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Abstract. Jean-́Eric Pin introduced the structure of anω-semigroup in [PerPin04]
as an algebraic counterpart to the concept of automaton reading infinite words. It
has been well studied since, specially by Carton, Perrin [CarPer97] and [CarPer99],
and Wilke. We introduce a reduction relation on subsets ofω-semigroups defined
by way of an infinite two-player game. Both Wadge hierarchy and Wagner hier-
archy become special cases of the hierarchy induced by this reduction relation.
But on the other hand, set theoretical properties that occurnaturally when study-
ing these hierarchies, happen to have a decisive algebraic counterpart. A game
theoretical characterization of basic algebraic conceptsfollows.

1 Introduction

This work comes from an interaction between classical game theory,
and the algebra of automata theory, which rests on the following main
facts. In case of finite words, a well-known correspondence between an
automaton and a finite semigroup exists: from any finite automatonA
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recognizing a regular languageL, one can build a finite semigroupSA

recognizing (in an algebraic way) the same language, and vice-versa
[PerPin04]. Moreover, this correspondence generalizes incase of infi-
nite words. Indeed, for that purpose, J.-É. Pin introduced the structure of
ω-semigroup [PerPin04] as an algebraic counterpart to the concept of an
automaton on infinite words. More precisely, he provedthe equivalence
between a finite Büchi automaton and a finiteω-semigroup.

This paper presents a game theoretical study of the structure of ω-
semigroup, leading to an expected new foundation of the Wagner hierar-
chy, but also to promising general set theoretical, and algebraic results.

2 Preliminaries

We recall that a relationR is apreorderif it is reflexive, and transitive. It
is apartial order if it is reflexive, transitive, and antisymmetric. And it is
anequivalence relationif it is reflexive, transitive, and symmetric.

Given a setA (called the alphabet), we respectively denote byA∗,
A+, Aω, the sets of finite words overA, non empty finite words over
A, and infinite words overA. We setA∞ = A∗ ∪ Aω, and the empty
word is denoted byε. Given two wordsu andv (u finite), we writeuv

for the concatenation ofu andv, u ⊆ v for ”u is an initial segment of
v”, v � n for the restriction ofv to itsn first letters. GivenX ⊆ A∗, and
Y ⊆ A∞, we set:XY = {xy : x ∈ X∧y ∈ Y }, X∗ = {x1 · · ·xn : n ≥
0 ∧ x1, . . . , xn ∈ X}, X+ = {x1 · · ·xn : n > 0 ∧ x1, . . . , xn ∈ X}, and
Xω = {x0x1x2 · · · : ∀ n ≥ 0, xn ∈ X}. The class ofω-rational subsets
of A∞ is the smallest class of subsets ofA∞ containing the finite subsets
of A∞, and closed under finite union, finite product, and both operations
X → X∗, andX → Xω.

A semigroup(S, ·) is a setS equipped with an associative operation
from S × S into S. A morphism of semigroupsis a mapφ from a semi-
groupS into a semigroupT such that∀ s1, s2 ∈ S, φ(s1s2) = φ(s1)φ(s2)
holds. Amonoidis a set equipped with an associative operation, and an
identity element. IfS is a semigroup,S1 denotesS if S is a monoid,
andS ∪ {1} otherwise (with the operation ofS completed as follows:
1 · s = s · 1 = s , ∀s ∈ S). A groupG is a monoid such that every
element has an inverse, i.e.∀ s ∈ G ∃ s−1 ∈ G s.t.s−1 · s = s · s−1 = 1.

For any setA, the setAω is a topological space equipped with the
product topology of the discrete topology onA. The basic open sets of
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Aω are of the formWAω, whereW ⊆ A∗. Given a topological space
E, the class ofBorel subsets ofE is the smallest class containing the
open sets, and closed under countable union, and complementation. Let
F ⊆ 2ω, F is a flip set [And03] iff ∀ x, y ∈ 2ω(∃! k ∈ ω (x(k) 6=
y(k))) → (x ∈ F ↔ y 6∈ F ). We use the fact that a flip set cannot be
Borel (as it doesn’t satisfy the Baire property).

LetΣ be a set, andA ⊆ Σω. TheGale-Stewart gameG(A) [GalSte53]
is a two-player infinite game with perfect information whereplayers take
turn playing letters fromΣ. Player I begins. Afterω moves, they produce
an infinite wordα ∈ Σω. Player I wins iffα ∈ A. A play of this game is
illustrated below.

I : x0 x2 · · · · · · · · · xn xn+2 · · · · · · · · ·
↘ ↗ ↘ ↘ ↗

II : x1 · · · · · · xn+1 · · · · · ·

Let ΣA, ΣB be two sets, andA ⊆ ΣA
ω, B ⊆ ΣB

ω. TheWadge game
W(A, B) [Wad72] is a two-player infinite game with perfect informa-
tion, where player I is in charge of subsetA, and player II is in charge of
subsetB. Players take turn playing letters fromΣA andΣB, respectively.
Player I begins. Player II is allowed to skip provided he plays infinitely
many letters; player I is not. Afterω moves, player I and II have respec-
tively produced two infinite wordsα ∈ ΣA

ω, andβ ∈ ΣB
ω. Player II

wins in W(A,B) iff (α ∈ A ↔ β ∈ B). A play of this game is illus-
trated below.

(A) I : a0 a1 · · · · · ·
afterω moves
−→ α = a0a1a2 · · ·

↘ ↗ ↘

(B) II : b0 b1 · · · · · ·
afterω moves
−→ β = b0b1b2 · · ·

3 ω-semigroups

J.-É. Pin introduced the structure of anω-semigroup [PerPin04] in order
to give an algebraic counterpart to the notion of automaton reading infi-
nite words. He showed the equivalence between a finite Büchiautomaton
and a finiteω-semigroup in the following sense:

– For any finite Büchi automatonA recognizing the languageL(A),
one can build a finiteω-semigroupSA recognizing (in an algebraic
sense) the same languageL(A).
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– For any finiteω-semigroupS recognizing the languageL(S), one can
build a finite Büchi automaton recognizing the same languageL(S).

Definition 3.1. [PerPin04] Anω-semigroupis an algebra consisting in
two components,S = (S+, Sω), and equipped with the following oper-
ations:

• A binary operation defined onS+ and denoted multiplicatively.
• A mappingS+ ×Sω → Sω called mixed product, that associates with

each pair(s, t) ∈ S+ × Sω an elementst of Sω.
• A surjective mappingπS : S+

ω → Sω called infinite product.

Moreover, these three operations must satisfy the following properties:

1. S+ equipped with the binary operation is a semigroup,
2. ∀ s, t ∈ S+ ∀ u ∈ Sω s(tu) = (st)u,
3. the infinite productπS isω-associative, meaning that for every strictly

increasing sequence of integers(kn)n>0, and for every sequence(sn)n∈ω

∈ S+
ω, we have

πS(s0s1 · · · sk1−1, sk1 · · · sk2−1, . . .) = πS(s0, s1, s2, . . .),

4. ∀ s ∈ S+ ∀ (sn)n∈ω ∈ S+
ω

sπS(s0, s1, s2, . . .) = πS(s, s0, s1, s2, . . .).

Intuitively, anω-semigroup is just a semigroup equipped with a suit-
able infinite product. It isfinite precisely whenS+ is finite. Otherwise it
is infinite. A subsetX ⊆ Sω is called anω-subset. We focus on those
subsets in the sequel.

Definition 3.2. LetS = (S+, Sω), T = (T+, Tω) be twoω-semigroups. A
morphism ofω-semigroupsfromS into T is a pairφ = (φ+, φω), where
φ+ : S+ −→ T+ is a morphism of semigroups, andφω : Sω −→ Tω is a
mapping preserving the infinite product, i.e. for every sequence(sn)n∈ω

of elements ofS+, one has

φω

(

πS(s0, s1, s2, . . .)
)

= πT

(

φ+(s0), φ+(s1), φ+(s2), . . .
)

.

Example 3.3. LetA be an alphabet. Theω-semigroup

A∞ = (A+, Aω)
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equipped with the usual concatenation is thefreeω-semigroupover al-
phabetA. It is free in the sense that, for anyω-semigroupS = (S+, Sω),
any functionf fromA into S+ can uniquely be extended to a morphism
of ω-semigroupsf̄ = (f+, fω) from A∞ into S [CarPer97]. We do this
by settingf+ : A+ −→ S+ defined by

f+(a0a1 · · ·an) = f(a0)f(a1) · · · f(an) , with ai ∈ A (∀i ≤ n),

andfω : Aω −→ Sω defined by

fω(aoa1a2 · · · ) = πS(f(a0), f(a1), f(a2), . . .) , with ai ∈ A (∀i).

So, sets ofω-words, in other words sets of reals, are the less constraint
ones with regard to the algebraic structure.

In order to state further results, we put the following topology on
ω-subsets:

Definition 3.4. LetS = (S+, Sω) be anyω-semigroup, andX ⊆ Sω, we
set:

X is abasic openif and only ifπ−1
S (X) is an open ofS+

ω

whereS+
ω is equipped with the product topology of the discrete topology

onS+.

Remark 3.5. For anyω-semigroupS = (S+, Sω), the infinite product
πS is a continuous function by definition of the previous topology.

Remark 3.6. At first glance, the topology defined by takingsSω =def

{st : t ∈ Sω} as a basic open set (for anys ∈ S+) would look much
nicer. Unfortunately, this topology is much too weak for ourpurpose.
Indeed, with this particular topology, in caseS+ is a group, Borel subsets
of Sω come down to the empty set and the whole space; the reason being
that, givensSω any basic open set, thenSω = ss−1Sω ⊆ sSω, meaning
that sSω = Sω. We certainly need much more than that as we’ll see in
the last section.

4 An infinite game overω-semigroups

In this section, we define a reduction relation betweenω-subsets by use
of an infinite two-player game overω-semigroups. We then state some
general properties of this reduction relation in order to characterize the
set hierarchy that it generates.
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4.1 Definitions

Definition 4.1. Let S = (S+, Sω), T = (T+, Tω) be twoω-semigroups,
andX, Y be twoω-subsets ofSω andTω, respectively. The infinite two-
player gameSG(X, Y ) is defined as follows: player I is in charge of
subsetX, player II is in charge of subsetY . Players I and II alternately
play elements ofS+ andT+ ∪ {ε}, respectively. Player I begins, player
II is allowed to skip its turn (by playingε) provided he plays infinitely
many moves, otherwise he loses the play. Player I cannot skipits turn.
After ω moves, players I and II have respectively produced two infinite
sequences〈s0, s1, . . .〉, and〈t0, t1, . . .〉. A play of this game is illustrated
below.

(X) I : s0 s1 · · · · · ·
after ω moves
−→ 〈s0, s1, s2, . . .〉

↘ ↗ ↘

(Y ) II : t0 t1 · · · · · ·
after ω moves
−→ 〈t0, t1, t2, . . .〉

The winning condition is the following: player II wins inSG(X, Y ) if
and only if

πS(s0, s1, . . .) ∈ X ⇔ πT (t0, t1, . . .) ∈ Y

whereπS andπT are the infinite products ofS andT respectively, and
πT (t0, . . . , tn−1, ε, tn, . . .) =def πT (t0, . . . , tn−1, tn, . . .), meaning that the
skipping moves of II are not considered in the infinite product.

A strategyfor player II is a mappingσ : S+
+ → T+∪{ε}. A strategy

for player I is defined similarly. Awinning strategyfor a player (w.s.) is
a strategy such that the player always wins when using it. We can now
define the following reduction relation:

X ≤SG Y ⇔def II has a w.s. inSG(X, Y )

and of course

X <SG Y ⇔def X ≤SG Y butY 6≤SG X

X ≡SG Y ⇔def X ≤SG Y andY ≤SG X

Following the terminology of Wadge games, we set that:
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• anω-subsetX is self-dual (s.d.)iff

X ≡SG Xc

whereXc stands for the complement ofX. Otherwise, we say thatX
is non-self-dual (n.s.d.);

• anω-subsetX is initializable iff there existsY such that

X ≡SG Y andY ≡SG s−1Y , ∀ s ∈ S+

wheres−1Y = {x ∈ Sω : x = πS(u1, u2, . . .) ∧ πS(s, u1, u2, . . .) ∈
Y }. From a playful point of view, a player in charge of a initializable
setX in the SG-game never loses his playful strength during the play.
Indeed, for any positions ∈ S+ that he reaches, he remains as strong
as at the beginning, when being in charge of the whole subsetX.

Example 4.2. LetS = (S+, Sω) be anyω-semigroup, andX ⊆ Sω, with
X 6= ∅, Sω.

• The relation∅ ≤SG X holds. Indeed, we give a w.s. for player II in
the gameSG(∅, X). At the end of the play, the infinite product of any
infinite sequence played by I obviously doesn’t belong to∅. So the
w.s. for II simply consists in playing in order to be outsideX at the
end of the play (possible, asX 6= Sω).

• Similarly, the relationSω ≤SG X holds. The w.s. for II in the game
SG(X,Sω) consists in in playing in order to be insideX at the end of
the play (possible, asX 6= ∅).

• The relation∅ 6≤SG Sω holds. Indeed, at the end of the play, the
infinite product of any infinite sequence played by I doesn’t belong
to ∅, and the infinite product of any infinite sequence played by II
belongs toSω, so that II cannot win against I in any case.

• Similarly, the relationSω 6≤SG ∅ holds, as there is no possible w.s. for
II in the gameSG(Sω, ∅).

This shows that the empty set and the whole space are non-self-dual sets,
since no one is equivalent to its complement. Moreover, any other set
reduces to both of them.
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4.2 Properties of theSG-relation

Not using yet any determinacy principle for this game, one cannot say
much of theSG-relation, except that it is a partial ordering with no par-
ticular interesting properties. However, Martin’s Borel Determinacy re-
sult [Mar75] easily induces Borel Determinacy forSG-games. As it is
the case with the Wadge ordering, this property turns theSG-relation
into a much more interesting one.

Theorem 4.3. (Martin) LetΣ be a set. IfA is a Borel subset ofΣω, then
G(A) is determined.

Corollary 4.4. (SG-Borel Determinacy) LetS = (S+, Sω),T = (T+, Tω)
be twoω-semigroups, andX ⊆ Sω, Y ⊆ Tω be two Borelω-subsets.
ThenSG(X, Y ) is determined.

Proof. We define a Borel subsetZ ⊆ (S+
ω ∪ T+

ω ∪ {ε})ω such that a
playerP has a w.s. inG(Z) iff the same playerP has a w.s. inSG(X, Y ).
Let p1 andp2 be the following continuous projections from(S+ ∪ T+ ∪
{ε})ω into (S+ ∪ T+ ∪ {ε})ω defined byp1(u0u1u2u3 . . .) = u0u2u4 . . .,
andp2(u0u1u2u3 . . .) = u1u3u5 . . .. Let X ′, X ′′, Y ′, Y ′′ ⊆ (S+ ∪ T+ ∪
{ε})ω be defined by

X ′ = {α = u0u1u2 . . . : πS(u0, u2, u4, . . .) ∈ X} = p−1
1 (π−1

S (X))

X ′′ = {α = u0u1u2 . . . : πS(u0, u2, u4, . . .) ∈ Xc} = p−1
1 (π−1

S (Xc))

Y ′ = {α = u0u1u2 . . . : πT (u1, u3, u5, . . .) ∈ Y } = p−1
2 (π−1

T (Y ))

Y ′′ = {α = u0u1u2 . . . : πT (u1, u3, u5, . . .) ∈ Y c} = p−1
2 (π−1

T (Y c))

By continuity of the functionsp1, p2, πS, πT , these sets are all Borel, and
we conclude by takingZ = (X ′ ∩ Y ′) ∪ (X ′′ ∩ Y ′′).

ut

Similarly to the Wadge ordering, and as a consequence of Borel de-
terminacy for these games, come the following interesting results. The
first one is an immediate consequence of determinacy. The second one is
a corollary of the first one: it states that, for this partial ordering≤SG, the
antichains have length at most two. The third one is a result from Martin
and Monk establishing the wellfoundness of this≤SG-relation on Borel
ω-subsets.
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Corollary 4.5. Let S = (S+, Sω), T = (T+, Tω) be twoω-semigroups,
andX ⊆ Sω, Y ⊆ Tω be two Borelω-subsets. Then

X 6≤SG Y ⇒ Y ≤SG Xc.

Proof. The relationX 6≤SG Y means that player II doesn’t have a win-
ning strategy inSG(X, Y ). Hence, by determinacy, player I has a win-
ning strategyσ in this game. So Player II has the following winning
strategy inSG(Y,Xc): he copies the first move of player I inSG(X, Y ),
and then, at each stepn, he playsσ(x0 · · ·xn), wherex0, . . . , xn are the
moves already played by I inSG(Y,Xc).

ut

Corollary 4.6. (Wadge’s lemma) LetS = (S+, Sω), T = (T+, Tω) be
twoω-semigroups, andX ⊆ Sω, Y ⊆ Tω be two Borelω-subsets. Then
only one of these possibilities occurs:

• X ≤SG Y andY 6≤SG X, which impliesX <SG Y .
• X ≤SG Y andY ≤SG X, which impliesX ≡SG Y .
• X 6≤SG Y andY 6≤SG X, which impliesX ≡SG Y c.
• X 6≤SG Y andY ≤SG X, which impliesY <SG X.

Proof. The first, second and fourth cases come from the very definition.
The third case comes by the previous proposition, and by the obvious
fact thatA ≤SG B ⇔ Ac ≤SG Bc holds, for anyω-subsetA andB.

ut

Proposition 4.7. (Martin, Monk) The partial ordering<SG is wellfounded
on Borelω-subsets, meaning that there is no infinite sequence of Borel
ω-subsets(Ai)i∈ω such that

A0 >SG A1 >SG . . . >SG An >SG An+1 >SG . . .

Proof. Towards contradiction, assume that there exists an infinitese-
quence ofω-semigroups{Si = (Si,+, Si,ω)}i∈ω, and an infinite strictly
<SG-descending sequence of Borelω-subsets(An)n∈ω, whereAi ⊆ Si,ω

, (any i ∈ ω). For all n ≥ 0, the relationAn >SG An+1 implies that
bothAn 6≤SG An+1 andAc

n 6≤SG An+1 hold, meaning that player I has
w.s.σ0

n andσ1
n in both gamesSG(An, An+1) andSG(Ac

n, An+1), respec-
tively. Letα ∈ 2ω define the following sequence of strategies(σ

α(k)
k )k∈ω.
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We now considerω manySG-games linked this way: in the first game,
player I applies strategyσα(0)

0 to II’s play. Since it is a strategy for I, it
gives the first lettera0

0 before II has ever played anything, but then, apply-
ing σα(0)

0 means to know II’s first movea1
0. Precisely, II copies I’s moves

in the second game, in which I applies the w.s.σ
α(1)
1 . And so on for every

game. This means, in game numbern, player I applies strategyσα(n)
n ,

and II scrupulously copies I’s moves in the game numbern + 1. These
ω many games chained together are illustrated below. Big arrows denote
the action of playing while little ones denote the action of copying.

I
σ

α(0)
0
x II I

σ
α(1)
1
x II I

σ
α(2)
2
x II I

σ
α(3)
3
x II · · ·

a0
0 a1

0 a2
0 a3

0

↘ ↙ ↘ ↙ ↘ ↙

a1
0 a2

0 a3
0

↙ ↙ ↙
a0

1 a1
1 a2

1

↘ ↙ ↘ ↙

a1
1 a2

1

↙ ↙
a0

2 a1
2

↘ ↙

a1
2

↙
a0

3

Let xα = Πk∈ωa
0
k be the infinite word played by player I in the first

game,φ : 2ω → S0,+
ω defined byφ(α) = xα, andψ = πS0 ◦ φ :

2ω → S0,ω defined byψ(α) = πS0(xα) = πS0(Πk∈ωa
0
k). By definition

of these chained games,φ is continuous. Indeed, we remark that thek
first letters ofxα only depend on thek first letters ofα, as we completely
don’t need games numberk + 1, k + 2, . . . to determinexα � k. So, for
anyU ⊆ S0,+

∗, φ−1(US0,+
ω) = V 2ω, with V ⊆ 2∗, meaning that the

pre-image byφ of a basic open set is a basic open set. Asφ andπS0 are
continuous, so isψ. ConsiderB = ψ−1(A0). By construction of these
chained games, we notice that ifα andα′ only differ by one position (i.e.
∃! i s.t. α(i) 6= α′(i)), thenα ∈ B ⇔ α′ 6∈ B. This means thatB is a
flip set, and it is Borel asψ is continuous, a contradiction.

ut
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Remark 4.8. Quotienting Borelω-subsets by the equivalence relation
≡SG, leads to a hierarchy of classes of Borelω-subsets called theSG-
hierarchy. As already mentioned, the previous results state the wellfound-
ness of this hierarchy together with the fact that the antichains have
length at most two. TheSG-hierarchy has thus the same familiar ”scal-
ing shape” as the Borel hierarchy or the Wadge hierarchy: an increasing
sequence of pairs of non-self-dual classes with single self-dual classes in
between. This hierarchy is illustrated in figure 1. Circles represent classes
of Borel ω-subsets, and arrows represent the fact of ”beingSG-smaller
than”.

Fig. 1. theSG-hierarchy

Definition 4.9. TheSG-degreeof Borelω-subsets is defined by induc-
tion. At the bottom, we find∅ and∅c since there is no non-empty setA
such thatA ≤SG ∅ holds, and there is also no other smaller set than the
whole space, which is incomparable to the empty set (see example 4.2).
So we set:

do
SG(∅) = do

SG(∅c) = 0,

and for any Borelω-subsetA >SG ∅

do
SG(A) = sup{do

SG(B) + 1 : B <SG A}.
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5 Basic results about this game

In this section, we give some general results about both thisinfinite
game overω-semigroups, and more precisely about theSG-hierarchy.
We state that two important hierarchies become particular cases of the
SG-hierarchy. But the most striking thing is that very essential algebraic
notions turn out to correspond to very natural properties stated in a game
theoretical way.

5.1 The Wadge hierarchy

In the late sixties, W. W. Wadge introduced a very deep refinement of the
Borel hierarchy of sets of the Baire space (or of the Cantor space as well)
[Wad72]. TheWadge hierarchyis induced by the following relation on
sets:A ≤W B ⇔def ∃ f continuous s.t.f−1(B) = A ⇔ II has a w.s. in
W(A,B) [Wad72].

Proposition 5.1. TheSG-hierarchy restricted to Borelω-subsets of free
ω-semigroups corresponds exactly to the Wadge hierarchy of Borel sub-
sets.

Proof. When restricted to freeω-semigroups, theSG-game is exactly
the same as the Wadge game.

ut

Remark 5.2. As a matter of fact, theSG-hierarchy should be regarded
as a widening of the Wadge hierarchy. Not only more sets are involved,
but the algebraic structure of semigroups enriches the way one can de-
scribe or characterize Borel sets. For instance, some of them may ”live”
in an ω-semigroup generated by a monoid, or even group, while most
don’t.

5.2 The Wagner hierarchy

In 1979, Klaus Wagner described a hierarchy among languagesrecog-
nized by Muller automata called theWagner hierarchy[Wag79]. This
hierarchy has heightωω and actually coincides with the restriction of the
Wadge hierarchy toω-rational languages. In other words, it is the hie-
rarchy induced by the following ordering on Muller automata: A ≤W B
iff the language recognized byA is the inverse image of the language
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recognized byB by a continuous function. This section shows that the
Wagner hierarchy is a particular case of theSG-hierarchy.

Proposition 5.3. TheSG-hierarchy restricted to subsets of finiteω-semi-
groups is classwise isomorphic to the Wagner hierarchy.

Proof. In the forthcoming paper [CabDup0?].
ut

The decidability of the Wagner hierarchy also holds in the following
sense:

Proposition 5.4. Let S = (S+, Sω) be a finiteω-semigroup, andX ⊆
Sω be Borel. One can associate toX an ordinalξX ∈ ωω being its degree
in the Wagner hierarchy.

Proof. In the forthcoming paper [CabDup0?].
ut

5.3 Basic algebraic properties

Important algebraic notions can be expressed in a natural game theoreti-
cal way by use of theSG-game. These results militate in favor of de-
veloping the use of game theoretical tools in algebra. The two following
propositions give a game theoretical approach of the algebraic concepts
of monoid and group.

Proposition 5.5. Let S = (S+, Sω) be anyω-semigroup, andX ⊆ Sω

be any Borelω-subset. The following conditions are equivalent:

(1) X 6≤SG Xc (i.e.X is n.s.d.).
(2) Every player in charge ofX in theSG-game is allowed to skip his

turn, provided he plays infinitely many letters, otherwise he loses.
(3) There exists anω-semigroupT = (T+, Tω) and a Borelω-subset

Y ⊆ Tω such thatT+ is a monoid, andX ≡SG Y .

Proof. (sketch)

(1) ⇒ (2) : We show that we can assume without loss of generality that
any player in charge ofX in the SG-game can skip his turn, provided
he plays infinitely many letters. In other words, we show thata player
in charge ofX that is allowed to skip is not stronger than (or can be
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beaten by) a player in charge ofX that is not allowed to. LetSG( , )
be the same infinite game asSG( , ), instead that player I is allowed
to skip - provided he plays infinitely often - while player II is not.
By hypothesis, there exists a winning strategyσ for I in the game
SG(X,Xc). Thenσ is also a winning strategy for II in the game
SG(X,X).

(2) ⇒ (1) : By hypothesis, every player in charge ofX is allowed to
skip its turn, provided he plays infinitely letters. The winning strat-
egy for player I in the gameSG(X,Xc) consists in skipping the first
move, and then copy player II.

(3) ⇒ (1) : By hypothesis,X ≡SG Y , with Y ⊆ T+, and T+ is a
monoid. We thus show thatY is non-self-dual by giving a winning
strategy for I in the gameSG(Y, Y c): player I fist plays1; then when
II doesn’t skip, I copies II, and when II skips, I plays1. As Y is
non-self-dual, so isX.

(1) ⇒ (3) : A consequence of [Dup01] and [Dup0?]. Basically, the idea
is to consider the setZ = π−1

S (X). Viewed as a subset of the free
ω.semigroup(S+

+, S+
ω) - with S+

ω equipped with the usual topol-
ogy (the product topology of the discrete topology overS+) - it sat-
isfiesZ ≡SG X. SinceZ is Borel and non self dual, it follows from
both [Dup01], and [Dup0?] that there exists someȲ ⊆ S+

≤ω verify-
ing:
– Ȳ b ≡W Z, whereȲ b stands for allω-sequencesx built over the

alphabetS+ ∪ {b} - whereb stands for any new letter not inS+ -
that verify: ”x in which every occurrence of the letterb has been
erased, belongs tōY .”

– Ȳ ∩ S+
ω = Z

As Ȳ b ≡W Z holds, thenȲ b ≡SG Z, when these sets are considered
as subsets of the freeω-semigroups

(

(S+ ∪ {b})+, (S+ ∪{b})ω
)

, and
(S+

+, S+
ω), respectively. AsZ ≡SG X also holds, then̄Y b ≡SG X.

By identifying b and the identity element, i.e. by setting the monoid
T+ = (S+∪{b})

+ = (S+∪{1})
+, Tω = (S+∪{b})

ω = (S+∪{1})
ω,

and by takingY = Ȳ b ⊆ Tω, one gets the result.
ut

Proposition 5.6. Let S = (S+, Sω) be anyω semigroup, andX ⊆ Sω

be any Borel subset. The following conditions are equivalent:

(1) X ≤SG s−1X, ∀ s ∈ S+ (i.e. X is initializable).
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(2) Every player in charge ofX in theSG-game is allowed to erase his
moves, provided he plays infinitely many letters, otherwisehe loses.

(3) There exists anω-semigroupT = (T+, Tω) and a Borelω-subset
Y ⊆ Tω such thatT+ is a group, andX ≡SG Y .

Proof. (sketch)

(3) ⇒ (2) : We show that we can assume without loss of generality that
any player in charge ofX in the SG-game can erase his moves, pro-
vided he plays infinitely many letters. In other words, we show that a
player in charge ofX that is allowed to erase is not stronger than (or
can be beaten by) a player in charge ofX that is not allowed to. Let
S̃G( , ) be the same infinite game asSG( , ), instead that player I is
allowed to erase his moves - provided he plays infinitely often - while
player II is not. We first show that player II has a w.s. iñSG(X, Y ).
By hypothesis, II has a w.s.σ in the gameSG(X, Y ). This leads the
following w.s. for II in S̃G(X, Y ): II copies I, and when I erases
a part of his position, then II ”cancels” a piece of his by playing
the suitable inverse element, in order to come back to the expected
situation. By hypothesis, II also has a winning strategy in the game
SG(Y,X) (where no one can erase his moves). Then by composition
of strategies, II has a winning strategy in the gameS̃G(X,X).

(2) ⇒ (1) : Let s ∈ S+. By hypothesis, we can give the following win-
ning strategyσ in the gameSG(X,X), but where player II has al-
ready played the elements: player II erasess, and then copies player
I. By the prevous point, we can find a winning srategyσ′ in the game
S̃G(X,X) (where I can erase, while II cannot). The composition of
these strategiesσ′′ = σ′ ◦ σ is winning in the gameSG(X, s−1X).

(1) ⇒ (3) : A consequence of [Dup01] and [Dup0?]. First, sinceX is
clearly non-self-dual, one can assume w.l.o.g. thatS+ is a monoid
with 1 as identity (otherwise, from previous proposition, one canget
someX ′ satisfying this property). Then, here also, the idea is to con-
sider the setZ = π−1

S (X). Viewed as a subset of the freeω-semi-
group(S+

+, S+
ω) - with S+

ω equipped with the usual topology - one
hasX ≡SG Z. SinceZ is Borel and initializable, from [Dup01] and
[Dup0?], we know that there exists some setB ⊆ {0, 1}≤ω such that:
– (B∼)b ≡W Z, whereB∼ is defined asB plus an additional eraser,

andBb is defined asȲ b was in last proposition (b stands for
“blank”, it behaves just like a mute letter). In a few words, this
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means that a player in charge of(B∼)b in a Wadge game (either
player I or player II) is like a player in charge ofB with two extra
possibilities. This player can:
• playb, which is just like skipping, except that here, one can de-

cide to skip forever, which is materialized by playing infinitely
manyb’s;

• erase all or part of his/her last moves (b is just like a skip, it
doesn’t count as a true letter).

After ω such moves, the resulting sequence played is the limit of
what has been played, forgetting about the blanks. And(B∼)b is
the set of all infinite sequences that can possibly be played such
that their limits belong toB.

– Now, add two more letters0−1, and1−1 viewed as the inverse
elements of respectively0, and1. Consider the free semigroup
{0, 1, 0−1, 1−1, b}∗, where the concatenation operation moreover
verifies0−10 = 00−1 = b, and1−11 = 11−1 = b. Takeb = 1, and
setY as the set of all infinite sequences over{0, 1, 0−1, 1−1, 1},
such that, once every possible ”erasing” of the form0−10 = 00−1

= 1, or 1−11 = 11−1 = 1 has been processed, yields an infinite
sequence that belongs toBb (which isB1, sinceb = 1), if one
forgets about the subscripts−1 (i.e. identifying 0−1 with 0 and
1−1 with 1). It is easy to see that(B∼)b ≡W Y .

One gets the result by considering theω-semigroupT = (T+, Tω) =
(

{0, 1, 0−1, 1−1, 1}+, {0, 1, 0−1, 1−1, 1}ω
)

, and the subsetY ⊆ Tω as
defined above. Indeed, one hasZ ≡W (B∼)b ≡W Y , meaning that
Z ≡SG Y (by treatingZ, andY as subsets of the suitableω-semi-
groups). So,X ≡SG Z ≡SG Y .

ut

6 Conclusion

The way we see it, further developments in the Wadge hierarchy, for in-
stance, should be deeply related to theSG-hierarchy. It seems to be of a
major interest to be able to characterize a Borel set of reals, by the type of
ω-semigroups where a complete set for the Wadge class it generates may
”live”. This should be a way of identifying the algebraic properties hid-
den behind various ”Borel attitudes” of sets. In other words, an algebraic
way of classifying Borel sets. A very promising approach.
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