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Abstract. We introduce a model of nondeterministic hybrid recurrent
neural networks – made up of Boolean input and output cells as well
as internal sigmoid neurons, and equipped with the possibility to have
their synaptic weights evolve over time, in a nondeterministic manner.
When subjected to some infinite input stream and some specific synap-
tic evolution, the networks necessarily exhibit some attractor dynamics
in their Boolean output cells, and accordingly, recognize some specific
neural ω -languages. The expressive power of these networks is measured
via the topological complexity of their underlying neural ω-languages.
In this context, we prove that the two models of rational-weighted and
real-weighted nondeterministic hybrid neural networks are computation-
ally equivalent, and recognize precisely the set of all analytic neural
ω-languages. They are therefore strictly more expressive than the non-
deterministic Büchi and Muller Turing machines.

Keywords: Recurrent neural networks · Neural computation · Analog
computation · Evolving systems · Attractors · Turing machines · Expres-
sive power

1 Introduction

The understanding of the computational and dynamical capabilities of brain-like
models of computation represents an issue of central importance. In this context,
much attention has been focused on comparing the computational powers of
various neural models to those of diverse abstract machines, see for instance [2,4,
13–16,18–20,23]. As a consequence, the computational power of neural networks
has been shown to be intimately related to the nature of their synaptic weights
and activation functions, and able to range from finite state automata [13–15]
up to super-Turing capabilities [2,4,18–20].

Following this global line of thought, the first author initiated the study
of the expressive power of recurrent neural networks from the perspective of
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their attractor dynamics [7,10]. This approach is motivated by the fact that,
in their model, the attractor dynamics of the neural networks are the precise
phenomena that underly the arising of spatiotemporal patterns of discharges –
a feature considered to be significantly involved in the processing and coding of
information in the brain [24,25].

In this context, they proved that Boolean recurrent neural networks pro-
vided with some assignment of their attractors into two different kinds are com-
putationally equivalent to Muller automata, and hence recognize precisely the
so-called ω-regular neural languages. Consequently, the most refined topologi-
cal classification of ω-languages [26] can be transposed from the automaton to
the neural network context, and yields to some transfinite hierarchical classifica-
tion of Boolean neural networks according to their attractor dynamics [6], which
in turn represents a new attractor-based complexity measurement for Boolean
recurrent neural networks [10].

More recently, they considered amodel of so-called hybrid recurrent neural net-
works composed with Boolean input and output cells as well as internal sigmoid
neurons. They showed that the rational and real-weighted hybrid neural networks
are computationally equivalent to and strictly more powerful than deterministic
Muller Turing machines, respectively [5]. Furthermore, the evolving hybrid neural
nets are equivalent to the real-weighted ones, irrespective of whether their synap-
tic weights are modelled by rational or real numbers [5]. These results provide
a generalization to this specific computational context of those obtained for the
cases of classical [2,4] and interactive computation [1,3,9,11].

Here, we provide the nondeterministic counterpart of these results. We con-
sider a model of nondeterministic hybrid recurrent neural networks, which consist
of hybrid neural nets equipped with the possibility to have their synaptic weights
evolve over time – in a nondeterministic manner. When subjected to some infinite
input stream as well as to some specific evolution of their synaptic weights, the
networks necessarily exhibit some attractor dynamics in their Boolean output
cells, which is assumed to be of two possible kinds, either meaningful or spurious.
The neural ω-language of a network corresponds to the set of all input streams
which induce a meaningful attractor dynamics, for some possible evolution of its
synaptic weights. The expressive power of the networks is then measured via the
topological complexity of their underlying neural ω-languages. In this context,
we prove that the two models of rational-weighted and real-weighted nondeter-
ministic hybrid neural networks are computationally equivalent, and recognize
precisely the set of all analytic neural ω-languages. They are therefore strictly
more expressive than the nondeterministic Büchi and Muller Turing machines.
These results are discussed in the last section.

2 Preliminaries

A topological space is a pair (S, T ) where S is a set and T is a collection of
subsets of S such that ∅ ∈ T , S ∈ T , and T is closed under arbitrary unions and
finite intersections. The collection T is called a topology on S, and its members
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are called open sets. Given some topological space (S, T ), the class Borel subsets
of S, denoted by ∆1

1, consists of the smallest collection of subsets of S containing
all open sets and closed under countable union and complementation. For every
ordinal α, one defines by transfinite induction the following Borel classes:

• Σ0
1 = {X ⊆ S : X is open},

• Π0
α = {X ⊆ S : X! ∈ Σ0

α},
• Σ0

α = {X ⊆ S : X =
⋃

n≥0 Xn, Xn ∈ Π0
αn

, αn < α, n ∈ N}, for α > 1,
• ∆0

α = Σ0
α ∩ Π0

α.

The collection of all classes Σ0
α, Π0

α, and ∆0
α provides a stratification of the

whole class of Borel sets known as the Borel hierarchy. The rank of a Borel set
X ⊆ S is the smallest ordinal α such that X ∈ Σ0

α∪Π0
α∪∆0

α, and represents the
minimal number of complementation and countable union operations that are
needed in order to obtainX from an initial collection of open sets. It is commonly
considered as a relevant measure of the topological complexity of Borel sets.

Besides, given any set A, we let A∗, A+ and Aω denote respectively the sets of
finite sequences, non-empty finite sequences and infinite sequences of elements
of A. For any x ∈ A∗ ∪ Aω, the length of x is denoted by |x|, the (i + 1)-th
element of x will be denoted by x(i) for any 0 ≤ i < |x|, and the subsequence
of the n-th first elements of x is denoted by x[0:n], with the convention that
x[0:0] = λ, the empty sequence. Hence, any x ∈ A+ and y ∈ Aω can be written
as x = x(0)x(1) · · ·x(|x|−1) and y = y(0)y(1)y(2) · · · , respectively. The fact that
x is a prefix (resp. strict prefix) of y will be denoted by x ⊆ y (resp. x ! y). The
concatenation of x and y is denoted x ·y, and for any X ⊆ A∗ and Y ⊆ A∗ ∪Aω,
one sets X · Y = {z ∈ A∗ ∪ Aω : z = x · y for some x ∈ X and y ∈ Y }. A set of
the form {x} ·Aω is generally denoted x ·Aω. Finally, a sequence of A∗ ∪Aω will
also be called a word, and a subset of Aω is generally called an ω-language.

In the sequel, the spaces of N -dimensional Boolean, rational and real vectors
will be denoted by BN , QN and RN , respectively. The space (BN )ω is naturally
assumed to be equipped with the product topology of the discrete topology
on BN . Accordingly, the basic open sets are of the form p · (BN )ω, for some
p ∈ (BN )∗. The general open sets are countable unions of basic open sets. This
space is Polish (i.e., separable and completely metrizable) [12]. The spaces (QN )ω
and (RN )ω are assumed to be equipped with the product topologies of the usual
topologies on QN and RN , respectively. Accordingly, the basic open sets are of
the form X0 · . . . · Xn · (QN )ω or X0 · . . . · Xn · (RN )ω, for some n ≥ 0, where
each Xi is an open set of QN or RN for their usual topologies, respectively. The
general open sets are arbitrary unions of basic open sets. These two spaces are
also Polish [12].

An ω-language L ⊆ (BN )ω is analytic iff there exists some Π0
2-set X ⊆

(BN )ω × {0, 1}ω such that L = π1(X) = {s ∈ (BN )ω : ∃ e ∈ {0, 1}ω s.t. (s, e) ∈
X} [12, Exercise14.3]. This fact will be used in forthcoming Proposition 1. Equiv-
alently, L ⊆ (BN )ω is analytic iff there exists some Polish space E and some Borel
set X ⊆ (BN )ω × E such that L = π1(X) [12, Exercise14.3]. This fact will be
used in forthcoming Proposition 2. The class of analytic sets, denoted by Σ1

1,
strictly contains that of Borel sets, namely ∆1

1 ! Σ1
1 [12, Theorem14.2].
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3 Büchi and Muller Turing Machines

The study of the behavior of reactive systems has led to the emergence of a
theory of automata working on infinite objects [17,22]. In this context, a Büchi
(resp. a Muller) Turing machine can be defined as a pair (M,F) (resp. a pair
(M′, T )), where M (resp. M′) is a classical Turing machine and F is a subset
of the states of M (resp. T is a collection of subsets of the states of M′). In the
case of M (resp. M′) being deterministic, an infinite input stream s is said to be
recognized by M (resp. by M′) if the set of states visited infinitely often by M
(resp. by M′) during the processing of s intersects the set F (resp. belongs to
the collection T ). In the non-deterministic case, s is said to be recognized by each
such machine if there exists a computational path which satisfies the required
condition. The ω-language associated with each such machine consists of the set
of all words that it recognizes.

The deterministic Büchi Turing machines are strictly less powerful than the
deterministic Muller ones. Indeed, every ω-language recognized by some deter-
ministic Büchi Turing machine belongs to the topological class Π0

2, whereas
the ones recognized by Muller Turing machine belong to the topological class
BC(Π0

2), i.e., the finite Boolean combinations of Π0
2-sets [21, Corollaries 3.3 and

3.4]. Moreover, one can easily show the existence of infinitely many ω-languages
which are recognizable by some Muller Turing machines but by no Büchi Tur-
ing machine. In the non-deterministic case, Büchi and Muller Turing machines
are computationally equivalent. They recognize precisely the class of effectively
analytic ω-languages [21, Theorem3.5].

The class of effectively analytic sets is usually denoted by Σ1
1 (lightface), and

for the sequel, we recall that the relation Σ1
1 ! Σ1

1 trivially holds [12].

4 The Model

We introduce a model of so-called hybrid evolving recurrent neural network. The
term hybrid refers to the fact that the network involves both Boolean and sigmoid
cells. The term evolving refers to the fact that the synaptic weights are able to
evolve over time. The expressive power of the networks will be related to the
attractor dynamics of their Boolean output cells.

A hybrid (or Boolean/sigmoid) evolving recurrent neural network (denoted
by Ev-RNN) consists of a synchronous network of neurons related together in a
general architecture. The network contains N internal sigmoid neurons (xi)Ni=1,
M Boolean input cells (ui)Mi=1, and P Boolean output cells (yi)Pi=1. The dynamics
of the network is computed as follows: given the activation values of the internal
and input neurons (xj)Nj=1 and (uj)Mj=1 at time t, the activation values of each
internal neuron xi and each output neuron yi at time t+ 1 are updated by the
following equations, respectively:

xi(t+1) = σ

⎛

⎝
N∑

j=1

aij(t) · xj(t) +
M∑

j=1

bij(t) · uj(t) + ci(t)

⎞

⎠ for i = 1, . . . , N (1)
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yi(t+ 1) = θ

⎛

⎝
N∑

j=1

aij(t) · xj(t) +
M∑

j=1

bij(t) · uj(t) + ci(t)

⎞

⎠ for i = 1, . . . , P (2)

Here, aij(t), bij(t), and ci(t) are time dependent values describing the evolving
weighted synaptic connections and weighted bias of the network, and σ and θ are
the classical sigmoid-linear and hard-threshold activation functions respectively
defined by:

σ(x) =

⎧
⎪⎨

⎪⎩

0 if x < 0,
x if 0≤ x ≤1,
1 if x > 1

and θ(x) =

{
0 if x < 1,
1 if x ≥ 1.

We further assume that the synaptic weights aij(t), bij(t), ci(t) might evolve
between two designated bounds S and S′ imposed by the biological constitution
of the synapses.

Throughout this paper, two models of Ev-RNNs are considered according to
the nature of their synaptic weights. In fact, an Ev-RNN will be called rational
(denoted by Ev-RNN[Q]) or real (denoted by Ev-RNN[R]) if its synaptic weights
aij(t), bij(t), ci(t) are modelled by rational or real numbers at any time step t,
respectively. Note that any Ev-RNN[Q] is also an Ev-RNN[R] by definition.

Let N be some Ev-RNN N . For each time step t ≥ 0, the Boolean vector

u(t) = (u1(t), . . . , uM (t)) ∈ BM

describing the activation values of the M input units of N at time t is the input
submitted to N at time t. The pair

⟨x (t),y(t)⟩ ∈ [0, 1]N × BP

describing the activation values of the internal and output cells at time t is the
state of N at time t. The second element of this pair, namely y(t), is the Boolean
state of N at time t.

Assuming the initial state of the network to be ⟨x (0),y(0)⟩ = ⟨0 ,0 ⟩, any
infinite input stream

s = (u(t))t∈N = u(0)u(1)u(2) · · · ∈ (BM )ω

induces via Eqs. (1) and (2) an infinite sequence of consecutive states

cs = (⟨x (t),y(t)⟩)t∈N = ⟨x (0),y(0)⟩⟨x (1),y(1)⟩ · · · ∈ ([0, 1]N × BP )ω

called the computation of N induced by s. The corresponding infinite sequence
of Boolean states

c′
s = (y(t))t∈N = y(0)y(1)y(2) · · · ∈ (BP )ω

is the Boolean computation of N induced by s.
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Note that any Ev-RNN N (with P Boolean output cells) can only have 2P –
i.e., finitely many – possible distinct Boolean states. Consequently, for any infi-
nite Boolean computation c′

s, there necessarily exists at least one Boolean state
that recurs infinitely often in c′

s. In fact, any Boolean computation c′
s necessar-

ily consists of a finite prefix of Boolean states followed by an infinite suffix of
Boolean states that repeat infinitely often – yet not necessarily in a periodic
manner. The non-empty set of all the Boolean states that repeat infinitely often
in c′

s will be denoted by inf(c′
s). According to these considerations, a set of

states of the form inf(c′
s) for some computation c′

s will be called an attractor
for N . A precise definition can be given as follows [10]:
Definition 1. Let N be some Ev-RNN. A set A = {y0 , . . . ,yk} ⊆ BP is an
attractor for N if there exists some infinite input stream s such that the corre-
sponding Boolean computation c′

s satisfies inf(c′
s) = A.

In words, an attractor of N is a set of Boolean states into which the computation
of the network could become forever trapped – yet not necessarily in a periodic
manner –, for some infinite input stream s.

In this work, we suppose that attractors can be of two distinct types, namely
either meaningful or spurious. The type of each attractor could be determined
by its neurophysiological significance with respect to measurable observations,
e.g. associated with certain behaviors or sensory discriminations. The classifica-
tion of these attractors into meaningful or spurious types is not the subject of this
paper. Hence, from this point onwards, we assume any Ev-RNN to be equipped
with a corresponding classification of all of its attractors into meaningful and
spurious types.

According to these considerations, an infinite input stream s ∈ (BM )ω of N
is called meaningful if inf(c′

s) is a meaningful attractor, and it is called spurious
if inf(c′

s) is a spurious attractor. The set of all meaningful input streams of N
is called the neural ω-language of N and is denoted by L(N ). An arbitrary set
of input streams L ⊆ (BM )ω is said to be recognizable by some Ev-RNN if there
exists a network N such that L(N ) = L.

We now introduce a natural notion of a nondeterministic Ev-RNN, where the
nondeterminism is expressed as a set of possible infinite evolving patterns of the
synaptic weights. At the beginning of a computation, the network chooses one
such possible evolution in a nondeterministic manner, and sticks to it throughout
its whole computational process.

A nondeterministic Ev-RNN consists of a pair (N , E), whereN is an Ev-RNN
with K evolving synaptic connections, and E ⊆ ([S, S′]K)ω is a set of infinite
sequences of K-dimensional vectors – describing the possible infinite evolutions
for the K synaptic connections of N . Every element e of E is called a possible
evolution for N , and if the evolution e = e(0)e(1)e(2) · · · ∈ E is followed by
N , each vector e(t) describes the values of the K synaptic weights of N at time
step t.1 In this context, the Boolean computation produced by (N , E) when it
1 By contrast, a deterministic Ev-RNN has only one possible evolution for its synaptic
weights, and hence corresponds to a nondeterministic Ev-RNN where the set E is
reduced to a singleton.
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receives the input stream s ∈ (BM )ω and follows the evolution e ∈ E is denoted
by c′

(s,e).
According to these considerations, a nondeterministic Ev-RNN[Q] is a pair

(N , E) such that E ⊆ ((Q ∩ [S, S′])K)ω, and a nondeterministic Ev-RNN[R] is
a pair (N , E) such that E ⊆ ((R ∩ [S, S′])K)ω. We assume from now on that
(Q ∩ [S, S′])K and (R ∩ [S, S′])K are equipped with the induced topologies of
QK and RK , and that ((Q∩ [S, S′])K)ω and ((R∩ [S, S′])K)ω are equipped with
the product topologies of these induced topologies, respectively. Moreover, E is
always assumed to be a closed subset of these Polish subspaces, and hence is
also Polish [12].2

Finally, given some nondeterministic Ev-RNN N , an infinite input stream
s ∈ (BM )ω is called meaningful if there exists some evolution e ∈ E such that
inf(c′

(s,e)) is a meaningful attractor, and it is called spurious otherwise, i.e., if
for all evolution e ∈ E, the set inf(c′

(s,e)) is a spurious attractor. The set of
all meaningful input streams of N is called the neural ω-language of N and is
denoted by L(N ). An arbitrary set of input streams L ⊆ (BM )ω is said to be
recognizable by some nondeterministic Ev-RNN if there exists a nondeterministic
network (N , E) such that L(N ) = L.

5 Results

Following considerations from ω-languages and automata theory [17], the expres-
sive power of hybrid neural networks is characterized as the topological com-
plexity of their underlying neural ω-language. For the sake of clarity, we first
recall the results obtained in the deterministic context [5]. In this case, the sta-
tic rational-weighted hybrid neural networks are computationally equivalent to
deterministic Muller Turing machines, hence recognize neural ω-languages inside
the class of finite Boolean combinations of Π0

2-sets (BC(Π0
2)). The other mod-

els of static real-weighted, evolving rational-weighted, and evolving real-weighted
hybrid networks are all computationally equivalent. They recognize precisely all
the BC(Π0

2) neural ω-languages and, therefore, are strictly more powerful than
deterministic Büchi and Muller Turing machines, since these later cannot recog-
nize the whole class of BC(Π0

2)-sets (cf. Sect. 3).
Here, we show that both models of rational- and real-weighted nondeter-

ministic hybrid neural networks are computationally equivalent, and recognize
precisely the class of all analytic sets (Σ1

1 boldface). Therefore, their expressive
powers strictly encompass those of Büchi and Muller Turing machines, which
are restricted to the effectively analytic sets (Σ1

1 lightface) (cf. Sect. 3).
We first show that any analytic neural ω-language L can be recognized by

some nondeterministic rational Ev-RNN N . The idea of the proof is the follow-
ing. First, we note that the analytic set L can be written as the first projection π1

of some Π0
2-set X ⊆ (BM )ω ×{0, 1}ω (cf. Sect. 2). Next, we consider some recur-

sive encoding of X by an infinite word wX ∈ {0, 1}ω. Afterwards, we consider a

2 The results of the paper hold equally true even with E taken as Π0
2.
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nondeterministic Ev-RNN[Q]N equipped with only two possible evolving synap-
tic connections: one which might follow any possible binary evolution e ∈ {0, 1}ω,
and the other one which always follows the same binary evolution wX ∈ {0, 1}ω.
We then design the static part of N such that N visits a meaningful attractor iff
the current input s and evolving synaptic pattern e ∈ {0, 1}ω are such that (s, e)
belongs the set encoded by wX , namely X. In this way, L(N ) = π1(X) = L, and
thus L is recognized by N .

Proposition 1. Let L ⊆ (BM )ω such that L ∈ Σ1
1. Then there exists some

nondeterministic Ev-RNN[Q] (N , E) such that L(N ) = L.

Proof. Since L ∈ Σ1
1, there exists some X ⊆ (BM )ω × {0, 1}ω such that X ∈ Π0

2

and L = π1(X). Since X ∈ Π0
2, it can be written as X =

⋂
i≥0

⋃
j≥0(pi,j ·

(BM )ω × qi,j · {0, 1}ω), where each (pi,j , qi,j) ∈ (BM )∗ × {0, 1}∗. Consequently,
the set X (and hence also L) is completely determined by the countable sequence
of pairs of finite prefixes ((pi,j , qi,j))i,j≥0. We can thus consider some encoding
wX ∈ {0, 1}ω of the sequence ((pi,j , qi,j))i,j≥0 such that, for any pair of indices
(i, j) ∈ N×N, the decoding procedure (wX , i, j) -→ (pi,j , qi,j) is actually recursive.

We now consider the infinite procedure given by Algorithm 1 below. This pro-
cedure requires as input and auxiliary items the following three infinite sequences
delivered step by step: an infinite input stream s ∈ (BM )ω, an infinite word
e ∈ {0, 1}ω chosen arbitrarily, and the precise infinite word wX ∈ {0, 1}ω. Note
that provided that these three items are correctly supplied by some external
source, every instruction of the procedure is actually recursive. Farther note
that, by construction, the procedure returns infinitely many 1’s iff the pair of
infinite sequences (s, e) belongs to X.

Based on the infinite procedure, we provide the description of a nondeter-
ministic Ev-RNN[Q] (N , E) such that L(N ) = L. The network (N , E) contains
only two evolving synaptic weights w1(t) and w2(t) which evolve among only two
possible values, 0 or 1. All other synaptic weights are static. The weight w1(t)
might follow every possible evolution in {0, 1}ω, while w2(t) always follows the
same evolution, which are the successive letters of wX . Formally, one has the
following closed set of possible evolutions:

E = {ẽ ∈ ({0, 1}2)ω : (ẽ(t))0 ∈ {0, 1} and (ẽ(t))1 = wX(t), for any t ≥ 0}.

We then consider a neural circuit which stores the incoming values of the
input stream s ∈ (BM )ω intoM designated neurons, as well as two neural circuits
which store the successive bits of w1(t) and w2(t) into two designated neurons
(see [20] for further technical details). Afterwards, according to the real time
computational equivalence between static RNN[Q] and Turing machines [20],
we consider a static RNN[Q] which is suitably designed and connected to the
above mentioned circuits in order to simulate all the recursive instructions of
Algorithm 1. We finally add a single Boolean output neuron y and update the
whole construction in order that y takes an activation value of 1 precisely when
the simulation of Algorithm 1 by our network enters the instruction “returns 1”.
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In this way, one has the description of a nondeterministic Ev-RNN[Q] (N , E)
which suitably simulates the behavior of Algorithm 1.

Besides, the single output cell y leads to the existence of only three possible
attractors, namely {(0)}, {(0), (1)}, and {(1)}. We set {(0)} as spurious, and
{(0), (1)} and {(1)} as meaningful. This means that (N , E) visits a meaningful
attractor iff the simulation of Algorithm 1 returns infinitely many 1’s.

According to all the previous considerations, one has that s ∈ L(N ) iff, by
definition, there exists some ẽ ∈ E such that inf(c′

(s,ẽ)) is meaningful, iff there
exists e ∈ {0, 1}ω such that the simulation of Algorithm 1 returns infinitely many
1’s, iff there exists e ∈ {0, 1}ω such that the pair (s, e) ∈ X, iff, by definition,
s ∈ π1(X) = L. In other words, L(N ) = L, showing that L is recognized by the
nondeterministic Ev-RNN[Q] (N , E). ⊓0

Algorithm 1. Infinite procedure
Require:

1. Input s = s(0)s(1)s(2) · · · ∈ (BM )ω supplied step by step at successive time
steps t = 0, 1, 2, . . .

2. some auxiliary infinite word e = e(0)e(1)e(2) · · · ∈ {0, 1}ω supplied step by
step at successive time steps t = 0, 1, 2, . . .

3. the specific auxiliary infinite word wX = wX(0)wX(1)wX(2) · · · ∈ {0, 1}ω sup-
plied step by step at successive time steps t = 0, 1, 2, . . .

1: SUBROUTINE 1
2: c ← 0 // c counts the number of letters provided so far
3: for all time step t ≥ 0 do
4: store each incoming Boolean vector s(t) ∈ BM

5: store each incoming bit e(t) ∈ {0, 1}
6: store each incoming bit wX(t) ∈ {0, 1}
7: c ← c+ 1
8: end for
9: END SUBROUTINE 1

10: SUBROUTINE 2
11: i ← 0, j ← 0
12: loop
13: wait until c ≥ max{|pi,j |, |qi,j |}
14: wait until wX [0:c] becomes long enough to contain the encoding of (pi,j , qi,j)
15: decode (pi,j , qi,j) from wX [0:c] // recursive procedure
16: if pi,j ⊆ s[0:c] and qi,j ⊆ e[0:c] then // (s, e) ∈ pi,j · (BM )ω × qi,j · {0, 1}ω

17: return 1 // ∃ j s.t. (s, e) ∈ pi,j · (BM )ω × qi,j · {0, 1}ω

18: i ← i+1, j ← 0 // test if (s, e) ∈ pi+1,0 ·(BM )ω ×qi+1,0 ·{0, 1}ω

19: else // (s, e) ̸∈ pi,j · (BM )ω × qi,j · {0, 1}ω

20: return 0 // ¬∃j′ ≤ j s.t. (s, e) ∈ pi,j′ · (BM )ω × qi,j′ · {0, 1}ω

21: i ← i, j ← j + 1 // test if (s, e) ∈ pi,j+1 · (BM )ω × qi,j+1 · {0, 1}ω

22: end if
23: end loop
24: END SUBROUTINE 2
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We now conversely show that every ω-language recognized by some nonde-
terministic Ev-RNN is analytic.

Proposition 2. Let (N , E) be some nondeterministic Ev-RNN[R]. Then
L(N ) ∈ Σ1

1.

Proof. First of all, note that the dynamics of (N , E) can naturally be associated
with the function f(N,E) : (BM )ω × E → (BP )ω defined by f(N,E)(s, e) = c′

(s,e).
The nature of our dynamics ensures that this function is sequential, i.e., for any
time step t ≥ 0, the vectors s(t), e(t) and y(t) are generated simultaneously.
Therefore, given any basic open set w · (BP )ω, with w ∈ (BP )∗, one has that
f−1
(N,E)(w ·(BP )ω) is of the form Θw =

⋃
i∈I

[
ui · (BM )ω × (vR,i · ([S, S′]K)ω ∩ E)

]

with each ui ∈ (BM )|w| and vR,i ∈ ([S, S′]K)|w|. Notice that for each i ∈ I,
vR,i · ([S, S′]K)ω ∩ E is closed (inside E) and ui · (BM )ω is clopen, and hence
(ui · (BM )ω) × (vR,i · ([S, S′]K)ω ∩ E) is closed. By [4, Lemma9], it follows that
given any ui and vR,i as above, there exists IQ,i = (

∏K
k=1 ]aj,k, bj,k[)j<|w|, where

each aj,k, bj,k ∈ Q and vR,i ∈ IQ,i, and such that

f(N,E)

[
ui · (BM )ω × (IQ,i · ([S, S′]K)ω ∩ E)

]
⊆ w · (BP )ω.

One thus has Θw =
⋃

i∈I

[
ui · (BM )ω × (IQ,i · ([S, S′]K)ω ∩ E)

]
. Since there exist

only countably many ui and IQ,i, it turns out that Θw is a countable union of
closed sets, i.e. a Σ0

2 set, which shows that f(N,E) is of Baire class 1, cf. [12].3
Furthermore, note that since N contains finitely many output cells, is also

has finitely many possible Boolean states, and therefore also finitely many pos-
sible attractors. This feature is independent from the nondeterministic behavior
associated with the set of possible evolutions E. Hence, suppose that N con-
tains the I meaningful attractors Ai = {bi1 , . . . , bik(i)}, for i = 1, . . . , I, where
1 ≤ i1 < . . . < ik(i) ≤ 2P , and where bn denotes the n-th Boolean vector of BP

according to the lexicographic order.
According to these considerations, the ω-language L(N ) can be expressed by

the following sequence of equalities:

L(N ) =
{
s ∈ (BM )ω : there exists e ∈ E s.t. inf(c′

(s,e))is a meaningful attractor
}

=
{
s ∈ (BM )ω : there exists e ∈ E s.t. inf(c′

(s,e)) = Ai, for some i = 1, . . . , I
}

= π1

({
(s, e) ∈ (BM )ω × E : inf(c′

(s,e)) = Ai, for some i = 1, . . . , I
})

= π1

( I⋃

i=1

{
(s, e) ∈ (BM )ω × E : inf(c′

(s,e)) = Ai
})

= π1

( I⋃

i=1

{
(s, e) ∈ (BM )ω × E : ∀j ∈ {i1, . . . , ik(i)}, f(N,E)(s, e) has ∞-many b′

js

and ∀j ∈ {1, . . . , 2P }\{i1, . . . , ik(i)}, f(N,E)(s, e) has finitely many b′
js
})

3 We recall that the preimage by a Baire class 1 function of a set in Σ0
n (resp. Π0

n) is
in Σ0

n+1 (resp. Π0
n+1).
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= π1

( I⋃

i=1

[ ⋂

j∈{i1,...,ik(i)}

{
(s, e) ∈ (BM )

ω × E :

f(N,E)(s, e) ∈
⋂

n≥0

⋃

m≥0

(BP )n+m · bj · (BP )ω

︸ ︷︷ ︸
c′
(s,e) contains infinitely many b′

j s, i.e.

∀n≥0 ∃m≥n y(n+m) = bj , thus in Π0
2

}
∩

⋂

j∈
{1,...,2P }\

{i1,...,ik(i)}

{
(s, e) ∈ (BM )ω × E :

f(N,E)(s, e) ∈
( ⋂

n≥0

⋃

m≥0

(BP )n+m · bj · (BP )ω
)!

︸ ︷︷ ︸
c′
(s,e) contains only finitely many b′

j s, i.e.

complement of a Π0
2 -set, thus in Σ0

2

}])

= π1

( I⋃

i=1

[ ⋂

j∈{i1,...,ik(i)}
f−1
(N,E)

( ⋂

n≥0

⋃

m≥0

(BP )n+m · bj · (BP )ω
)

︸ ︷︷ ︸
preimage by a Baire class 1 function of a Π0

2 -set, thus in Π0
3[12]

∩

⋂

j∈
{1,...,2P }\

{i1,...,ik(i)}

f−1
(N,E)

(( ⋂

n≥0

⋃

m≥0

(BP )n+m · bj · (BP )ω
)!)

︸ ︷︷ ︸
preimage by a Baire class 1 function of a Σ0

2 -set, thus in Σ0
3[12]

])

It follows that L(N ) is a projection of a finite union and intersection of Π0
3 and

Σ0
3 subsets of the Polish space (BM )ω × E, and therefore, L(N ) ∈ Σ1

1. ⊓0

Finally, Propositions 1 and 2 allow to conclude that nondeterministic evolving
neural networks recognize precisely the set of all analytic sets, irrespective of
whether their synaptic weights are modelled by rational or real numbers.

Theorem 1. Let L ⊆ (BM )ω. The following conditions are equivalent:

1. L ∈ Σ1
1;

2. L is recognizable by some nondeterministic Ev-RNN[Q] (N , E);
3. L is recognizable by some nondeterministic Ev-RNN[R] (N , E).

Proof. (1) → (2) is provided by Proposition 1. (2) → (3) holds by definition.
(3) → (1) is provided by Proposition 2. ⊓0

6 Discussion

We have introduced a model of nondeterministic hybrid recurrent neural net-
works. The nondeterminism is expressed as a set of possible synaptic evolutions
associated with each neural network. The network chooses one of these in a non-
deterministic manner, and then sticks to it throughout its whole computational
process. In this context, we have proven that the two models of rational-weighted
and real-weighted nondeterministic hybrid neural networks are computation-
ally equivalent, and recognize precisely the class of all Σ1

1 neural ω-languages.
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They are therefore strictly more expressive than the nondeterministic Büchi and
Muller Turing machines, which recognize the Σ1

1 (lighface) ω-languages.
These results together with those of [5] show that nondeterminism injects

an extensive amount of computational power – from BC(Π0
2) to Σ1

1 – to the
hybrid neural systems. Besides, as opposed to the deterministic case, the con-
sideration of real synaptic weights in the present nondeterministic context does
actually not add any additional computational power to the neural networks.
The added value of the power of the continuum is somehow absorbed by the
nondeterminism, and any kind of analog assumption can therefore be dropped
without compromizing the achievement of a maximal computational power. More
generally, these achievements support the idea that the nondeterminism plays a
crucial role in neural information processing. They also support the claim that
recurrent neural networks represent a natural model of computation beyond the
Turing limits [8].

For future work, the study of the computational capabilities of more biolo-
gically-oriented neural models involved in more bio-inspired paradigms of com-
putation is expected to be pursued.

Finally, we hope that such comparative studies between the computational
capabilities of neural models and abstract machines might eventually bring fur-
ther insight to the understanding of the intrinsic natures of both biological as
well as artificial intelligences.
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