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Abstract. JeanEric Pin introduced the structure of arsemigroup in [PerPin04]
as an algebraic counterpart to the concept of automatoimgeadinite words. It
has been well studied since, specially by Carton, Perrinf€®7] and [CarPer99],
and Wilke. We introduce a reduction relation on subsets-eEmigroups defined
by way of an infinite two-player game. Both Wadge hierarchg Wagner hier-
archy become special cases of the hierarchy induced byetisction relation.
But on the other hand, set theoretical properties that agaturally when study-
ing these hierarchies, happen to have a decisive algeloaittarpart. A game
theoretical characterization of basic algebraic concigisvs.

1 Introduction

This work comes from an interaction between classical gdmery,
and the algebra of automata theory, which rests on the foligpuwmain
facts. In case of finite words, a well-known corresponderete/een an
automaton and a finite semigroup exists: from any finite aatomA
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2 JEREMIE CABESSA, JACQUES DUPARC

recognizing a regular languade one can build a finite semigrougy
recognizing (in an algebraic way) the same language, anelwecsa
[PerPin04]. Moreover, this correspondence generalizesage of infi-
nite words. Indeed, for that purpose &.Pin introduced the structure of
w-semigroup [PerPin04] as an algebraic counterpart to theeqt of an
automaton on infinite words. More precisely, he protleel equivalence
between a finite Buichi automaton and a finitsemigroup.

This paper presents a game theoretical study of the steuofur-
semigroup, leading to an expected new foundation of the Afdgjerar-
chy, but also to promising general set theoretical, andoaége results.

2 Preliminaries

We recall that a relatio® is apreorderif it is reflexive, and transitive. It
is apartial orderif it is reflexive, transitive, and antisymmetric. And it is
anequivalence relatioif it is reflexive, transitive, and symmetric.

Given a setA (called the alphabet), we respectively denote4s;
AT, A“, the sets of finite words ovet, non empty finite words over
A, and infinite words over. We setA> = A* U A¥, and the empty
word is denoted by. Given two wordsu andv (u finite), we writeuwv
for the concatenation af andv, v C v for "u is an initial segment of
v”, v | n for the restriction ofy to itsn first letters. GivenX C A*, and
Y CA® wesetXY ={zy:x € XNyeY}, X*={x;---2,:n>
OANzy,...,0p € X} Xt ={2y---2,:n>0Am,...,2,€ X}, and
X« ={zor129---: ¥ > 0,2, € X}. The class ofv-rational subsets
of A* is the smallest class of subsets4sf containing the finite subsets
of A>, and closed under finite union, finite product, and both dpmra
X — X*, andX — XV,

A semigroup(S, -) is a setS equipped with an associative operation
from S x S into S. A morphism of semigroups a mape from a semi-
groupsS into a semigrouf’ such that’ s, s, € S, ¢(s152) = d(s1)P(s2)
holds. Amonoidis a set equipped with an associative operation, and an
identity element. IfS is a semigroupS! denotesS if S is a monoid,
and S U {1} otherwise (with the operation &f completed as follows:
1-s=s-1=35,Vs € 5). AgroupG is a monoid such that every
element has aninverse, iés € G3s 1 e Gstsl.s=5-571=1.

For any setA, the setA“ is a topological space equipped with the
product topology of the discrete topology @h The basic open sets of
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A“ are of the formiV A¥, wherelW C A*. Given a topological space
E, the class oBorel subsets off' is the smallest class containing the
open sets, and closed under countable union, and complaticent_et

F C 2% Fis aflip set[And03] iff V z,y € 23 k € w (x(k) #
y(k))) — (zr € F < y ¢ F). We use the fact that a flip set cannot be
Borel (as it doesn’t satisfy the Baire property).

LetX be aset,and C ¥“. TheGale-Stewart gamé& (A) [GalSte53]
is a two-player infinite game with perfect information whetayers take
turn playing letters fronk.. Player | begins. Aftetv moves, they produce
an infinite worda: € >¢. Player | wins iffa € A. A play of this game is
illustrated below.

II : xl ------ l’/n/_"_l ------

Let X4, X5 be two sets, andl C ¥ ,“, B C Xg*“. TheWadge game
W(A, B) [Wad72] is a two-player infinite game with perfect informa-
tion, where player | is in charge of subsgétand player Il is in charge of
subsetB. Players take turn playing letters frary andX 3, respectively.
Player | begins. Player Il is allowed to skip provided he playfinitely
many letters; player | is not. Aftes moves, player | and Il have respec-
tively produced two infinite words: € > 4%, and§ € Yg“. Player Il
wins inW(A, B) iff (« € A < § € B). A play of this game is illus-
trated below.

(A) I : ao al ...... aﬂewovesa — &0&1a2 e
NN
B : b by oo ANETw MOV 3 — Dobyby - - -

3 w-semigroups

J.€. Pin introduced the structure of ansemigroup [PerPin04] in order
to give an algebraic counterpart to the notion of automataiing infi-
nite words. He showed the equivalence between a finite Biltbimaton
and a finitev-semigroup in the following sense:

— For any finite Buchi automatod recognizing the languagg(.A),
one can build a finitev--semigroupS 4 recognizing (in an algebraic
sense) the same languabgeA).



4 JEREMIE CABESSA, JACQUES DUPARC

— For any finitew-semigroupS recognizing the languagl(S), one can
build a finite Buchi automaton recognizing the same langua®).

Definition 3.1. [PerPin04] Anw-semigrougs an algebra consisting in
two components§ = (S5, S.,), and equipped with the following oper-
ations:

e A binary operation defined ofi, and denoted multiplicatively.

e A mappingsS, x S, — S, called mixed product, that associates with
each pair(s,t) € S, x S, an elemenst of S,,.

e A surjective mappings : S.“ — S, called infinite product.

Moreover, these three operations must satisfy the follgwhoperties:

1. S, equipped with the binary operation is a semigroup,

2. Vs,te S, VuesS, s(tu) = (st)u,

3. the infinite product s is w-associative, meaning that for every strictly
increasing sequence of integéfs, ),,~.o, and for every sequence,, ) .c.,
€ S.“, we have

7TS(80=5’1 Ct ot Ski—1,Sky " Sko—1, - - ) = 775‘(507 51,52, .- '),

4.V s € S+ A (Sn)neu c S+w
sms(So, S1, 82, - - .) = Ts(S, S0, $1, S2y - - ).

Intuitively, anw-semigroup is just a semigroup equipped with a suit-
able infinite product. It iginite precisely wherb, is finite. Otherwise it
is infinite. A subsetX C S, is called anv-subset We focus on those
subsets in the sequel.

Definition 3.2. LetS = (S, S,),T = (T, T,) be twow-semigroups. A
morphism ofw-semigroupd$rom S into 7" is a pair¢ = (¢, ¢.,), where
¢4 Sy — T, is a morphism of semigroups, agd : S, — T, isa
mapping preserving the infinite product, i.e. for every ssme(s, ) c.
of elements of. , one has

¢w<ﬂ-5(807817827“‘>) = 7TT(¢+(80)7¢+(81)7¢+(82),‘-.)-
Example 3.3. Let A be an alphabet. The-semigroup
A® = (AT, A¥)
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equipped with the usual concatenation is fiee w-semigroupover al-
phabetA. Itis free in the sense that, for anysemigroupS = (S, S,,),
any functionf from A into S, can uniquely be extended to a morphism
of w-semigroupsf = (f., f.) from A= into S [CarPer97]. We do this
by settingf, : AT — S defined by

filapay -+ -ay) = f(ag)f(ar) - flan),witha; € A (Vi < n),
andf, : AY — S, defined by

folasaias -+ ) = 7ms(fag), f(a1), f(az),...), witha; € A (Vi).

So, sets ofv-words, in other words sets of reals, are the less constraint
ones with regard to the algebraic structure.

In order to state further results, we put the following taymyl on
w-subsets:

Definition 3.4. LetS = (S, S,) be anyw-semigroup, and C S, we
set:

X is abasic operif and only ifrg'(X) is an open of5,

whereS., “ is equipped with the product topology of the discrete togwlo
ons,.

Remark 3.5. For anyw-semigroupS = (5., S,), the infinite product
g IS a continuous function by definition of the previous toplo

Remark 3.6. At first glance, the topology defined by taking,, =g.s

{st : t € S,} as a basic open set (for anye S,) would look much
nicer. Unfortunately, this topology is much too weak for quurpose.
Indeed, with this particular topology, in caSe is a group, Borel subsets

of S,, come down to the empty set and the whole space; the reasan bein
that, givensS,, any basic open set, thef), = ss~ 15, C sS,,, meaning
thatsS, = S,. We certainly need much more than that as we’ll see in
the last section.

4 An infinite game overw-semigroups

In this section, we define a reduction relation betweesubsets by use
of an infinite two-player game over-semigroups. We then state some
general properties of this reduction relation in order tarelsterize the
set hierarchy that it generates.
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4.1 Definitions

Definition 4.1. LetS = (5,,5,), T = (T}, T,,) be twow-semigroups,
and X, Y be twow-subsets of, andT,, respectively. The infinite two-
player gameSG(X,Y) is defined as follows: player | is in charge of
subsetX, player Il is in charge of subsét. Players | and Il alternately
play elements of, and7 U {¢}, respectively. Player | begins, player
Il is allowed to skip its turn (by playing) provided he plays infinitely
many moves, otherwise he loses the play. Player | cannotitskiprn.
After w moves, players | and Il have respectively produced two iefini
sequencessy, s1, - . .), and(to, t1, .. .). A play of this game is illustrated
below.

after w moves

(X)1 1 s S1 e — (S0, 51,82, - .)
NN
after w moves
(Y) I to tl ------ e <t0,t1,t2,...>

The winning condition is the following: player Il wins BiG(X,Y) if
and only if

71'5(80, 81y - ) eX & WT(to,tl, .. ) ey
whererg and 71 are the infinite products of and 7" respectively, and
mr(to, .-y the1, €ty - o) =aer Tr(to, - - -, tae1, b, . . .), meaning that the
skipping moves of Il are not considered in the infinite praduc
A strategyfor player Il is a mappingr : S, — T, U{¢}. A strategy
for player | is defined similarly. Avinning strategyfor a player (w.s.) is

a strategy such that the player always wins when using it. &enow
define the following reduction relation:

X <scg Y &y llhasaws. ilSG(X,Y)
and of course
X <sg Y Suer X <sqg Y butY £eqg X

X =s5¢Y =def X <sqY andY <sa X

Following the terminology of Wadge games, we set that:
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e anw-subsetX is self-dual (s.d.)ff
X =sG X¢

where X ¢ stands for the complement &f. Otherwise, we say that
is non-self-dual (n.s.d.)

e anw-subsetX isinitializableiff there existd” such that
X=scYandY =55 s'Y ,VseS,

wheres™'Y = {z € S, : v = ms(ui, ua,...) A ms(s,us,ug,...) €
Y'}. From a playful point of view, a player in charge of a initzdible
setX in the SG-game never loses his playful strength during tag pl
Indeed, for any position € S, that he reaches, he remains as strong
as at the beginning, when being in charge of the whole suliset

Example 4.2. LetS = (5., S,) be anyw-semigroup, an& C S, with
X #0,S,.

e The relation) <s; X holds. Indeed, we give a w.s. for player Il in
the gameSG((), X). At the end of the play, the infinite product of any
infinite sequence played by | obviously doesn't belond)t&o the
w.s. for Il simply consists in playing in order to be outsidleat the
end of the play (possible, & # S.).

e Similarly, the relationS, <ss X holds. The w.s. for Il in the game
SG(X, S,) consists in in playing in order to be insidéat the end of
the play (possible, a& # ).

e The relation) <sc S, holds. Indeed, at the end of the play, the
infinite product of any infinite sequence played by | doeselohg
to (), and the infinite product of any infinite sequence played by I
belongs taS,,, so that Il cannot win against | in any case.

e Similarly, the relationS,, £s¢ 0 holds, as there is no possible w.s. for
Il in the gameSG(S,,, 0).

This shows that the empty set and the whole space are nedisali§ets,
since no one is equivalent to its complement. Moreover, dhgroset
reduces to both of them.
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4.2 Properties of theSG-relation

Not using yet any determinacy principle for this game, onenca say
much of theSG-relation, except that it is a partial ordering with no par-
ticular interesting properties. However, Martin’s BorettBrminacy re-
sult [Mar75] easily induces Borel Determinacy f8¢/-games. As it is
the case with the Wadge ordering, this property turns3berelation
into a much more interesting one.

Theorem 4.3. (Martin) Let X be a set. 1A is a Borel subset of“, then
G(A) is determined.

Corollary 4.4. (SG-Borel Determinacy) Le$ = (S, S,),T = (T, T.,)
be twow-semigroups, and’ C S, Y C T, be two Borelw-subsets.
ThenSG(X,Y) is determined.

Proof. We define a Borel subsét C (5,.“ U T,.* U {e})¥ such that a
playerP has aw.s. ifiz(2) iff the same playeP has aw.s. i8G(X,Y).
Let p; andp, be the following continuous projections frop§, U 7', U
{e})“into (S, U T, U {e})* defined byp, (uouiugus . ..) = uguguy . . .,
andps (upuqugus . . .) = ugusus . ... Let X/ X" YY" C (S, UT, U
{€})“ be defined by

X'={a =upuyuy ... : w5(ug, uz, ug,...) € X} = p; (75 (X))
X" ={a =upwuy...: Ts(ug, ug, uy, . ..) € X} = py (75" (X))
Y'={a=upuuy...: mp(uy,uz, us,...) € Y} =py (7' (Y))

( )

Y" ={a =upuug . .. : 7p(ug,us, us,...) € Y} = py H(m (Y))
By continuity of the functiong, ps, 7s, 71, these sets are all Borel, and
we conclude by taking = (X' NY") U (X" NnY").

a

Similarly to the Wadge ordering, and as a consequence ofl Bere
terminacy for these games, come the following interestesylts. The
first one is an immediate consequence of determinacy. Tlondame is
a corollary of the first one: it states that, for this partiaering<s, the
antichains have length at most two. The third one is a resutt Martin
and Monk establishing the wellfoundness of tkig;-relation on Borel
w-subsets.
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Corollary 4.5. LetS = (5,,S5,), T = (T, T,) be twow-semigroups,
andX C S,,Y C T, be two Borelv-subsets. Then

Xﬁs@Y:>Yggch.

Proof. The relationX £ss Y means that player Il doesn’t have a win-
ning strategy irSG(X, Y'). Hence, by determinacy, player | has a win-
ning strategyos in this game. So Player Il has the following winning
strategy iIfSG(Y, X¢): he copies the first move of player | 8G(X,Y),
and then, at each step he playss(zo - - - x,,), wherexy, . .., z,, are the
moves already played by | BG(Y, X¢).

O

Corollary 4.6. (Wadge's lemma) Let = (S,,S,), T = (T, T,) be
two w-semigroups, an&k C S, Y C T, be two Borelv-subsets. Then
only one of these possibilities occurs:

X <g¢ Y andY £Lgq X, which impliesX <g¢ Y.
X <g¢ Y andY <gg X, which impliesX =45 Y.
X Lsa Y andY Lgq X, which impliesX =g Y°.
X gSG Y andY <ga X, which |mp|le§/ <gg X.

Proof. The first, second and fourth cases come from the very definitio
The third case comes by the previous proposition, and by tiveoos
fact thatA <s5 B & A° <g¢ B¢ holds, for anyw-subsetd and B.

O

Proposition 4.7. (Martin, Monk) The partial ordering: s, is wellfounded
on Borelw-subsets, meaning that there is no infinite sequence of Borel
w-subsetg A;);c,, such that

Ay >s56 A1 >s6 .- >sa An >s6 Ant1 >sa -

Proof. Towards contradiction, assume that there exists an infggte
quence ofv-semigroupsS; = (S; 4, Siw) }icw, and an infinite strictly
<sa-descending sequence of Botebubsetg A, ),c.., where4, C S; ,

, (@nyi € w). For alln > 0, the relationA,, >s¢ A,.1 implies that
both A,, £s¢ An+1 andAS Lse A4 hold, meaning that player | has
w.s.cY ands)! in both gameS§G (A, A,.1) andSG(AS, A,..1), respec-
tively. Leta € 2¢ define the following sequence of strategﬂeg(k)) kG-



10 EREMIE CABESSA, JACQUES DUPARC

We now considew many SG-games linked this way: in the first game,
player | applies strategeyg”(o) to II's play. Since it is a strategy for |, it
gives the first lettex) before 1l has ever played anything, but then, apply-
ing 02'” means to know II's first move;. Precisely, Il copies I's moves

in the second game, in which | applies the w.%(.l). And so on for every
game. This means, in game numberplayer | applies strateggr?j("),

and Il scrupulously copies I's moves in the game number 1. These
w many games chained together are illustrated below. Bigwardenote

the action of playing while little ones denote the action @byng.

a(0) O_a(l) a(2) a(3)

I°A IT I~ IT I 7~ IT I 7~ IT
ag ag ag ag
\« e \ Ve \ /

1 2 3
) ) Qg
v v v
al ay a3
N v \, v
1 2
ay a3
v v
as ay
AN %
a;
e
aj

Let z, = [ie,a) be the infinite word played by player | in the first
game,p : 2¥ — S, defined by¢(a) = z,, andy = mg, 0 ¢ :
2¢ — Sy, defined by (a) = 75, (24) = s, (Irenal). By definition
of these chained games,is continuous. Indeed, we remark that the
first letters ofr,, only depend on the first letters ofo, as we completely
don’t need games numbeér+ 1,k + 2, ... to determiner,, [ k. So, for
anyU C So.*, ¢ HUSp ) = V2«, with V' C 2%, meaning that the
pre-image byy of a basic open set is a basic open setpfendrg, are
continuous, so i%. ConsiderB = ~!(A4). By construction of these
chained games, we notice thatifinda’ only differ by one position (i.e.
i s.t. a(i) # d'(i)), thena € B < o ¢ B. This means thaB is a
flip set, and it is Borel ag is continuous, a contradiction.

O
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Remark 4.8. Quotienting Borelw-subsets by the equivalence relation
=, leads to a hierarchy of classes of Barekubsets called th8G-
hierarchy As already mentioned, the previous results state theoueit-
ness of this hierarchy together with the fact that the aatith have
length at most two. Th&G-hierarchy has thus the same familiar "scal-
ing shape” as the Borel hierarchy or the Wadge hierarchynareasing
sequence of pairs of non-self-dual classes with singledigdf classes in
between. This hierarchy is illustrated in figure 1. Circlggresent classes
of Borel w-subsets, and arrows represent the fact of "beiggsmaller
than”.

Fig. 1.the SG-hierarchy

Definition 4.9. The SG-degreeof Borel w-subsets is defined by induc-
tion. At the bottom, we finél and ()° since there is no non-empty sét
such thatd <g 0 holds, and there is also no other smaller set than the
whole space, which is incomparable to the empty set (seepaah®).
So we set:

$a(0) = dga(0°9) = 0,

and for any Borelu-subsetd > g )

2a(A) =sup{ds(B) +1: B <g¢ A}.
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5 Basic results about this game

In this section, we give some general results about bothittisite
game overw-semigroups, and more precisely about 81@-hierarchy.
We state that two important hierarchies become particidaes of the
SG-hierarchy. But the most striking thing is that very essarglgebraic
notions turn out to correspond to very natural propertiagestin a game
theoretical way.

5.1 The Wadge hierarchy

In the late sixties, W. W. Wadge introduced a very deep refardraf the
Borel hierarchy of sets of the Baire space (or of the Cantacsas well)
[Wad72]. TheWadge hierarchys induced by the following relation on
sets:A <y B <4 3 f continuous s.tf ~}(B) = A < Il has aw.s. in
W(A, B) [Wad72].

Proposition 5.1. The SG-hierarchy restricted to Boreb-subsets of free
w-semigroups corresponds exactly to the Wadge hierarchywdlBub-
sets.

Proof. When restricted to free-semigroups, th&'G-game is exactly
the same as the Wadge game.
O

Remark 5.2. As a matter of fact, th&G-hierarchy should be regarded
as a widening of the Wadge hierarchy. Not only more sets awd\ved,

but the algebraic structure of semigroups enriches the waycan de-
scribe or characterize Borel sets. For instance, some of thay "live”

in an w-semigroup generated by a monoid, or even group, while most
don't.

5.2 The Wagner hierarchy

In 1979, Klaus Wagner described a hierarchy among languages)-
nized by Muller automata called th&agner hierarchyyWag79]. This
hierarchy has height“ and actually coincides with the restriction of the
Wadge hierarchy ta-rational languages. In other words, it is the hie-
rarchy induced by the following ordering on Muller automata<,, B
iff the language recognized by is the inverse image of the language
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recognized by3 by a continuous function. This section shows that the
Wagner hierarchy is a particular case of §1@-hierarchy.

Proposition 5.3. TheSG-hierarchy restricted to subsets of finitesemi-
groups is classwise isomorphic to the Wagner hierarchy.

Proof. In the forthcoming paper [CabDup0?].
O

The decidability of the Wagner hierarchy also holds in tHeWing
sense:

Proposition 5.4. Let S = (5., .S,,) be a finitew-semigroup, andX’ C
S, be Borel. One can associate¥0an ordinalé x € w* being its degree
in the Wagner hierarchy.

Proof. In the forthcoming paper [CabDup0?].

5.3 Basic algebraic properties

Important algebraic notions can be expressed in a natuna glaeoreti-
cal way by use of th&§G-game. These results militate in favor of de-
veloping the use of game theoretical tools in algebra. Theftlowing
propositions give a game theoretical approach of the atgelboncepts
of monoid and group.

Proposition 5.5. Let S = (S, S,) be anyw-semigroup, andX C S,
be any Borelv-subset. The following conditions are equivalent:

(1) X £Lgg X° (i.e. X isn.s.d.).

(2) Every player in charge oK in the SG-game is allowed to skip his
turn, provided he plays infinitely many letters, otherwisddses.

(3) There exists am-semigroupl” = (7,,7,) and a Borelw-subset
Y C T, such thatl’, is a monoid, andX =g Y.

Proof. (sketch)

(1) = (2) : We show that we can assume without loss of generality that
any player in charge oX in the SG-game can skip his turn, provided
he plays infinitely many letters. In other words, we show thplayer
in charge ofX that is allowed to skip is not stronger than (or can be
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beaten by) a player in charge &fthat is not allowed to. Le§G/(_, )
be the same infinite game &¢7(_, _), instead that player | is allowed
to skip - provided he plays infinitely often - while player # not.
By hypothesis, there exists a winning strategyor | in the game
SG(X, X¢). Theno is also a winning strategy for Il in the game
SG(X, X).

(2) = (1) : By hypothesis, every player in charge &f is allowed to

skip its turn, provided he plays infinitely letters. The wimg strat-
egy for player | in the gam8G (X, X°¢) consists in skipping the first
move, and then copy player Il.

(3) = (1) : By hypothesis,X =s¢ Y, withY C T, andT, is a

monoid. We thus show that is non-self-dual by giving a winning
strategy for | in the gam8G (Y, Y©): player | fist playsl; then when
Il doesn’t skip, | copies Il, and when Il skips, | playis As Y is
non-self-dual, so is.

(1) = (3) : A consequence of [Dup01] and [Dup07?]. Basically, the idea

is to consider the se¥ = 75'(X). Viewed as a subset of the free

w.semigroup(S, T, S, *) - with S, equipped with the usual topol-

ogy (the product topology of the discrete topology o%e) - it sat-
isflesZ =g- X. SinceZ is Borel and non self dual, it follows from
both [Dup01], and [Dup0?] that there exists some S, = verify-
ing:

- Y? =, Z, whereY? stands for allu-sequences built over the
alphabetS, U {b} - whereb stands for any new letter not i\, -
that verify: "z in which every occurrence of the lettehas been
erased, belongs t5.”

-Yns,w=27

AsY? =y, Z holds, thert’® =g Z, when these sets are considered

as subsets of the free.semigroupg (S, U {b})*, (S4 U{b})~), and

(S.T, 5., respectively. A% =g X also holds, then® =5 X.

By identifying b and the identity element, i.e. by setting the monoid

T, = (S+u{bh)* = (S U{IH*" T, = (S U{b})* = (S, u{1})”,

and by takingt” = Y C T,,, one gets the result.

O

Proposition 5.6. Let S = (S5, S,,) be anyw semigroup, andX C S,
be any Borel subset. The following conditions are equivalen

(1) X <s¢ s 'X,Vs e S, (i.e. Xis initializable).
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(2) Every player in charge ok in the SG-game is allowed to erase his
moves, provided he plays infinitely many letters, otheriveskoses.

(3) There exists am-semigroupl” = (7,,7,) and a Borelw-subset
Y C T, such thatl’, is a group, andX =g Y.

Proof. (sketch)

(3) = (2) : We show that we can assume without loss of generality that
any player in charge ok in the SG-game can erase his moves, pro-
vided he plays infinitely many letters. In other words, wewglioat a
player in charge oX that is allowed to erase is not stronger than (or
can be beaten by) a player in chargeXthat is not allowed to. Let
SG(_,.) be the same infinite game &€/(_, ), instead that player | is
allowed to erase his moves - provided he plays infinitelyrofterhile
player Il is not. We first show that player Il has a w.s96/(X,Y).

By hypothesis, Il has a w.s.in the gameSG(X,Y). This leads the
following w.s. for Il in SG(X,Y): Il copies I, and when | erases

a part of his position, then Il "cancels” a piece of his by ey

the suitable inverse element, in order to come back to thead
situation. By hypothesis, Il also has a winning strategyhie game
SG(Y, X) (where no one can erase his moves). Then by composition
of strategies, |l has a winning strategy in the gasitg( X, X).

(2) = (1) : Lets € S,. By hypothesis, we can give the following win-
ning strategy in the gameSG(X, X), but where player Il has al-
ready played the elementplayer Il erases, and then copies player
|. By the prevous point, we can find a winning srategyn the game
SG(X, X) (where | can erase, while Il cannot). The composition of
these strategies’ = ¢’ o ¢ is winning in the game&'G (X, s~ 1 X).

(1) = (3) : A consequence of [Dup01] and [Dup07?]. First, sinCes
clearly non-self-dual, one can assume w.l.0.g. thatis a monoid
with 1 as identity (otherwise, from previous proposition, one gah
someX' satisfying this property). Then, here also, the idea is te co
sider the setZ = 75'(X). Viewed as a subset of the freesemi-
group(S, ™, S.¢) - with S, “ equipped with the usual topology - one
hasX =s5 Z. SinceZ is Borel and initializable, from [Dup01] and
[Dup07?], we know that there exists some Be€ {0, 1}=* such that:

— (B™)" =y Z, whereB~ is defined as3 plus an additional eraser,
and B’ is defined asY’® was in last propositionb(stands for
“blank”, it behaves just like a mute letter). In a few wordsist
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means that a player in charge @~)° in a Wadge game (either
player | or player 1) is like a player in charge &fwith two extra
possibilities. This player can:

e playb, which is just like skipping, except that here, one can de-
cide to skip forever, which is materialized by playing infety
manyb’s;

e erase all or part of his/her last movésig just like a skip, it
doesn't count as a true letter).

After w such moves, the resulting sequence played is the limit of
what has been played, forgetting about the blanks. @sd)® is

the set of all infinite sequences that can possibly be playeld s
that their limits belong tds.

Now, add two more letter8—!, and1~! viewed as the inverse
elements of respectively, and 1. Consider the free semigroup
{0,1,07', 171 b}*, where the concatenation operation moreover
verifies07'0 = 007! = b, and17'1 = 1171 = 0. Takeb = 1, and
setY as the set of all infinite sequences oyér1,0-* 171 1},
such that, once every possible "erasing” of the formh0 = 00!
=1,0r17'1 = 117! = 1 has been processed, yields an infinite
sequence that belongs & (which is B!, sinceb = 1), if one
forgets about the subscripts (i.e. identifying0~! with 0 and

17! with 1). It is easy to see thaB~)° = Y.

One gets the result by considering thesemigroupl” = (7', 7,,) =
({0,1,071,17%,1}*+,{0,1,07},17*,1}*), and the subsét C T, as
defined above. Indeed, one hds=y, (B~)” =y Y, meaning that
Z =s¢ Y (by treatingZ, andY as subsets of the suitahlesemi-
groups). SoX =56 Z =s¢ Y.

O

6 Conclusion

The way we see it, further developments in the Wadge hieyafahin-
stance, should be deeply related to f&-hierarchy. It seems to be of a
major interest to be able to characterize a Borel set of rbglthe type of
w-semigroups where a complete set for the Wadge class itgesanay
"live”. This should be a way of identifying the algebraic pegties hid-
den behind various "Borel attitudes” of sets. In other woedsalgebraic
way of classifying Borel sets. A very promising approach.
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