, p. 92]). An ω-semigroup is an algebra consisting of
two components, S = (S+, Sω), and equipped with the following operations:

• a binary operation on S+, denoted multiplicatively, such that S+ equipped
with this operation is a semigroup;

• a mapping S+ × Sω −→ Sω, called mixed product, which associates with
each pair (s, t) ∈ S+ × Sω an element of Sω, denoted by st, and such that
for every s, t ∈ S+ and for every u ∈ Sω, then s(tu) = (st)u;

• a surjective mapping πS : Sω
+ −→ Sω, called infinite product, such that: for

every strictly increasing sequence of integers (kn)n>0, for every sequence
(sn)n≥0 ∈ Sω

+, and for every s ∈ S+, then

πS(s0s1 · · · sk1−1, sk1 · · · sk2−1, . . .) = πS(s0, s1, s2, . . .),
sπS(s0, s1, s2, . . .) = πS(s, s0, s1, s2, . . .).

Intuitively, an ω-semigroup is a semigroup equipped with a suitable infinite prod-
uct. The conditions on the infinite product ensure that one can replace the no-
tation πS(s0, s1, s2, . . .) by the notation s0s1s2 · · · without ambiguity. Since an
ω-semigroup is a pair (S+, Sω), it is convenient to call +-subsets and ω-subsets
the subsets of S+ and Sω, respectively.

Given two ω-semigroups S = (S+, Sω) and T = (T+, Tω), a morphism of
ω-semigroups from S into T is a pair ϕ = (ϕ+, ϕω), where ϕ+ : S+ −→
T+ is a morphism of semigroups, and ϕω : Sω −→ Tω is a mapping canon-
ically induced by ϕ+ in order to preserve the infinite product, that is, for
every sequence (sn)n≥0 of elements of S+, one has ϕω

(
πS(s0, s1, s2, . . .)

)
=

πT

(
ϕ+(s0), ϕ+(s1), ϕ+(s2), . . .

)
.

An ω-semigroup S is an ω-subsemigroup of T if there exists an injective mor-
phism of ω-semigroups from S into T . An ω-semigroup S is a quotient of T
if there exists a surjective morphism of ω-semigroups from T onto S. An ω-
semigroup S divides T if S is quotient of an ω-subsemigroup of T .

The notion of pointed ω-semigroup can be adapted from the notion of pointed
semigroup introduced by Sakarovitch [15]. In this paper, a pointed ω-semigroup
denotes a pair (S,X), where S is an ω-semigroup and X is an ω-subset of S.
A mapping ϕ : (S,X) −→ (T, Y ) is a morphism of pointed ω-semigroups if
ϕ : S −→ T is a morphism of ω-semigroups such that ϕ−1(Y ) = X . The notions
of ω-subsemigroups, quotient, and division can then be easily adapted in this
pointed context.

Example 1. Let A be a finite set. The ω-semigroup A∞ = (A+, Aω) equipped
with the usual concatenation is the free ω-semigroup over the alphabet A [2]. In
addition, if S = (S+, Sω) is an ω-semigroup with S+ being finite, the morphism
of ω-semigroups ϕ : S∞

+ −→ S naturally induced by the identity over S+ is
called the canonical morphism associated with S.

In this paper, we strictly focus on finite ω-semigroups, i.e. those whose first
component is finite. It is proven in [12] that the infinite product πS of a finite
ω-semigroup S is completely determined be the mixed products of the form
xπS(s, s, s, . . .) (denoted xsω). We use this property in the next example.
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Example 2. The pair S = ({0, 1}, {0ω, 1ω}) equipped with the usual multi-
plication over {0, 1} and with the infinite product defined by the relations
00ω = 10ω = 0ω and 01ω = 11ω = 1ω is an ω-semigroup.

Wilke was the first to give the appropriate algebraic counterpart to finite au-
tomata reading infinite words [21]. In addition, he established that the ω-
languages recognized by finite ω-semigroups are exactly the ones recognized by
Büchi automata, a proof that can be found in [21] or [12].

Definition 2. Let S and T be two ω-semigroups. One says that a surjective
morphism of ω-semigroups ϕ : S −→ T recognizes a subset X of S if there exists
a subset Y of T such that ϕ−1(Y ) = X. By extension, one also says that the
ω-semigroup T recognizes X.

Proposition 1 (Wilke). An ω-language is recognizable by a finite ω-semigroup
if and only if it is ω-rational.

Example 3. Let A = {a, b}, let S be the ω-semigroup given in Example 2, and
let ϕ : A∞ −→ S be the morphism defined by ϕ(a) = 0 and ϕ(b) = 1. Then
ϕ−1(0ω) = (A∗a)ω and ϕ−1(1ω) = A∗bω, and therefore these two languages are
ω-rational.

A congruence of an ω-semigroup S = (S+, Sω) is a pair (∼+,∼ω), where ∼+

is a semigroup congruence on S+, ∼ω is an equivalence relation on Sω, and
these relations are stable for the infinite and the mixed products (see [12]). The
quotient set S/∼ = (S/∼+, S/∼ω) is naturally equipped with a structure of ω-
semigroup. If (∼i)i∈I is a family of congruences on an ω-semigroup, then the
congruence ∼, defined by s ∼ t if and only if s ∼i t, for all i ∈ I, is called the
lower bound of the family (∼i)i∈I . The upper bound of the family (∼i)i∈I is
then the lower bound of the congruences that are coarser than all the ∼i.

Given a subset X of an ω-semigroup S, the syntactic congruence of X , de-
noted by ∼X , is the upper bound of the family of congruences whose associated
quotient morphisms recognize X , if this upper bound still recognizes X , and is
undefined otherwise. Whenever defined, the quotient S(X) = S/∼X is called
the syntactic ω-semigroup of X , the surjective morphism μ : S −→ S(X) is the
syntactic morphism of X , the set μ(X) is the syntactic image of X , and one
has the property μ−1(μ(X)) = X . The pointed ω-semigroup (S(X), μ(X)) will
be denoted by Synt(X). One can prove that the syntactic ω-semigroup of an
ω-rational language is always defined, and is the unique (up to isomorphism) and
minimal (for the division) pointed ω-semigroup recognizing this language [12].

Example 4. Let K = (A∗a)ω be an ω-language over the alphabet A = {a, b}.
The morphism ϕ : A∞ −→ S given in Example 3 is the syntactic morphism of
K. The ω-subset X = {0ω} of S is the syntactic image of K.

Finally, a pointed ω-semigroup (S,X) will be called Borel if the preimage π−1
S (X)

is a Borel subset of Sω
+ (where Sω

+ is equipped with the product topology of the
discrete topology on S+). Notice that every finite pointed ω-semigroup is Borel,
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since by Proposition 1, its preimage by the infinite product is ω-rational, hence
Borel (more precisely boolean combination of Σ0

2) [12].

3 The Wadge and the Wagner Hierarchies

Let A and B be two alphabets, and let X ⊆ Aω and Y ⊆ Bω . The Wadge
game W ((A,X), (B, Y )) [19] is a two-player infinite game with perfect infor-
mation, where Player I is in charge of the subset X and Player II is in charge
of the subset Y . Players I and II alternately play letters from the alphabets A
and B, respectively. Player I begins. Player II is allowed to skip her turn – for-
mally denoted by the symbol “−” – provided she plays infinitely many letters,
whereas Player I is not allowed to do so. After ω turns each, players I and II
respectively produced two infinite words α ∈ Aω and β ∈ Bω. Player II wins
W ((A,X), (B, Y )) if and only if (α ∈ X ⇔ β ∈ Y ). From this point onward,
the Wadge game W ((A,X), (B, Y )) will be denoted W(X,Y ) and the alphabets
involved will always be clear from the context.

Along the play, the finite sequence of all previous moves of a given player is
called the current position of this player. A strategy for Player I is a mapping
from (B ∪ {−})∗ into A. A strategy for Player II is a mapping from A+ into
B ∪ {−}. A strategy is winning if the player following it must necessarily win,
no matter what his opponent plays.

The Wadge reduction is defined via the Wadge game as follows: a set X is
said to be Wadge reducible to Y , denoted by X ≤W Y , if and only if Player II
has a winning strategy in W(X,Y ). One then sets X ≡W Y if and only if both
X ≤W Y and Y ≤W X , and also X <W Y if and only if X ≤W Y and X 
≡W Y .
The relation ≤W is reflexive and transitive, and ≡W is an equivalence relation.
A set X is called self-dual if X ≡W Xc, and non-self-dual if X 
≡W Xc. One can
show [19] that the Wadge reduction coincides with the continuous reduction,
that is X ≤W Y if and only if f−1(Y ) = X , for some continuous function
f : Aω −→ Bω.

The Wadge hierarchy consists of the collection of all ω-languages ordered by
the Wadge reduction, and the Borel Wadge hierarchy is the restriction of the
Wadge hierarchy to Borel ω-languages. Martin’s Borel determinacy [8] easily
implies Borel Wadge determinacy, that is, whenever X and Y are Borel sets,
then one of the two players has a winning strategy in W(X,Y ). As a corollary,
one can prove that, up to complementation and Wadge equivalence, the Borel
Wadge hierarchy is a well ordering. Therefore, there exist a unique ordinal, called
the height of the Borel Wadge hierarchy, and a mapping dW from the Borel
Wadge hierarchy onto its height, called the Wadge degree, such that dW (X) <
dW (Y ) if and only if X <W Y , and dW (X) = dW (Y ) if and only if either
X ≡W Y or X ≡W Y c, for every Borel ω-languages X and Y . The Borel Wadge
hierarchy actually consists of an alternating succession of non-self-dual and self-
dual sets with non-self-dual pairs at each limit level (as soon as finite alphabets
are considered) [5,19].
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The Wagner hierarchy is precisely the restriction of the Wadge hierarchy to
ω-rational languages, and hence corresponds to the most refined classification
of such languages [6,12,20]. This hierarchy has a height of ωω, and it is decid-
able. The Wagner degree of an ω-rational language can indeed be computed by
analyzing the graph of a Muller automaton accepting this language [20].

Selivanov gave a complete set theoretical description of the Wagner hierar-
chy in terms of boolean expressions [17], and Carton, Perrin, Duparc, and Riss
studied some algebraic properties of this hierarchy [2,4,6]. In this context, the
present work provides a complete construction of the algebraic counterpart of
the Wagner hierarchy.

4 The SG-Hierarchy

We define a reduction relation on pointed ω-semigroups by means of an infinite
two-player game. This reduction induces a hierarchy of pointed ω-semigroups.
Many results of the Wadge theory [19] also apply in this framework, and provide
a detailed description of this algebraic hierarchy.

Let S = (S+, Sω) and T = (T+, Tω) be two ω-semigroups, and let X ⊆ Sω and
Y ⊆ Tω be two ω-subsets. The game SG((S,X), (T, Y )) is an infinite two-player
game with perfect information, where Player I is in charge of X , Player II is in
charge of Y , and players I and II alternately play elements of S+ and T+ ∪ {−},
respectively. Player I begins. Unlike Player I, Player II is allowed to skip her
turn – denoted by the symbol “−” –, provided she plays infinitely many moves.
After ω turns each, players I and II produced respectively two infinite sequences
(s0, s1, . . .) ∈ Sω

+ and (t0, t1, . . .) ∈ Tω
+ . Player II wins SG((S,X), (T, Y )) if and

only if πS(s0, s1, . . .) ∈ X ⇔ πT (t0, t1, . . .) ∈ Y . From this point onward, the
game SG((S,X), (T, Y )) will be denoted by SG(X,Y ) and the ω-semigroups
involved will always be known from the context. A play in this game is illustrated
below.

(X) I : s0 s1 · · · · · · after ω moves−→ (s0, s1, s2, . . .)
↘ ↗

(Y ) II : t0 · · · · · · after ω moves−→ (t0, t1, t2, . . .)

We now say that X is SG-reducible to Y , denoted by X ≤SG Y , if and only if
Player II has a winning strategy in SG(X,Y ). We then naturally set X ≡SG Y
if and only if both X ≤SG Y and Y ≤SG X , and also X <SG Y if and only if
X ≤SG Y and X 
≡SG Y . The relation ≤SG is reflexive and transitive, and ≡SG

is an equivalence relation.
Notice that if (S,X) and (T, Y ) are two pointed ω-semigroups, a given player

has a winning strategy in the game SG(X,Y ) if and only if this same player
also has one in the Wadge game W(π−1

S (X), π−1
T (Y )). Therefore Borel Wadge de-

terminacy implies the determinacy of SG-games involving Borel pointed
ω-semigroups.

The collection of Borel pointed ω-semigroups ordered by the ≤SG-relation is
called the SG-hierarchy, in order to underline the semigroup approach. Notice
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that the restriction of the SG-hierarchy to Borel pointed free ω-semigroups is ex-
actly the Borel Wadge hierarchy. When restricted to finite pointed ω-semigroups,
this hierarchy will be called the FSG-hierarchy, in order to underline the finite-
ness of the ω-semigroups involved. As corollaries of the determinacy of Borel SG-
games, a straightforward generalization in this context of Martin and Wadge’s
results [8,19] shows that, up to complementation and ≤SG-equivalence, the SG-
hierarchy is a well ordering. Therefore, there exist again a unique ordinal, called
the height of the SG-hierarchy, and a mapping dSG from the SG-hierarchy onto
its height, called the SG-degree, such that dSG(X) < dSG(Y ) if and only if
X <SG Y , and dSG(X) = dSG(Y ) if and only if either X ≡SG Y or X ≡SG Y c,
for every Borel ω-subsets X and Y . It directly follows from the Wadge anal-
ysis that the SG-hierarchy has the same familiar “scaling shape” as the Borel
or Wadge hierarchies: an increasing sequence of non-self-dual sets with self-dual
sets in between, as illustrated in Figure 1, where circles represent the ≡SG-
equivalence classes of pointed ω-semigroups, and arrows stand for the <SG-
relation.

Fig. 1. The SG-hierarchy

5 The FSG and the Wagner Hierarchies

This section shows that the FSG-hierarchy is precisely the algebraic counterpart
of the Wagner hierarchy. Consequently, this algebraic hierarchy has a height of
ωω, and it is decidable.

Let S = (S+, Sω) be a finite ω-semigroup, and let ϕ : A∞ −→ S be a surjective
morphism of ω-semigroups, for some finite alphabet A. Then every ω-subsetX of
Sω can be lifted on an ω-rational language ϕ−1(X) of Aω . The next proposition
proves that this lifting induces an embedding from the FSG-hierarchy into the
Wagner hierarchy.

Proposition 2. Let (S,X) and (T, Y ) be two finite pointed ω-semigroups, and
let ϕ : A∞ −→ S and ψ : B∞ −→ T be two surjective morphisms of ω-
semigroups, where A and B are finite alphabets. Then X ≤SG Y if and only
if ϕ−1(X) ≤W ψ−1(Y ).

Proof (sketch). A complete proof can be found in [1, pp. 86–88]. For the first
direction, a given winning strategy for Player II in SG(X,Y ) induces via ϕ and
ψ−1 a winning strategy for this same player in the game W

(
ϕ−1(X), ψ−1(Y )

)
.

Conversely, a given winning strategy for Player II in W
(
ϕ−1(X), ψ−1(Y )

)
also

induces via ϕ−1 and ψ a winning strategy for this same player in SG(X,Y ). �
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By the previous proposition, the Wadge reduction on ω-rational languages and
the SG-reduction on ω-subsets recognizing these languages coincide. The next
corollary mentions that this property holds in particular for ω-rational languages
and their syntactic images, meaning that the SG-reduction is the appropriate
algebraic counterpart of the Wagner reduction. As a direct consequence, the
Wagner degree is a syntactic invariant : if two ω-rational languages have the
same syntactic image, then they also have the same Wagner degree.

Corollary 1. Let K and L be two ω-rational languages and μ(K) and ν(L) be
their syntactic images.

(1) K ≤W L if and only if μ(K) ≤SG ν(L).
(2) If Synt(K) = Synt(L), then K ≡W L.

Proof. Since μ and ν are syntactic morphisms, one has μ−1(μ(K)) = K and
ν−1(ν(L)) = L. Proposition 2 leads to the conclusion. For (2), if Synt(K) =
Synt(L), then μ(K) = ν(L), and (1) leads to the conclusion. �
As another consequence, the SG-degree of an ω-subset is invariant under surjec-
tive morphism, and in particular under syntactic morphism. Therefore, syntactic
finite pointed ω-semigroups are minimal representatives of their ≤SG-equivalence
class.

Corollary 2. Let μ : S −→ T be a surjective morphism of finite ω-semigroups,
let Y ⊆ Tω, and let X = μ−1(Y ). Then X ≡SG Y .

Proof. Let ϕ : S∞
+ −→ S be the canonical morphism of ω-semigroups associated

with S, and let ψ = μ◦ϕ : S∞
+ −→ T . The mapping ψ is a surjective morphism of

ω-semigroups. It satisfies ψ−1(Y ) = ϕ−1 ◦μ−1(Y ) = ϕ−1(X), thus in particular,
ϕ−1(X) ≡W ψ−1(Y ). Proposition 2 then shows that X ≡SG Y . �
Finally, the following theorem proves that the Wagner hierarchy and the FSG-
hierarchy are isomorphic. The required isomorphism is the mapping which asso-
ciates every ω-rational language with its syntactic image. Therefore, the Wagner
degree of an ω-rational language and the SG-degree of its syntactic image are
the same.

Theorem 1. The Wagner hierarchy and the FSG-hierarchy are isomorphic.

Proof. Consider the mapping from the Wagner hierarchy into the SG-hierarchy
which associates every ω-rational language with its syntactic image. We prove
that this mapping is an embedding. Let K and L be two ω-rational languages,
and let X = μ(K) and Y = ν(L) be their syntactic images. Corollary 1 ensures
thatK ≤W L if and only ifX ≤SG Y . We now show that, up to ≡SG-equivalence,
this mapping is onto. Let X be an ω-subset of a finite ω-semigroup S = (S+, Sω),
let μ : S −→ S(X) be the syntactic morphism of X , and let Y = μ(X) be its
syntactic image. Corollary 2 ensures that X ≡SG Y . Now, let also ϕ : S∞

+ −→ S
be the canonical morphism associated with S+, and let L = ϕ−1(X). Then the
morphism of ω-semigroups ψ = μ ◦ ϕ : S∞

+ −→ S(X) is the syntactic morphism
of L [12], and one has ψ(L) = Y ≡SG X . �
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As a corollary, we show that the FSG-hierarchy is decidable: for every ω-subset
X of the hierarchy, one can effectively compute the Cantor normal form of base
ω of the ordinal dSG(X).

Corollary 3. The FSG-hierarchy has height ωω, and it is decidable.

Proof. By the previous theorem, the FSG-hierarchy and the Wagner hierarchy
have the same height, namely ωω. In addition, given an ω-subset X of a finite
ω-semigroup S = (S+, Sω), one can effectively compute the SG-degree of X as
follows. Let ϕ : S∞

+ −→ S be the canonical morphism associated with S+, and let
L = ϕ−1(X). Theorem 1 shows that the SG-degree of X is equal to the Wagner
degree of L. Furthermore, the Wagner degree of L can be effectively computed
as follows. First, one can effectively compute an ω-rational expression describing
L = ϕ−1(X) [12, Corollary 7.4, p. 110]. Next, one can shift from this rational
expression to some finite Muller automaton recognizing L, see [12, Chapter I,
sections 10.1, 10.3, and 10.4]. Finally, the Wagner degree of the ω-language rec-
ognized by a finite Muller automaton is effectively computable [20]. �
Example 5. Consider the syntactic image (S,X) of the ω-language K = (A∗a)ω

given in example 4. We can prove that dSG((S,X)) = dW (K) = ω.

6 Conclusion

This work is a first step towards the complete description of the algebraic coun-
terpart of the Wagner hierarchy. Using a hierarchical game approach, we defined
a reduction relation on finite pointed ω-semigroups which was proven to be the
algebraic counterpart of the Wadge (or Wagner) preorder on ω-rational lan-
guages. As a direct consequence, the Wagner degree of ω-rational languages is
a syntactic invariant. The resulting algebraic hierarchy is then isomorphic to
the Wagner hierarchy, namely a decidable partial order of width 2 and height
ωω. But the decidability procedure presented in Corollary 3 relies on Wagner’s
naming procedure over Muller automata, and in this sense withdraws from the
purely algebraic context.

The natural extension of this work would be to fill this gap, and hence describe
an algorithm computing the Wagner degree of any ω-rational set directly on its
syntactic pointed ω-semigroup, without any reference to some underlying Muller
automata. This study is the purpose of a forthcoming paper.

We can also hope to extend this work to more sophisticated ω-languages,
like those recognized by deterministic counters, or even deterministic pushdown
automata. This would obviously require to understand first the kind of infinite
ω-semigroups corresponding to such machines.
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