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ABSTRACT. Recently, Mikołaj Bojańczyk introduced a class of max-regular languages, an extension
of regular languages of infinite words preserving many of its usual properties. This new class can
be seen as a different way of generalising the notion of regularity from finite to infinite words. This
paper compares regular and max-regular languages in terms of topological complexity. It is proved
that up to Wadge equivalence the classes coincide. Moreover, when restricted to ∆0

2-languages, the
classes contain virtually the same languages. On the other hand, separating examples of arbitrary
complexity exceeding ∆0

2 are constructed.

Introduction
Until recently, the notion of regularity for languages of infinite words developed by Büchi [2]
seemed to be universally accepted. Büchi’s class has various characterisations, most notably
in terms of automata and monadic second order logic, and enjoys a multitude of elegant
properties, like closure by Boolean operations (including negation). Nowadays however
some doubt has been cast by Mikołaj Bojańczyk [1], who presented a richer class of max-
regular languages, arguably as much regular as Büchi’s languages. This new class has a
characterisation via weak monadic second-order logic with the unbounding quantifier, and
a suitable automaton model with decidable emptiness. It also exhibits the usual closure
properties.

In this paper we would like to shed some more light on the relations between the two
classes. A typical max-regular language is defined by the property “the distance between
consecutive b’s is unbounded”,

K = {an1 ban2 ban3 . . . : ∀m ∃i ni > m} .

This language is not regular, but it is Π0
2-complete. In fact, as Bojańczyk notes, all max-

regular languages are Boolean combinations of Σ0
2-sets, just like regular languages. Is this

a coincidence, or does the similarity go further? How big is the new class? The ultimate
tool for this kind of questions is the Wadge hierarchy [13, 14]. Ordering the sets based
on the existence of continuous reductions (Wadge reductions) between them, the Wadge
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hierarchy is the most refined complexity measure in descriptive set theory. For classical
regular languages, it coincides exactly with automata-based Wagner hierarchy, and is well-
understood [15]. Here we investigate the Wadge hierarchy of max-regular languages.

As was shown by Finkel’s work on blind counter automata [10], adding very restricted
counters already makes the Wadge hierarchy much richer. Surprisingly, even though max-
automata do involve counters, the Wadge hierarchy they induce actually coincides with the
Wagner hierarchy. In other words, for each max-regular language, there exists a Wadge-
equivalent regular language. Topologically, Bojańczyk’s extension is very conservative.

On the other hand, there is an abundance of separating languages: we provide one for
each level beginning from ω. This shows that the difference between the two classes spans
orthogonally to the topological complexity.

Below the level ω, which corresponds exactly to the languages complete for Π0
2 or Σ0

2,
the levels contain the same languages. Hence, the exemplary language K is as simple as
possible: every max-regular language strictly lower than K in the Wadge hierarchy is neces-
sarily regular.

1 Preliminaries
1.1 Languages

A set of finite words is called a language, and a set of infinite words an ω-language. Given
a finite set A, called the alphabet, then A∗, A+, Aω, and A∞ denote respectively the sets of
finite words, nonempty finite words, infinite words, and finite or infinite words, all of them
over the alphabet A. The empty word is denoted by ε. Given a finite word u and a finite
or infinite word v, we write uv to denote the concatenation of u and v. Given X ⊆ A∗ and
Y ⊆ A∞, the concatenation of X and Y is defined by XY = {xy : x ∈ X and y ∈ Y}, the
finite iteration of X is X∗ = {x1 · · · xn : n ≥ 0 and x1, . . . , xn ∈ X}, and the infinite iteration
of X is Xω = {x0x1x2 · · · : xi ∈ X, for all i ∈ N}. Given u ∈ A∗ and X ⊆ Aω, the set u−1X
is defined as u−1X = {x ∈ Aω : ux ∈ X}, and Xu is u(u−1X) = uAω ∩ X.

The ω-regular languages are exactly the ones recognised by finite Büchi, or equivalently,
by finite Muller automata. We refer to [11, p.15] for further details.

Finally, for any alphabet A, the set Aω can be equipped with the product topology of the
discrete topology on A. The open sets of Aω are thus of the form WAω, for some W ⊆ A∗.

1.2 The Wadge hierarchy

The Wadge hierarchy is a very refined topological classification of ω-languages. This classi-
fication is obtained by means of Wadge (or continuous) reduction, which is a partial order-
ing defined via the Wadge games [13] presented below.

Let A and B be two finite alphabets, and let X ⊆ Aω and Y ⊆ Bω. The Wadge game
W((A, X), (B, Y)) is a two-player infinite game with perfect information, where player I
is in charge of the subset X and player II is in charge of the subset Y. Players I and II
alternately play letters from the alphabets A and B, respectively. Player I begins. Player
II is allowed to skip her turn, formally denoted by the symbol “−”, provided she plays
infinitely many letters, whereas player I is not allowed to do so. After ω turns, players I



J. CABESSA, J. DUPARC, A. FACCHINI, F. MURLAK FSTTCS 2009 123

and II have produced two infinite words, α ∈ Aω and β ∈ Bω respectively. Player II wins
W ((A, X), (B, Y)) if and only if (α ∈ X ⇔ β ∈ Y). From this point onward, the Wadge
game W ((A, X), (B, Y)) will be denoted W(X, Y) and the alphabets involved will always
be clear from the context. Along the play, the finite sequence of all previous moves of a given
player is called the current position of this player. A strategy for player I is a mapping from
(B∪ {−})∗ into A. A strategy for player II is a mapping from A+ into B∪ {−}. A strategy is
winning if the player following it must necessarily win, no matter what his opponent plays.

The Wadge reduction is defined via the Wadge game as follows: a set X is said to be
Wadge reducible to Y, denoted by X ≤W Y, if and only if player II has a winning strategy
in W(X, Y). This relation ≤W is reflexive and transitive. The corresponding equivalence
relation and strict reduction are defined by X ≡W Y if and only if both X ≤W Y and Y ≤W X
hold, and X <W Y if and only if X ≤W Y and X 6≡W Y. In addition, the sets X and Y are said
to be Wadge incomparable, denoted as X⊥WY, if and only if both X 6≤W Y and Y 6≤W X.
Besides, a set X ⊆ Aω is called self-dual if X ≡W Xc, and non-self-dual if X 6≡W Xc.

Let us point out that Wadge games were designed so that the Wadge reduction corre-
spond precisely to the continuous reduction. Indeed, it holds that X ≤W Y if and only if
there exists a continuous function f : Aω → Bω such that f−1(Y) = X [13].

The Wadge hierarchy consists of the collection of all ω-languages ordered by the Wadge
reduction, and the Borel Wadge hierarchy is the restriction of the Wadge hierarchy to Borel
ω-languages. As a consequence of Martin’s Borel determinacy theorem, for any two Borel
ω-languages X and Y, there exists a winning strategy for one of the players in W(X, Y).
This key property induces the following strong consequences on the Borel Wadge hierarchy.
First, the ≤W-antichains have length at most 2, and the only incomparable ω-languages are,
up to Wadge equivalence, of the form X and Xc, for X non-self-dual. Furthermore, the
Wadge reduction is well-founded on Borel sets, meaning that there is no infinite strictly
descending sequence of Borel ω-languages X0 >W X1 >W X2 >W . . . . These results ensure
that, up to complementation and Wadge equivalence, the Borel Wadge hierarchy is actually
a well ordering.

Therefore, there exist a unique ordinal, called the height of the Borel Wadge hierarchy,
and a mapping dW from the Borel Wadge hierarchy onto its height, called the Wadge degree,
such that dW(X) < dW(Y) if and only if X <W Y, and dW(X) = dW(Y) if and only if either
X ≡W Y or X ≡W Yc, for every Borel ω-languages X and Y. Actually, it is usually convenient
to consider another definition of the Wadge degree which makes the non-self dual sets and
the first self dual ones that strictly reduce these latter always share the same degree, namely:

dW(X) =


1 if X = ∅ or X = ∅c,

sup {dW(Y) + 1 : Y n.s.d. and Y <W X} if X is non-self-dual,

sup {dW(Y) : Y n.s.d. and Y <W X} if X is self-dual.

Furthermore, it can be proved that the Borel Wadge hierarchy actually consists of an
alternating succession of non-self-dual and self-dual sets with non-self-dual pairs at each
limit level (provided finite alphabets are considered) [7, 13, 14]. Therefore, for any ordinal
α below the height of the Borel Wadge hierarchy, there exist exactly three Wadge classes of
degree α, namely two non-self-dual and one self-dual located precisely just one level above,
as illustrated in Figure 1(a).
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Wadge degree ω

Wadge degree 2

Wadge degree 1

(a) The Wadge hierarchy: circles represent Wadge-
equivalence classes and arrows stand for the strict
Wadge reduction between those. The non-self
dual sets and the self dual ones located just one
level above share the same Wadge degree.

MR-Wadge / Wagner degree ω

MR-Wadge / Wagner degree 2

MR-Wadge / Wagner degree 1

(b) The MR-Wadge and the Wagner hierarchy. On fi-
nite levels the classes coincide; above, MR-Wadge classes
properly extend corresponding Wagner classes.

Figure 1: The hierarchies

The three Wadge classes are very closely related. In fact, any set X ⊆ Aω that is com-
plete for some Wadge class of degree α gives rise to two other sets Y, Z ⊆ Aω that are re-
spectively complete for the two remaining Wadge classes of same degree α. More precisely,
if one starts with X self-dual such that dW(X) = α, then we know that there exists u ∈ A∗

such that Y = u−1X is non-self-dual and dW(Y) = α. It directly follows that Z = (u−1X)c is
also non-self-dual and dW(Z) = α. On the other hand, if one starts with X non-self-dual and
dW(X) = α, then Y = Xc is also non-self-dual, Wadge incomparable with X, and dW(Y) = α.
Moreover, for any a ∈ A, the set Z = aX ∪ (A \ {a})Xc is self-dual with dW(Z) = α. All
these results are folklore and can be found for instance in [7]. In the sequel we will also use
the fact that the constructions above preserve regularity and max-regularity.

In this paper we are working only with the sets from BC(Σ0
2), the class of Boolean

combinations of Σ0
2 sets, but in fact we need to go quite deep into the structure of the Wadge

hierarchy in order to obtain the promised results. The proofs of all the facts we state below
can be found in [7].

Let us start with the relation between the Borel classes and the Wadge degrees. The nth
level of the Borel hierarchy corresponds to the Wadge degree “a tower of ω1’s of the height
n− 1”. In particular, a language complete for Σ0

2 or Π0
2 has degree ω1. This already shows

how drastically the Borel Wadge hierarchy refines the Borel hierarchy! When we move to
combinations of Σ0

2 sets, we get exactly the Wadge degrees strictly below ωω
1 .
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Important milestones on the way from ω1 to ωω
1 are the so-called initialisable sets. They

are defined as those sets X, for which player II has a winning strategy in the II-imposed
Wadge game W(X, X) where player I is allowed at any moment, but only once, to erase
everything he has played before and start anew.

Let us remark that initialisable sets generalise prefix-independent sets, i.e., sets satis-
fying condition u−1X = X for all finite words u. Indeed, the winning strategy for player
II in the corresponding game amounts to copying the letters played by player I, even after
player I decides to erase everything and start again: the part of player II’s word played
before player I erased his word will not influence the outcome. Roughly speaking, initialis-
ability is prefix-independence up to Wadge-equivalence.

Initialisable sets within BC(Σ0
2) are exactly those with Wadge degrees ωn

1 for some nat-
ural number n. Clearly, the empty set and the whole space are prefix-independent, and so
initialisable. So is the well-known Π0

2-complete set (1∗2)ω. In fact, the parity languages with
n + 1 ranks correspond exactly to the degree ωn

1 . Showing that no other degree below ωω
1 is

initialisable requires a lot of technical effort. We refer the reader to [7] for the proof.
Let us finish this quick peek into the internal structure of BC(Σ0

2) with a fact that shows
how simpler sets are hidden inside more complex ones. As already stated, BC(Σ0

2) sets have
degrees strictly below ωω

1 . Hence, if X ⊆ A∗ is BC(Σ0
2), its Wadge degree can be written in

the Cantor normal form of base ω1 as dW(X) = ωnk
1 · pk + · · · + ωn0

1 · p0, for some k > 0,
some ω > nk > . . . > n0 ≥ 0, and some 0 < pi < ω1 for all 0 ≤ i ≤ k. Assume that one
of the coefficients, say pj, is not finite, i.e., pj ≥ ω. Then for each m > 0 there exists a word
u ∈ A∗ such that dW(Xu) = ωnk

1 · pk + · · · + ω
nj
1 · m. This fact is a special case of a more

general result [8, Lemmas 33 and 39]. The following lemma follows easily.

LEMMA 1. Let X ⊆ A∗ be a BC(Σ0
2) set such that the family {Xu : u ∈ A∗} is finite up to

Wadge equivalence. Then

dW(X) = ωnk
1 · pk + · · ·+ ωn0

1 · p0 ,

for some k > 0, some ω > nk > . . . > n0 ≥ 0, and some 0 < pi < ω for all 0 ≤ i ≤ k.

1.3 The Wagner hierarchy

In 1979, Klaus Wagner described a classification of ω-regular sets in terms of the graph-
theoretical structure automata known as the the Wagner hierarchy [15]. This hierarchy is a
decidable pre-well-ordering of width 2 and height ωω. The Wagner degree of any given ω-
regular language can be effectively computed by analysing the graph of a Muller automaton
accepting this language [16].

In 1986, Simonnet proved that the Wagner hierarchy corresponds precisely to the re-
striction of the Wadge hierarchy to ω-regular languages. In our further explanations the
following notion will be convenient. We say that a Wadge class is inhabited by a language if
the language is complete for the Wadge class. In these terms, ω-regular languages inhabit
exactly all Wadge classes with Wadge degrees of the form ωnk

1 · pk + · · · + ωn0
1 · p0, where

ω > nk > . . . > n0 ≥ 0 and 0 < pi < ω for all 0 ≤ i ≤ k. In addition, it can be shown
that the Wagner reduction, which already coincides with the Wadge reduction, can also be
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defined in terms of automata [11, Thm. 5.2, p. 209]. Similarly to the Wadge degree, the
Wagner degree of an ω-regular language L can thus be defined as follows:

dωR(L) =


1 if L = ∅ or L = ∅c,

sup {dωR(K) + 1 : K n.s.d. and K <W L} if L is non-self-dual,

sup {dωR(K) : K n.s.d. and K <W L} if L is self-dual.

In consequence, the Wagner and the Wadge degrees of ω-regular languages are related as
follows: for any ω-regular language L, if

dωR(L) = ωnk · pk + · · ·+ ωn0 · p0 ,

for some ω > nk > . . . > n0 ≥ 0 and 0 < pi < ω for all 0 ≤ i ≤ k, then

dW(L) = ωnk
1 · pk + · · ·+ ωn0

1 · p0 .

The Wagner hierarchy has been extensively investigated. Its complete set theoretical
description in terms of Boolean expressions was given by Selivanov [12], and its algebraic
counterpart was studied by various authors [3, 4, 5, 6, 9].

2 Max-regular languages
In [1], Bojańczyk introduces a new class of languages of infinite words called max-regular
languages. This class is a proper extension of the class of ω-regular languages. It has two
equivalent descriptions, one in terms of automata (max-automata), and the other in terms
of logic (weak MSO with the unbounding quantifier). Here, we briefly recall the automata-
theoretic one.

DEFINITION 2. A max-automaton is a tuple A = (Q, A, Γ, q0, E, T ), where Q is a finite set
of states, A a finite input alphabet, Γ a finite set of counters, q0 an initial state, T ⊆ P(Γ) is a
specified collection of subsets of Γ, and E ⊆ Q× A× Q× (

⋃
c,c′∈Γ{incc, resc, outc, maxc,c′})∗

is a finite set of transitions, which, given a current state q and input letter a specifies a
changing state and a sequence of counter operations. The operations incc, resc, outc, and
maxc,c′ respectively mean set c := c + 1, set c := 0, output the current value of c, and set
c := max(c, c′).

As usual, a deterministic max-automaton is defined by requiring the transition set E to
be the graph of a partial function from Q× A into Q× (

⋃
c,c′∈Γ{incc, resc, outc, maxc,c′})∗.

For any counter c ∈ Γ and any finite sequence of counter operations o0, . . . , oi, the
value of counter c after the successive performing of these operations will be denoted by
c(o1 · · · oi).

A run of A is a sequence of consecutive transitions. Given an infinite run ρ, the infinite
output sequence of counter c during ρ is denoted by ρc. An infinite word x is accepted by A
if it admits a run ρ such that {c ∈ Γ : ρc is unbounded} ∈ T . In other words, the accepting
conditions of max-automata are Boolean combinations of clauses of the form “the sequence
ρc is bounded”.
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The set of infinite words accepted by A is the language recognised by A and is denoted
by L(A). An ω-language is called max-regular if it is recognised by a deterministic max-
automaton.

Note that, as for Muller automata, up to adding a sink state together with the appropri-
ate transitions and counter operations, we may assume without loss of generality that every
deterministic max-automaton is complete. Hence, for any finite or infinite word, there ex-
ists exactly one corresponding finite or infinite run labelled by this word. From this point
onwards, every max-automaton will be assumed to be deterministic and complete.

The following fact is taken from [1]. We sketch the proof for the sake of completeness.

LEMMA 3. The class of max-languages is a proper extension of the class of ω-regular lan-
guages.

PROOF. The language K = {an1 ban2 ban3 . . . : ∀m ∃i ni > m}mentioned in the introduction
separates the classes. Let us concentrate on showing that every ω-regular language is max-
regular.

Let L be an ω-regular language, and let A = (Q, A, q0, δ, T ) be a deterministic Muller
automaton recognising it. We build a deterministic max-automaton A′ recognising this
same language. The automatonA′ = (Q′, A, Γ, q′0, δ′, T ′) is obtained by associating a counter
cq with each state q of A and by simulating the visit of each state of A by increment-
ing and outputting the corresponding counter of A’. More precisely, we set Q′ = Q,
Γ = {cq : q ∈ Q}, q′0 = q0, δ′ = {(q, a, q′, (incc′q , outc′q)) : (q, a, q′) ∈ δ}, and T ′ =
{{cq1 , . . . , cqn} : {q1, . . . , qn} ∈ T }. In this way, a state of A is visited infinitely often iff
the output sequence of its corresponding counter in A′ is unbounded. The definition of T ′
then ensures that A and A′ recognise the same ω-language. �

We now prove that if two infinite words induce converging runs, they are either both
accepted or both rejected. This technical result will be very useful in the sequel. For finite
words u and v we write u ∼A v iff A’s runs on u and v end in the same state.

LEMMA 4. LetA be a deterministic max-automaton, and let u and v such that u ∼A v. Then
u−1L(A) = v−1L(A).

PROOF. Let A be the input alphabet of the automaton A, and let x = x0x1x2 · · · be some
infinite word of Aω. Let also ρ = ρ0ρ1ρ2 · · · and ρ′ = ρ′0ρ′1ρ′2 · · · be the two infinite runs
of A labelled by ux and vx, respectively, and let o0o1o2 · · · and o′0o′1o′2 · · · be the two corre-
sponding infinite sequences of counter operations performed during these respective runs.
Since u ∼A v, there exist two integers m′ and n′ such that ρm′+i = ρ′n′+i for all i ≥ 0,
thus there also exist two integers m and n such that om+i = o′n+i for all i ≥ 0. Now let
k = maxc∈Γ |c(o0 · · · om) − c(o′0 · · · o′n)|. We prove by induction on i ∈ N that the relation
|c(o0 · · · om+i)− c(o′0 · · · o′n+i)| ≤ k holds for all c ∈ Γ.

By definition of k, the claim holds for i = 0. Now let i > 0, and assume that for all j ≤ i,
the inequality |c(o0 · · · om+j)− c(o′0 · · · o′n+j)| ≤ k is true for all c ∈ Γ. Let c ∈ Γ, and consider
the counter operation om+i+1 = o′n+i+1. We discuss the nature of this operation.

(1) If om+i+1 = o′n+i+1 = resc, then |c(o0 · · · om+i+1)− c(o′0 · · · o′n+i+1)| = 0 ≤ k.
(2) If om+i+1 = o′n+i+1 is either incc or outc, then by the induction hypothesis, it follows

that |c(o0 · · · om+i+1)− c(o′0 · · · o′n+i+1)| = |c(o0 · · · om+i)− c(o′0 · · · o′n+i)| ≤ k.
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(3) If om+i+1 = o′n+i+1 concerns another counter than c, then by the induction hypothesis
|c(o0 · · · om+i+1)− c(o′0 · · · o′n+i+1)| = |c(o0 · · · om+i)− c(o′0 · · · o′n+i)| ≤ k.

(4) If om+i+1 = o′n+i+1 = maxc,d, for some d ∈ Γ, four different cases need to be considered:
(a) If c(o0 · · · om+i) ≤ d(o0 · · · om+i) and c(o′0 · · · o′n+i) ≤ d(o′0 · · · o′n+i), it follows that

c(o0 · · · om+i+1) := d(o0 · · · om+i) and c(o′0 · · · o′n+i+1) := d(o′0 · · · o′n+i). Therefore
by the induction hypothesis |c(o0 · · · om+i+1)− c(o′0 · · · o′n+i+1)| = |d(o0 · · · om+i)−
d(o′0 · · · o′n+i)| ≤ k.

(b) The case c(o0 · · · om+i) ≥ d(o0 · · · om+i) and c(o′0 · · · o′n+i) ≥ d(o′0 · · · o′n+i) is sym-
metric.

(c) If c(o0 · · · om+i) ≤ d(o0 · · · om+i) but c(o′0 · · · o′n+i) ≥ d(o′0 · · · o′n+i), it follows that
c(o0 · · · om+i+1) := d(o0 · · · om+i) and c(o′0 · · · o′n+i+1) := c(o′0 · · · o′n+i). Thence
|c(o0 · · · om+i+1) − c(o′0 · · · o′n+i+1)| = |d(o0 · · · om+i) − c(o′0 · · · o′n+i)|. Now the
two following cases need to be distinguished:

i. If c(o′0 · · · o′n+i) ≤ d(o0 · · · om+i), thence |d(o0 · · · om+i) − c(o′0 · · · o′n+i)| =
d(o0 · · · om+i)− c(o′0 · · · o′n+i) ≤ d(o0 · · · om+i)− d(o′0 · · · o′n+i) ≤ k.

ii. If c(o′0 · · · o′n+i) ≥ d(o0 · · · om+i), thence |d(o0 · · · om+i) − c(o′0 · · · o′n+i)| =
c(o′0 · · · o′n+i)− d(o0 · · · om+i) ≤ c(o′0 · · · o′n+i)− c(o′0 · · · o′n+i) ≤ k.

(d) The case c(o0 · · · om+i) ≥ d(o0 · · · om+i) but c(o′0 · · · o′n+i) ≤ d(o′0 · · · o′n+i) is sym-
metric.

Now since |c(o0 · · · om+i)− c(o′0 · · · o′n+i)| ≤ k for all i ≥ 0 and all c ∈ Γ, it follows that, for
all c ∈ Γ, the output sequence ρc is bounded iff ρ′c is also bounded. Therefore ux ∈ L(A) iff
vx ∈ L(A) for all x ∈ Aω, or in other words, u−1L(A) = v−1L(A). �

3 The Wadge hierarchy of max-regular languages
The collection of all max-regular languages ordered by the Wadge reduction will be called
the MR-Wadge hierarchy. The present section provides a description of this hierarchy. We
prove that, although the class of max-regular languages properly extends the class of ω-
regular languages, the MR-Wadge hierarchy and the Wagner hierarchy are equal up to
Wadge equivalence.

THEOREM 5. Max-regular languages inhabit exactly those self-dual and non-self-dual classes,
which have the Wadge degree of the form

ωnk
1 · pk + · · ·+ ωn0

1 · p0

with k > 0, ω > nk > . . . > n0 ≥ 0, and 0 < pi < ω for all 0 ≤ i ≤ k.

In particular, the MR-Wadge hierarchy is a pre-well-ordering of width 2 and height ωω.

PROOF. Let α be an ordinal with Cantor normal form α = ωnk
1 · pk + · · · + ωn0

1 · p0, for
some k > 0, some ω > nk > . . . > n0 ≥ 0 and some 0 < pi < ω for all 0 ≤ i ≤ k. In
the Wagner hierarchy, there exist two ω-regular languages L and L′ such that L is self-dual,
L′ is non-self dual, and dW(L) = dW(L′) = α. Lemma 3 guarantees that L and L′ are also
max-regular.

It remains to prove that no other Wadge class is inhabited by a max-regular language.
Let L be a max-regular language over the alphabet A. The language L is recognised by a
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finite state max-automaton, so from Lemma 4 it follows that the family {u−1L : u ∈ A∗} is
finite. But then, up to Wadge equivalence, {Lu : u ∈ A∗} is finite and the claim follows by
Lemma 1. �

More precisely, the MR-Wadge hierarchy consists of an alternating succession of non-
self-dual and self-dual Wadge classes with non-self-dual pairs at each limit level. The MR
degree of a max-regular language L is now defined as

dMR(L) =


1 if L = ∅ or L = ∅c,

sup {dMR(K) + 1 : K n.s.d. and K <W L} if L is non-self-dual,

sup {dMR(K) : K n.s.d. and K <W L} if L is self-dual.

Once again, this definition of the MR degree ensures that the non-self dual languages and
the self dual ones located just one level above in the MR-Wadge hierarchy always share the
same degree. Therefore, the MR-Wadge and the Wadge degrees of max-regular languages
are related as follows: for any max-regular languages L, if dMR(L) = ωnk · pk + · · ·+ ωn0 · p0,
for some ω > nk > . . . > n0 ≥ 0 and 0 < pi < ω for all 0 ≤ i ≤ k, then dW(L) =
ωnk

1 · pk + · · ·+ ωn0
1 · p0.

4 The MR-Wadge and the Wagner hierarchies
We now provide a detailed comparison of the MR-Wadge and the Wagner hierarchies. In
the previous section we have seen that the MR-Wadge and the Wagner hierarchies inhabit
exactly the same Wadge classes.

THEOREM 6. The MR-Wadge and the Wagner hierarchy are equal (up to Wadge equiva-
lence).

The following two results prove that the ω first classes of the MR-Wadge and the Wag-
ner hierarchies contain exactly the same ω-languages, whereas every other MR-Wadge class
is a proper extension of its Wagner counterpart (see Fig. 1(b)).

PROPOSITION 7. For every natural number n the following conditions are equivalent:
(1) L is ω-regular and dωR(L) = n.
(2) L is max-regular and dMR(L) = n.

PROOF. Let us first see that (1) implies (2). Let L be ω-regular with dωR(L) = n. Then L is
also max-regular. Moreover, the structure of the Wagner hierarchy ensures that dW(L) = n.
Hence, by Theorem 5, dMR(L) = n.

Now, let us prove that (2) implies (1). Take a max-regular language L with dMR(L) =
n. We first show that L is ω-regular. Let A = (Q, A, Γ, q0, δ, T ) be a max-automaton that
recognises L. Let C1, . . . , Cp be all (maximal) strongly connected components (s.c.c.) of the
graph of the automaton A. Given any infinite word x, we denote scc(x) the unique s.c.c.
that contains all states visited infinitely often while reading x. In other words, scc(x) is the
s.c.c. inside which the reading of the terminal part of x takes place. Consider the following
equivalence relation between infinite words: x ≈ y iff scc(x) = scc(y). We claim that x ≈ y
implies that (x ∈ L ⇔ y ∈ L). Towards a contradiction, assume that there exist x ∈ L and
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y /∈ L with x ≈ y. Let scc(x) = scc(y) = Ci and let u, v ∈ A∗ be the shortest prefixes of x and
y respectively such that there exist respectively qu, qv ∈ Ci with q0

u−→ qu and q0
v−→ qv. Let

x′, y′ be such that x = ux′ and y = vy′. Since Ci is a s.c.c., there exists a finite word w such
that qu

w−→ qv. Consider Z = {z ∈ uAω : scc(z) = Ci}. We next prove the following facts:
(1) Z ∩ L is initialisable,
(2) both ∅ ≤W Z ∩ L and ∅c ≤W Z ∩ L hold,
(3) Z ∩ L ≤W L.

(1) Consider the II-imposed game W(Z ∩ L, Z ∩ L) where I may only once erase his play
and start anew. We will provide a winning strategy for player II that guarantees that she
always remains inside Z. As long as player I stays inside Z, player II should copy his actions.
If player I exits Z, player II should play a finite word that reaches qv, and then to play y′.
If player I decides to erase everything he has played since the beginning, then player II can
still catch up by playing any finite word that leads her back to qu, and start copying again
I’s play, from the moment when I reaches qu. If player I exits Z again, II should proceed like
before. By Lemma 4 this provides a winning strategy. (2) ∅ ≤W Z∩ L and ∅c ≤W Z∩ L hold
because playing x = uwy′ or ux′, respectively, is winning for II in the corresponding Wadge
games. (3) A winning strategy for player II in W(Z ∩ L, L) amounts to copying player I’s
moves, as long as he stays in Z. If player I exits Z, player II should play a word reaching qv
(this is always possible, since so far player II has stayed inside Z) and then play y′.

Since Z∩ L is a Boolean combination of Σ0
2 sets, by a result from [7], condition (1) yields

dW(Z ∩ L) = ωn
1 for some natural n. Condition (2) ensures that n > 0, hence dW(Z ∩ L) ≥

ω1. Finally, condition (3) implies that dW(L) ≥ ω1, but this is a contradiction. Hence, the
claim holds.

Consider A′ = (Q, A, q0, δ′, F), the deterministic finite automaton with Büchi accep-
tance conditions where δ′ is just δ with the operations on counters removed, and F is the set
of states q for which there exists an infinite word x ∈ L such that q ∈ scc(x). Then A′ recog-
nises L, which shows that L is ω-regular. Theorem 6, guarantees that dMR(L) = dωR(L) =
dW(L) = n. �

Before we move to the proof of our last result, let us show that the language

K = {an1 ban2 ban3 b · · · : ∀m ∃i ni > m}

is Π0
2-complete, as stated in the introduction. It is very easy to see that it is Wadge equivalent

to the Π0
2-complete L′ = (a∗b)ω. Indeed, player II has a winning strategy in the game

W(L, L′): every time player I produces a sequence of consecutive a’s that is strictly longer
than all previous ones, Player II should play a b. Otherwise, player II should play an a.
Conversely, player II also has a winning strategy in the game W(L′, L): every time player I
plays a b, player II should play a sequence of consecutive a’s that is strictly longer than all
previously played, followed by b. Otherwise, she should play b alone.

PROPOSITION 8. Let α = ωnk
1 · pk + · · ·+ ωn0

1 · p0 ≥ ω1, where ω > nk > . . . > n0 ≥ 0 and
0 < pi < ω for all 0 ≤ i ≤ k. Then there exist max-regular languages L and L′ such that L is
self-dual, L′ is non-self-dual, dW(L) = dW(L′) = α, and both L and L′ are not ω-regular.

PROOF. Without loss of generality we may assume that A = {a, b}. We first prove the
existence of appropriate non-self-dual languages over A. If α = ω1, then consider the lan-
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guage K above. It is Π0
2-complete, which means that dW(K) = ω1 = α, as mentioned in

Sect. 1.2. Now if α = ωnk
1 · pk + · · · + ωn0

1 · p0 > ω1, then there exists a non-self-dual ω-
regular language M ⊆ Aω such that dW(M) = α. Let L = aM ∪ bK. The language L is
non-self-dual and satisfies L ≡W M. Thus dW(L) = dW(M) = α. In addition, since both M
and K are max-regular, so is L. Finally, L is not ω-regular, for if it were so, then b−1L = K
would also be ω-regular – a contradiction.

From the existence of an appropriate non-self-dual language, we deduce the existence
of an appropriate self-dual language over A. Let L ⊆ Aω be a non-self-dual max-regular
language such that both dW(L) = α and L is not ω-regular. Take L′ = aL ∪ bLc. Then L′

is also max-regular. Moreover, as mentioned in Sect. 1.2, L′ is self-dual and dW(L′) = α.
Finally, L′ is not ω-regular, for if it were so, the language a−1L′ = L would also be ω-regular
– a contradiction. �

Conclusion

We have given a precise comparison of the Wadge hierarchies for regular and max-regular
languages. As the hierarchies coincide, Bojańczyk’s extension does not increase the topo-
logical complexity. It does provide more variety though, as witnessed by the plethora of
separating examples.

The results of this paper give a complete description of the Wadge hierarchy of max-
regular languages. Alas, the description is not effective (unlike [10, 15]). What is missing
is an algorithm to decide the Wadge degree of a given language. From the proof of Propo-
sition 7 one could extract a partial decidability result. Using decidability of emptiness for
max-automata, one can check if there are two words x ∈ L(A) and y /∈ L(A), such that the
runs on both of them are finally trapped in the same strongly connected component of A,
thus deciding if L(A) is at least on the level ω or not. If not, one can construct effectively
an equivalent automaton without counters, and use the Wagner’s characterisation to com-
pute the exact degree. Obtaining decidability of higher levels would probably require much
deeper analysis of the loop structure within strongly connected components. We point this
out as a promising line of investigation.

As for the technical side of the paper, we would like to highlight the method used
to prove that no other Wadge degrees are realised by max-regular languages (Theorem 5).
Here, the argument relies on the fact that the family {w−1L : w ∈ A∗} is finite up to Wadge
equivalence. A more involved version of this method, based on a generalisation of Lemma 1,
has been successfully applied to deterministic push-down automata [8]. We believe that this
technique can be useful for other models of computation as well.
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