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Abstract. We show that any finite state automaton can be simulated
by some neural network of Izhikevich spiking neurons composed of inter-
connected synfire rings. The construction turns out to be robust to the
introduction of two kinds of synaptic noises. These considerations show
that a biological paradigm of neural computation based on sustained
activities of cell assemblies is indeed possible.
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1 Introduction

In neural computation, the issue of the computational capabilities of neural
networks is of central importance.

In this context, it has early been observed that Boolean recurrent neural net-
works are computationally equivalent to finite state automata [1–3]. These results
opened the way to studies about simulations of finite automata by neural network
models, with the aim of improving the implementation of finite state machines
on parallel hardwares [4]. Nowadays, the computational power of diverse neural
models have been shown to range from the finite automaton degree [1–4], up to
the Turing [5,6] or even to the super-Turing level [7,8].

But from a biological perspective, the following question naturally arises:
can the implementation of abstract machines be extended to the context of
(more) biological neural networks? In fact, in biological nets, information is
more likely processed by cell assemblies rather than by isolated entities [9,10],
“mental states” are most probably represented by sustained activities of such
assemblies rather than by specific spiking configurations, single neural connec-
tions are unreliable, and neural nets are subjected to various mechanisms of
plasticity [11].

Along these lines, a novel paradigm of neural computation based on Boolean
networks composed of synfire rings [9,10,12] has recently been proposed [13]. In
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this paper, we show that this paradigm can be extended to the context of more
biological neural networks, in accordance with the approach pursued in [14].
More precisely, we prove that any finite state automaton can be simulated by
some neural network of Izhikevich spiking neurons [15] composed of intercon-
nected synfire rings [12]. Furthermore, the obtained network is robust to the
introduction of two kinds of synaptic noises. Our construction is general and can
be realized for any finite state automaton. These considerations intend to show
that a biological paradigm of neural computation based on sustained activities
of cell assemblies is indeed possible.

2 Finite State Automata and Boolean Recurrent Neural
Networks

Boolean recurrent neural networks are computationally equivalent to finite state
automata [1–3]. On the one hand, any Boolean neural network can be simulated
by some finite state automaton, and on the other hand, any finite automaton
can be simulated by some Boolean network.

In Minsky’s original construction [3] (known to be not optimal), a finite
automaton with n states and k input symbols is simulated by a Boolean network
whose cells are organized in a k×n grid. The grid structure displays one row and
one column of cells per input symbol and computational state of the automaton,
respectively. The weighted synaptic connections are suitably chosen in such a way
that, if the automaton and its corresponding network are working in parallel on
a same input stream, then the cell of location (i, j) in the network’s grid will
produce a spike if and only if the automaton is currently receiving the i-th
input symbol and visiting the j-th computational state. In this precise sense,
the computation of the original automaton is simulated by the spiking pattern
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Fig. 1. Translation from a finite state automaton A (panel (a)) to an equivalent
Boolean recurrent neural network N (panel (b)). The fact that A receives input a
or b at time t is reflected by the input cells (u0, u1) of N taking values (1, 0) or (0, 1),
respectively. The “start” cell spikes only at time t = 0 in order to initiate the dynamics.
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Table 1. Simulation of automaton A of Fig. 1(a) by its corresponding network N of
Fig. 1(b) and by its corresponding network of synfire rings N ′ of Fig. 3.

Inputs of A a b a a a · · ·
States of A 1 3 2 3 3 · · ·
Cell u0 of N 1 0 1 1 1 · · ·
Cell u1 of N 0 1 0 0 0 · · ·
Cell start of N 1 0 0 0 0 · · ·
Spiking cell of N – ca,1 cb,3 ca,2 ca,3 ca,3

Active synfire ring of N ′ – Ra,1 Rb,3 Ra,2 Ra,3 Ra,3

of the corresponding network. This translation from a given finite automaton to
its corresponding Boolean network is illustrated in Fig. 1.

A parallel simulation of the automaton and corresponding Boolean network
of Fig. 1 is illustrated in Table 1. We see that the consecutive input symbols i and
computational states j of A are correctly reflected by the sequence of spiking
cells ci,j of N , with a time delay of 1.

3 Finite State Automata and Boolean Networks
of Synfire Rings

An alternative way of simulating finite state automata by means of Boolean
recurrent neural networks made up of interconnected synfire rings has rencently
been proposed [13]. The general idea consists in replacing each cell ci,j of the
Boolean network of Fig. 1(b) by a synfire chain that loops back in on itself –
referred to as a synfire ring Ri,j [12] – illustrated in Fig. 2(a). In this way, each
computational state of the original automaton will no more correspond to the
punctual activity of a specific cell, but rather to the sustained activity of a
specific synfire ring, that will persist until the appearance of the next input.

In order to complete the construction, the transitions between the various
synfire rings shall correspond precisely to those between the cells of the network
of Fig. 1(b). For this purpose, each excitatory connection between cells ci,j and
ci′,j′ (black connections of Fig. 1(b)) is replaced by a fibre of excitatory con-
nections between the corresponding synfire rings Ri,j and Ri′,j′ which connects
every cells of Ri,j to every cells of Ri′,j′ (all-to-all connections). In addition, each
synfire ring is associating with a so-called “triangular structure”, illustrated in
Fig. 2(b). This structure ensures that, every time a specific synfire ring is acti-
vated, it will inhibit all other rings, in order to remain the only one active, as
explained in Fig. 2(b). Finally, weights of the input, intra-ring and inter-ring
connections need to satisfy the following conditions:
(C1) The sole activity of the inter-ring connections does not suffice to activate
any of the synfire ring.
(C2) The combined activity of the input cell and inter-ring connections is suf-
ficiently large to activate the targeted synfire ring.
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Fig. 2. (a) A synfire ring with n layers. Each cell of each layer is connected to all cells
of the next layer. (b) The triangular structure associated to each synfire ring. Each
large node represents a synfire ring and each little node represents a single cell. The two
downward blue edges represent fibres of excitatory connections of weight 1 projecting
from every cells of the upper ring to the blue and red units. The downward red edges
represent fibres of sufficiently large inhibitory connections projecting from the red unit
to every cells of the targeted synfire ring. If the upper ring fires at time t, it activates
both red and blue cells at time t+ 1. Consequently, from time t+ 2 onwards, all other
synfire rings, represented by the lower nodes, are inhibited via the red connections, and
the red cell is also inhibited via the horizontal red connection. (Color figure online)
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Fig. 3. Boolean recurrent neural network N ′ made up of interconnected synfire rings
which simulates the automaton of Fig. 1(a). Each large node represents a synfire ring,
as illustrated in Fig. 2(a). To each synfire ring is associated a triangular structure, as
described in Fig. 2(b).

(C3) The inhibitory connections projecting from the triangular structures to
the other synfire rings must be sufficiently negative to inhibit the total activity
of the rings onto which they project.
The Boolean network of synfire rings associated to the automaton of Fig. 1 is
illustrated in Fig. 3.
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It was shown that every computation of the original automaton is correctly
simulated by a corresponding sequence of sustained activities of synfire rings in
the corresponding network [13]. More precisely, when the two systems are run
in parallel on a same input stream, the synfire ring Ri,j of the network – and
only this one – will fire at a certain time step if and only if the automaton is
currently receiving the i-th input symbol and visiting the j-th computational
state. Moreover, the activity of that specific ring is self-sustained as long as no
other input is received.

A parallel simulation of the automaton of Fig. 1(a) and its corresponding
Boolean networks of synfire rings of Fig. 3 is illustrated in Table 1. We see that
the consecutive input symbols i and computational states j of automaton A are
correctly reflected by the sequence of active rings Ri,j of network N ′.

The proposed construction can be applied to any finite state automaton.
Consequently, the following result obtains [13]:

Theorem 1. Any finite state automaton can be simulated by some Boolean
neural network composed of interconnected synfire rings.

4 Finite State Automata and Networks of Spiking
Neurons

We show that the simulation of finite state automata by Boolean networks of
synfire rings can be extended to the biological context of networks of spiking
neurons.

More precisely, we consider a neural network made up of Izhikevich spiking
neurons [15] with dimensionless parameters a = 0.02, b = 0.2, c = −75, d = 0.4
connected together by excitatory and inhibitory synapses with exponential
decays of rates 0.3 and 0.2, respectively. The network contains the same archi-
tecture, i.e., the same input cells, synfire rings, and triangular structures as that
of Fig. 3, but is subjected to a more complex dynamics defined by the differen-
tial equations of Izhikevich neurons [15]. Compared to the Boolean network of
Sect. 3, the excitatory inter-rings connections needed to be considerably reduced
(from 1.0 to 0.11), due to the combined activities of the neurons. The weight
matrix of the network is given in Fig. 4 (left).

This network of spiking neurons was able to perfectly simulate the behavior of
the automaton of Fig. 1(a), in the precise sense explained in Sect. 3. For instance,
Fig. 5(a1) provides the raster plot of the network’s activity where inputs a, b, a,
a, a are provided at regular intervals of 625 ms. We see that, according to the
sequence of inputs received, the network’s activity successively switches from
the groups of neurons 4 − 21 to 104 − 121 to 24 − 41 to 44 − 61 and to 44 − 61
again, which corresponds precisely to the successive activations of the synfire
rings Ra,1, Rb,3, Ra,2, Ra,3, Ra,3, as expected by the simulation process described
in Table 1. We repeated the simulations with different input streams and during
longer times, and the simulation process was always correct. It is worth noting
that the network’s dynamics shows the emergence of a regular temporal structure
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Fig. 4. Weight matrices of the network of Izhikevich neurons connected according to
the architecture described in Fig. 3. The excitatory and inhibitory weights are expresses
as percentages of the respective maximal synaptic strengths, set at 5.6 and 15.0. The
left and right panel represent the matrix without and with the addition of synaptic
noise, respectively. Neurons number 1, 2 and 3 are the start, u0 and u1 cells. Groups
of neurons 4 − 21, 24 − 41, 44 − 61, 64 − 81, 84 − 101 and 104 − 121 represent the six
synfire rings Ra,1, Ra,2, Ra,3, Rb,1, Rb,2 and Rb,3, respectively. Neurons 22−23, 42−43,
62−63, 82−83, 102−103 and 122−123 are the pairs of cells of the triangular structures
associated to the six synfire rings. The blue regions represent the input and intra-ring
connections; the green regions represent the inter-ring connections; the orange region
are the inhibitory connections projecting from the triangular structures. (Color figure
online)

induced by the synfire connectivity. Figure 5(a2) displays the synaptic current
and membrane potential of neuron 10. We see that the neuron is spiking during
the activation of the first synfire ring Ra,1. Afterwards, it remains quiet and
endures the three successive massive inhibitions occurring at every switch of
synfire ring activity.

Moreover, the simulation process turns out to be robust to the introduction
of two kinds of synaptic noises. First, we perturbed the inter-ring, intra-ring
and inhibitory connections with a centred Gaussian noise of about 10% of the
original weights, as depicted in Fig. 4(left). The obtained noisy weight matrix
is given in Fig. 4(right). Secondly, we introduced a dynamic synaptic noise (or
membrane noise), by distorting the membrane current with a standard Gaussian
noise at every updating step, as illustrated by the noisy black and magenta
traces of Fig. 5(b2). Figure 5(b1) provides the raster plot of the network’s activity
subjected to these two kinds of synaptic noises, and shows that the simulation
of the automaton is still correctly performed.

Besides, it is known that different kinds of neurons – e.g., Izhikevich thalamo-
ortical (TC-IZH) [15], Izhikevich necortical regular-spiking (RS-IZH) [15], Izhike-
vich resonator (RZ-IZH) [15], exponential integrate-and-fire (RS-EIF) [16], mul-
tiple-timescale adaptive-threshold (RS-MAT) [17] – exhibit different properties
in transmitting temporal information accurately and reliably when organized
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Fig. 5. (a1) Raster plot of the network’s activity, when receiving the sequence of inputs
a, b, a, a, a. (b1) Synaptic current (black) and membrane potential of neuron 10
(magenta) over time. (a2) Raster plot of the network’s activity subjected to two kinds
of synaptic noise, when receiving the sequence of inputs a, b, a, a, a. (b2) Synaptic
current (black) and membrane potential of neuron 10 (magenta) over time, when the
network is subjected to the two kinds of synaptic noises. (Color figure online)

either into simple chains [18] or into synfire chains [19]. Our network involves
Izhikevich neurons whose dynamics resembles that of simple McCulloch and
Pitts’ cells. But by carefully tuning our synaptic connections, we were also able
to correctly simulate the behavior of the finite automaton of Fig. 1(a) with net-
works of synfire rings composed of either TC-IZH or RS-IZH or RZ-IZH neu-
rons (with dimensionless parameters a = 0.02, b = 0.25, c = −65, d = 2 or
a = 0.02, b = 0.2, c = −65, d = 8 or a = 0.1, b = 0.26, c = −65, d = 2, respec-
tively, cf. [18]), as well as with many other kinds of Izhikevich neurons. The
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synaptic weights of the networks composed of the three types of aforementioned
neurons are given in Table 2.1

Table 2. Synaptic weights (s.w.) of three networks composed of three types of Izhike-
vich neurons, each of which correctly simulates the finite automaton of Fig. 1(a).

TC-IZH RS-IZH RZ-IZH

Input s.w. (light blue Fig. 3) 0.45 1.11 0.1305

Intra-ring s.w. (grey Fig. 2(a)) 0.8 1.83 0.8

Inter-ring s.w. (black Fig. 3) 0.049 0.09 0.02

Inhib. s.w. (dashed red Fig. 3) −2.0 −6.0 −2.0

Triangle s.w. (dark blue & solid red Fig. 3) 1.0 & −1.1 1.0 & −2.0 1.0 & −1.1

Finally, note that the above construction is generic: it can be applied to any
finite state automaton. Consequently, Theorem 1 can be extended to this more
biological context.

Theorem 2. Any finite state automaton can be simulated by some noisy neural
network of Izhikevich spiking neurons composed of interconnected synfire rings.

5 Conclusion

We showed that any finite state automaton can be simulated by some neural
network of Izhikevich spiking neurons composed of interconnected synfire rings.
Our construction turns out to be robust to two kinds of local synaptic noises as
well as to the consideration of various types of Izhikevich neurons. This feature
is based on the fact that the correctness of our simulation process does not rely
on the processing of precise temporal information [18,19], but rather on simple
activation and self-sustainability of specific synfire rings, which is a coarser fea-
ture. We however noticed that our construction turns out to be highly sensitive
to global changes of the synaptic weights.

With these achievements, we do not intend to argue that brain computa-
tional processes really proceed via simulations of finite state automata in the
very way that we described. Rather, our intention is to show that a bio-inspired
paradigm of abstract neural computation based on sustained activities of neural
assemblies is indeed possible, and potentially harnessable. As a consequence, bio-
logical neural networks should in principle be capable of simulating the abstract
computational model represented by finite state automata, whether via the pro-
posed paradigm, or via some other one.

For future work, we plan to extend these results to the Turing complete level
of computation. Towards this purpose, the networks should be able to encode an
1 For the case of RS-IZH neurons, the exponential decay’s rate of the excitatory

synapses has been changed from 0.3 to 0.4.
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unbounded amount of information representing the possibly unbounded content
of the Turing machine’s infinite tape throughout the computational process. The
biological plausibility of this feature is expected to be explored.
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