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Abstract—We consider echo state networks (ESNs) for text
classification. More specifically, we investigate the learning ca-
pabilities of ESNs with pre-trained word embedding as input
features, trained on the IMDb and TREC sentiment and ques-
tion classification datasets, respectively. First, we introduce a
customized training paradigm for the processing of multiple
input time series (the inputs texts) associated with categorical
targets (their corresponding classes). For sentiment tasks, we
use an additional frozen attention mechanism which is based
on an external lexicon, and hence requires only negligible
computational cost. Within this paradigm, ESNs can be trained
in tens of seconds on a GPU. We show that ESNs significantly
outperform their Ridge regression baselines provided with the
same embedded features. ESNs also compete with classical Bi-
LSTM networks while keeping a training time of up to 23 times
faster. These results show that ESNs can be considered as robust,
efficient and fast candidates for text classification tasks. Overall,
this study falls within the context of light and fast-to-train models
for NLP.

Index Terms—reservoir computing, echo state networks, nat-
ural language processing, text classification

I. INTRODUCTION

Recurrent neural networks (RNNs) refer to the class of
artificial neural networks that contain recurrently intercon-
nected units. This architecture endows the networks with
valuable memory capabilities, making them ideal candidates
for the learning of sequential data. Nowadays, recurrent neural
networks are mainly used in the form of LSTM or GRU-
like architectures and achieve remarkable learning capabilities
in many domains [1]. However, the performance of these
networks comes at a certain price: RNNs are hard to train [2].

Echo State Networks (ESNs) are specific types of recurrent
neural networks that are fast-to-train and particularly well-
suited for temporal tasks [3-6]." An ESN consists of an input
layer projecting onto a sparse, recurrent and random reservoir
of neurons, itself projecting onto an output layer (cf. Figure 1).
During training, the input and reservoir weights remain fixed,
and only the output weights are learned — generally via simple
regression-like methods. In this architecture, the recurrent

A similar bio-inspired approach was introduced independently under the
name of Liquid State Machines (LSMs) [7, 8].

reservoir first performs a non-linear transformation of the
sequential inputs, and the output layer then computes a simple
mapping of the transformed inputs. Thus, ESNs can be con-
sidered as a temporal kernel method [9]. ESNs are easily and
quickly trainable models that have been successfully applied to
a wide variety of machine learning problems [9, 10]. Recently,
they have been expanded into deeper architectures [11].

In the field of natural language processing (NLP), text
classification tasks represent a major topic with numerous
applications in business intelligence, marketing, finance, and
politics, among others [12, 13]. In this domain like in many
other applicative areas of machine learning, classical methods
like linear Support Vector Machines [14] have nowadays
been mainly supplanted by highly efficient deep learning
approaches [15]. But deep methods often require a large
amount of training data and can be slow to train.

Due to their recurrent nature as well as their simplicity of
training, and because input texts are specific kinds of sequen-
tial data, ESNs represent a relevant fit for natural language
processing problems. In fact, ESNs have already been used in
the context of NLP. For instance, in an early seminal work, a
first RNN-based language model not far from the reservoir
computing approach was introduced by Elman [16]. More
recently, a series of studies considering ESNs in the context
of grammatical inference with applications in human-robot
interaction has been proposed [17-21]. Furthermore, ESNs
have been used in the context of named-entity recognition
(NER), thus involving word-level rather than sentence-level
classification features [23]. ESNs have also been used for text
classification [22, 24], yet with different approaches from ours,
resulting in significantly slower training times [24]. A more
detailed discussion of these methods is provided in Section I'V.

Here, we pursue the study of ESNs for text classification
tasks. More specifically, we investigate the learning capabili-
ties of ESNs with pre-trained word embedding as input fea-
tures, trained on the IMDb and TREC sentiment and question
classification datasets, respectively. First, we introduce a cus-
tomized training paradigm for the processing of multiple input
time series (the successive embedded texts) associated with



categorical targets (their corresponding classes). For sentiment
tasks, we make use of an external lexicon in order to build a
straightforward frozen attention mechanism that requires only
negligible computational cost. Within this paradigm, ESNs
can be trained in tens of seconds on a GPU. We show
that ESNs significantly outperform their Ridge regression
baselines provided with the same embedded features. ESNs
also compete with classical Bi-LSTM networks while keeping
a training time of up to 23 times faster, depending on he
dataset. These results show that ESNs can be considered as
robust, efficient and fast candidates for text classification tasks.
Overall, this study falls within the context of light and fast-
to-train models for NLP.

II. ECHO STATE NETWORKS

A. Definition

An echo state network (ESN) is a recurrent neural network
composed of N, input units, /N, hidden units composing
the so-called reservoir, and N, output units (cf. Figure 1).
The input units project onto the reservoir, which is itself
recurrently connected, and projects onto the output units.
The input-to-reservoir, reservoir-to-reservoir and reservoir-to-
output connections are respectively given by the following
weight matrices

Win c RNIX(1+N1L)

Wies € RN

Wout c RNyX(1+Nz)
where W (j,14) is the weight of the directed connection from
cell i to cell j, for W € {Wip, Wies, Wyt }, and the first

columns of Wy, and W, represent the biases of the reservoir
and output cells, respectively.

inputs reservoir outputs

Wres

Fig. 1: An echo state network. The network consists of an input layer, a
reservoir and an output layer connected together by the weights matrices
Win, Wies and Woyt. The weights from Wi, and W are fixed, while
those from Wyt (in red) are trainable.

In this work, we consider Leaky Integrator ESNs. The
inputs, reservoir state and outputs of the network at time ¢t > 0
are denoted by u(t) € RM«, x(t) € RN+ and y(t) € RV,
respectively. The state x(0) is the inifial state. The dynamics
of the network is then given by the following equations:

X(t+1) = fres (Win[Lu(t +1)] + Wiesx(2)) (1)
x(t+1) = (1 —a)x(t) + ax(t+1) ()
y(t+1) = fou (Wour[1,x(t +1)]) 3)

where [a, b] denotes the concatenation of a and b, x(0) is the
initial state, fres and fou4 are the activation functions of the
reservoir and output cells (applied component-wise), and « is
the leaking rate (0 < o < 1). The leaking rate controls the
update speed of the reservoir dynamics: larger leaking rates
mean faster reacting reservoirs, since the contribution of the
previous state in the updating process is reduced [10].

The input weights Wj,, are initialized randomly from a
uniform distribution U(—a, a), where a is the input scaling.
The input scaling determines the extent of nonlinearity of the
reservoir response: in fact, larger input scalings will drive the
reservoir units into larger activation values, where f..s operates
in a more non-linear regime [10]. The input weights Wj,, are
kept fixed during the whole training process.

The reservoir weights W, are drawn from the uniform
distribution #/(—1,1), and then randomly set to 0 with a
sparsity rate of 99%. Afterwards, W is rescaled such that
the spectral radius®* of the matrix W = (1 — a)I + aW,
denoted by p(W), is equal to some desired value p < 1.
Formally, setting

_r=(1-0)
Wres L ap(Wres) Wres
ensures that p(W) = (1 — o) + ap(Wyes) = p < 1. The
reservoir weights W4 are also kept fixed during training.

The rescaling of W, is performed with the aim to
satisfy the echo state property (ESP) — a set of mathemat-
ical conditions under which a consistent learning can be
achieved [3, 25, 26]. Intuitively, the ESP states that, as the
network processes its successive inputs, the induced reservoir
states should depend less and less on the initial conditions
and more and more on the input history — until asymptotically
acting as an “echo” of the past inputs only. In practice,
choosing some spectral radius p < 1 and rescaling Weg
such that p((1 — a)I + aW,ss) = p ensures that the echo
state property is satisfied in most situations [9, 10]. The
spectral radius p modulates the effect of the past inputs on
the successive reservoir states: larger spectral radii correspond
to longer input memories [10].

In an ESN, only the output weights W, are trained. The
training process can be described as follows. Consider some
training set S composed of temporal inputs and associated
targets, i.e.,

S= {(u(t),ytarget(t)) t=1,... ,T}.

Let x(1),...,x(T) and y(1),...,y(T) be the successive
reservoir states and predictions obtained when running the
ENS on inputs u(l),...,u(T), respectively (cf. Equa-
tions (1)—(3)). Then, the output weights W,y are computed
by minimizing some cost function £ of the predictions and
targets via any desired learning algorithm. Usually, some
initial transient of the ESN dynamics is used as a warm-
up of the reservoir, and Wy, is computed on the basis of

2The spectral radius of a matrix W, denoted by p(W), is the largest
absolute value of the eigenvalues of W.



the remaining suffix of collected states, predictions and and
targets [10]. Note that an ESN with IV, reservoir units contains
only [Wey| = Ny x (1 + N,) learning parameters (e.g.,
2002 parameters for an ESN of size 1000 used for binary
classification).

In this study, we simply let W, be given by the closed-
form solution of a Ridge regression, i.e.,

WoutT _ (XTX + )\I)fleytarget

where X and y'%'8°' are the row-wise concatenations of
reservoir states and targets, respectively, and A € R¥ is the
regularization parameter.

B. Many-to-one training paradigm

Classical temporal tasks involve time series where each
point is associated with a corresponding target. By contrast,
in the present case, the task comprises multiple time series as
inputs — the successive embedded texts — each of which being
associated with only one output target — its corresponding
class. We propose a customized training process targeted at
this many-to-one paradigm.

Consider some training set composed of input texts (7;)~_;

. . target
associated with classes (y;*"**")L;:

S = {(Ti,yzarget) 1i= 1,...,T}.

Let E be some word embedding of dimensions D which maps
every text 7; onto the matrix E., € RITi1XD | where the rows
of E., are the successive embedded words of 7;. The many-
to-one training procedure, illustrated in Figure 2, is described
as follows:

1) Warm up: Run the ESN freely on a sufficiently large
embedded text and record the final reservoir state Xyarm,
referred to as the warm state.

2) Embedding + ESN + merging: For each text 7;:

a) Initialize the reservoir state t0 Xyarm-

b) Embed text 7; into the matrix E,, € RIiIxD,

c) Run the ESN on the sucessive inputs E. &
RITIXP and collect the corresponding reservoir
states X,, € RI7I*Ne The rows of X, are the
reservoir states obtained by running the ESN on
the rows of E_,.

d) Apply a merging strategy ms : RI7i/xNe — RN= i
order to transform the sequence of reservoir states
X, into a single merged state x,, = ms(X,).

3) Training: Consider the new training set composed
of merged states (x,, )., and associated targets

(") s

S = {(xn,ygarget) = 1,...,T},

and compute W,,; as the closed-form solution of a
Ridge regression for this supervised learning problem.
Two main merging strategies are considered:
e Mean: each merged state x,, is simply the mean of the

reservoir states (rows) of X,,, i.e., X,, = \T1,|1TXW

e Lexicon mean: each merged state x,, is a weighted mean
of the reservoir states of X,,. The chosen weights are
not learned but fixed. They are determined on the basis
of the pre-annotated lexicon of the Semantic Orientation
CALculator (SO-CAL), which associates each word x
from the corpus with a polar sentiment score sent(z) €
[—5, 5] [27]. On that basis, each state (row) X, » of X,
is associated with a positive weight? Wy, given by

if the k-th word 7; . of 7;

1+ 2|sent(7;.1)] is in the lexicon,

Wr; k =
1 otherwise

for k = 1,...,|r;|- The merged state x., is then given

by the weighted mean of the reservoir states (rows)
: 1

of X,,, ie., X, mngn where w,, =

(Wr; 15+ -+, Wr, |r,|). Note that the computation w, only

requires |7;| lookup operations in the lexicon, and no

learning process.

For the sake of comparison, we also tested the absence of
merging strategy — called the none merging strategy — as used
in a previous study [22]. This case corresponds to a many-to-
many training paradigm. For each ¢ = 1, ..., T, the successive
reservoir states (rows) (Xn,k)l;ll of X,, are not merged
but associated with the same duplicated target y.*"®*". These
considerations lead to the extended training set

= {(ka,yz‘“gm) :i=1,...,Tand k = 1,...,|7’7;|}.

The output weights W4 are then computed as the solution of
a Ridge regression for this new supervised learning problem.
In this context, the processing of each embedded input text E,
induces a sequence of predictions (y; 1, ..., r ), instead of
a single one (cf. Equations (1)—(3)). The final prediction y; as-
sociated with embedded input text E,, is then given as the av-
erage of the output sequence, i.e., y; := avg(yi1,.--,¥i,|r|)-
Both many-to-one “mean” and “lexicon mean” merging
strategies have the advantage of keeping the cardinality of the
training set to the number of text samples (|S’| = T'). But they
also have the disadvantage of aggregating the reservoir state
dynamics in a relatively coarse manner. Still, the strategies
turn out to work surprisingly well in practice. The many-to-
many ‘“none” merging strategy results in drastically reduced
performance, both in terms of accuracy and training time.

C. Pre-trained embeddings

In this work, four classical pre-trained word embeddings of
the same dimension 300 are considered: fastText en 300d [28],
GloVe 6B-300d, GloVe 42B-300d and GloVe 840B-300d [29].
For the main results, we focused on GloVe 840B-300d. Once
downloaded, the computational cost of the embedding process
reduces to simple lookup matrix operations.

3The weighted mean strategy imposes the consideration of positive weights.
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Fig. 2: Customized training paradigm of an echo state network. Horizontal
rectangles represent vectors. Empty rectangles represent padding null vectors
enabling batch parallelization of the training process. 1. Embedding: each
raw input text is tokenized and embedded into a sequence of input vectors
(green). 2. ESN: input vectors (green) are passed through the ESN with
“warm” initial state (yellow), producing corresponding reservoir states (blue).
3. Merging strategy: reservoir states are merged into a single merged state
(blue). The process is repeated for all input texts. 4. Learning algorithm: the
output weights Wyt are computed as the solution of a supervised learning
problem whose inputs and outputs are the merged reservoir states (blue) and
the categorical targets (red), respectively (dashed rectangle).

D. Datasets

In this study, the standard IMDb dataset for binary sentiment
classification as well as the benchmark TREC-6 and TREC-50
datasets for fine-grained question classification are considered.
In this way, two different domains of text classification and
different class granularities are represented. The datasets are
described in more detail below.

IMDb. The Large Movie Review Dataset (IMDb) is a
balanced dataset for binary sentiment classification composed
of 50’000 movie reviews from IMDB labeled as positive or
negative [30].

TREC. The Text REtrieval Conference dataset (TREC) for
question classification consists of 5952 open-domain, fact-
based questions divided into broad semantic categories [31].
It has both a six-class (TREC-6) and a fifty-class (TREC-50)
version.

E. Implementation and hyperparameter tuning

The model was implemented in PyTorch 1.5.0 and the code
run on 1 GPU (32 GB of memory) of a NVIDIA V100.

The hyperparameters of interest are the input scaling a, the
leaking rate «, the spectral radius p and the regularization
parameter A. For each dataset, the tuning of a, o and p
was performed by a grid search on 20% of the training set,
using 3-fold cross validation and averaging over random 5
seeds, in order to attenuate the initialization effect of the ESN.
Afterwards, for each reservoir size, the best hyperparameters
a, o and p were kept fixed, and an additional tuning of A was
performed via linear search.

IIT. RESULTS

This section analyzes the learning performance of ESNs on
the IMDb and TREC datasets and compares it with that of
corresponding RR-baselines and benchmark models.

A. Effect of embedding

We show that the quality of the pre-trained embedding
plays a significant role in the performance of the network.
In fact, contrary to what might be assumed at first sight,
the representational properties of the embedding are actually
preserved through the random input projection and reservoir
trandsformation Wy, and W, respectively.

This feature might be explained as follows. Since the input
and reservoir weights W;, and W, are not learned but
kept fixed, they are fixed finite-dimensional linear operators
between normed spaces. Hence, Wy, and W4 are bounded
operators, and thus, are Lipschitz continuous. By composition
of Lipschitz functions, the right hand side of Equation 2,
denoted by ®(u(t + 1)), is also a Lipschitz function. This
means that there exists I € R such that ||®(u) — ®(u')|| <
L|ju— 1| for all u,u’ € RV« In other words, if L is not
too large, the distance between embedded features is preserved
through the input and reservoir projections.

These considerations are empirically confirmed by our
analyses. We trained an ESN of size 1000 as well as its
Ridge regression (RR) baseline (cf. Section III-B for a formal
definition), both with the merging strategy “mean”, on the
IMDb dataset. The following four pre-trained embeddings
of dimension 300 are used as input features: fastText en
300d [28], GloVe 6B-300d, GloVe 42B-300d and GloVe
840B-300d [29]. The test accuracies as a function of the
embeddings are reported in Figure 3. For the RR-baseline, the
accuracy for fasttext.en.300d is surprisingly larger than that for
glove.6B.300d. More complex GloVe embeddings then lead to
better performance. For the ESN, more complex embeddings
consistently lead to significantly better accuracies. The highest
improvement is achieved when passing from glove.6B.300d
to glove.42B.300d. The same pattern is observed for other
datasets.

B. Effect of the reservoir

By definition, the ESNs considered here consist of a pre-
trained embedding layer (EMB), followed by a reservoir trans-
formation (RES), followed by a Ridge regression layer (RR).
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Fig. 3: Test accuracy of an ESN of reservoir size 1000 and its RR-baseline,
both with the merging strategy “mean”, on the IMDb dataset. Four pre-trained
embeddings of dimension 300 are used as input features: fasttext.en.300d,
glove.6B.300d, glove.42B.300d and glove.840B.300d. For the ESN, results
are averaged over 10 random seeds. The points and errors bar represent the
means and standard deviations of the results, respectively.

For each ESN, we define its corresponding Ridge regression
baseline (RR-baseline) as the model composed of the pre-
trained embedding layer (EMB) directly followed by the Ridge
regression layer (RR). In this way, the comparison between an
ESN (EMB + RES + RR) and its corresponding RR-baseline
(EMB + RR) allows us to properly assess the contribution of
the reservoir to the classification results.

The accuracy of ESNs with different reservoir sizes together
with that of their corresponding RR-baselines are reported in
Figure 4 and Tables I-III. All ESNs and associated baselines
use the pre-trained embedding glove.840B.300d. The hyperpa-
rameters (input scaling a, leaking rate « and spectral radius p
and regularization parameter \) were obtained via grid search
as described in Section II-E. The results are averaged over
5 random seeds. For RR-baselines, A was also optimized
via linear search. Since these methods are deterministic, no
multiple seeds were used.

For all datasets and all merging strategies, the ESNs out-
perform their corresponding RR-baselines significantly. Re-
garding IMDb, the ESNs with reservoir size 500 already
surpass their RR-baselines. Moreover, the accuracy increases
monotonously with the reservoir size, but flattens for larger
reservoirs. For reservoirs of size 5000, the ESNs exceed
their baselines by about 2.5 points of accuracy. For TREC-6
and TREC-50, The ESNs also significantly surpass their RR-
baselines, from a reservoir size of 500 onwards. For TREC-6,
the accuracy increases up to a reservoir of 3000, and then stag-
nates for larger reservoirs. This effect may reflect an overfitting
behavior of large reservoirs, or might be due to a non-optimal
grid search for the optimization of hyperparameters. We would
lean towards the second alternative. In this case, the ESNs with
reservoir size 5000 outperform their RR-baselines by up to 12
points of accuracy. For TREC-50, the trend is monotonously
increasing, with even a bouncing effect for large reservoirs.
Here, the ESNs with reservoir size 5000 considerably surpass
their RR-baselines by about 19 points of accuracy.

These results show that the temporal dynamics captured by
the reservoir drastically improves the classification results.
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Fig. 4: Performance of ESNs, RR-baselines and Bi-LSTM over the datasets
IMDb, TREC-6 and TREC-50. Blue and red solid traces: Test accuracy of
ESNs with increasing reservoir size using the ‘lexicon mean” (blue trace) and
the “mean” (red trace) merging strategies, respectively. Results are averaged
over 5 random seeds: the points and associated error bars represent the
means and standard deviations of the accuracy, respectively. Blue and red
dashed traces: Test accuracy of RR-baselines with ‘lexicon mean’ (blue trace)
and “mean’ (red trace) merging strategies, respectively. Black traces: Test
accuracy of Bi-LSTM with 2 X 128 units trained during 50 epochs. Results
are averaged over 5 random seeds. Dashed lines and shaded areas around
them represent the mean and standard deviation of the accuracy, respectively.

C. Effect of merging strategies

Both “mean” and “lexicon mean” merging strategies have
the great advantage of keeping the cardinality of the training
set to the number of texts only (|S’| = T'). This characteristic



enables a fast training process. On the other hand, the “mean”
strategy has the disadvantage of aggregating the reservoir
states in a coarse way. The “lexicon mean” is more refined, but
targeted at sentiment tasks only, due to the very nature of the
SO-CAL lexicon. It can be regarded as a rudimentary frozen
attention mechanism with negligible additional computational
cost. Accordingly, it doesn’t increase the training time. The
“none” merging strategy, by contrast, increases the cardinality
of the training set from |S’| = T to |S”'| = Z?:l |7:], resulting
in an increased training time.

The results for the ESNs and their RR-baselines are reported
in Tables I-III. For RR-baselines, we see that the “none”
merging strategy leads to drastically inferior performance than
its competitors, both in terms of accuracy and training time
(e.g., for IMDDb, the “none”, “mean” and “lex. mean” merging
strategies lead to accuracies of 76.25%, 85.11% and 86.06%,
respectively). The largest performance gap is observed for
the TREC-50 dataset, where the “none” and “mean” merging
strategies lead to accuracies of 27.40% and 65.20%, respec-
tively. The significant performance drop of the “none” merging
strategy was also consistently observed in the context of ESNs,
and for all datasets. Consequently, the study of this strategy
has eventually been discarded.

We now focus on the “mean” and “lexicon mean” merging
strategies for ESNs. As expected, in the context of a sen-
timent task (IMDb), the “lexicon mean” strategy performs
significantly better than the “mean” one, providing a gain
of about 0.7 accuracy point while maintaining an equivalent
training time (cf. Figure 4 and Table I). For non-sentiment
tasks (TREC-6, TREC-50), the “lexicon mean” strategy either
slightly degrades or tend to coincide with the performance of
the “mean” (cf. Figure 4 and Table II-III). For TREC-50, the
performance of the “mean” and “lexicon mean” strategies are
surprisingly similar.

Overall, despite their simplicity, both merging strategies
work surprisingly well. For the sentiment task, the added value
of the “lexicon mean” strategy is significant.

D. Comparison with Bi-LSTM and state-of-the-art models

LSTM and Bi-LSTM networks represent benchmark ap-
proaches for prediction and classification of sequential data. In
the context of text classification, several state-of-the-art models
are based on improved Bi-LSTM architectures [32].

In order to compare the performance of ESNs to that of
benchmark models, we trained a standard Bi-LSTM network
on the IMDb and TREC datasets. The network is composed
of 1 hidden layer with 2 x 128 units. The cross-entropy
loss and Adam optimizer with default parameters were used,
and training was performed during 50 epochs. Results are
reported in Figure 4 and Tables I-IIIl. We see that ESN with
sufficiently large reservoir size significantly outperform the Bi-
LSTM networks. More importantly, we see that the training
time of the ESNs is from 4 to more than 20 times faster
than that of the Bi-LSTM networks. The difference in training
time is more important for large datasets and small number
of classes. Indeed, on TREC-50 and TREC-6, the training of

ESNs is about 4 and 10 times faster than that of the Bi-LSTM,
respectively. On IMDB, if is about 23 times faster. Clearly,
increasing the number of layers and units of the Bi-LSTM
networks would eventually lead to an over-performance of
these models over the ESNs. But the training time and number
of parameters would also be drastically increased.

As far as state-of-the-art models are concerned, on IMDB,
the best reported model achieves an accuracy of 96.21% [33]
(cf. NLP-progress). On TREC-6 and TREC-50, best models
reach the remarkable accuracy of 98.07% [34] and 97.2% [35],
respectively (cf. NLP-progress). For IMDB and TREC-6, those
best models are children of the “transformer revolution” [36,
37]. They are composed of transformer-like deep feedforward
(and not recurrent) architectures, and are pre-trained on huge
corpora before being fine-tuned on downstream tasks.

IMDb
Accuracy (%) Training time (sec.)

RR (none) 76.25 16.97 (batch=64)*
RR (mean) 85.11 3.74 (batch=2048)
RR (lex. mean) 86.06 2.49 (batch=2048)
Bi-SLTM (128) 87.14 + 0.40 899.32 £4.01
ESN (5000, mean) 87.78 +£0.11 38.47+0.14

ESN (5000, lex. mean) | 88.46 +0.08 39.10 +0.23

Table I: Test accuracy and training time of the RR-baselines, Bi-LSTM
and ESNs over the IMDb dataset. ESNs and RR-baselines are trained with
the merging strategies “mean” and “lexicon mean”. ESNs size is 5000 (see
Figure 4 for other reservoir sizes). Bi-LSTM contains 1 hidden layer of 2x 128
units and is trained during 50 epochs. All results are averaged over 5 seeds.

TREC-6

Accuracy (%) Training time (sec.)
RR (none) 56.20 1.92 (batch=2048)
RR (mean) 81.80 0.42 (batch=2048)
RR (lex. mean) 78.80 0.13 (batch=2048)
Bi-SLTM (128) 88.65 + 0.38 27.04 +5.11
ESN (3000, mean) 91.12+0.48 2.64 +0.12
ESN (4000, lex. mean) 90.72 + 0.66 4.35 4+ 0.09

Table II: Test accuracy and training time of the RR-baselines, Bi-LSTM and
ESNs over the TREC-6 dataset.

TREC-50

Accuracy (%) Training time (sec.)
RR (none) 27.40 1.81 (batch=2048)
RR (mean) 65.20 0.15 (batch=2048)
RR (lex. mean) 65.40 0.13 (batch=2048)
Bi-SLTM (128) 79.56 + 1.43 27.12+0.93
ESN (5000, mean) 83.96 +£0.23 7.024+0.14
ESN (5000, lex. mean) 83.32 +0.27 7.134+0.23

Table III: Test accuracy and training time of the RR-baselines, Bi-LSTM and
ESNs over the TREC-50 dataset.

IV. DISCUSSION

Regarding previous works, an important reservoir comput-
ing approach to grammatical inference with further applica-
tions in human-robot interaction has been proposed [17-21].
These studies are of a biological inspiration, exploiting the
homology between the cortico-striatal system and reservoir



computing. In this context, the system is able to learn and
predict in real-time the grammatical functions of successive
semantic words (object, predicate, agent, recipient) contained
in a sentence — with the aim to reconstructing its coded
meaning. The nature of this task imposes a many-to-many
training paradigm.

More recently, ESNs have been used on an authorship
attribution task [22]. In this context, the ESNs are enhanced
with three embedding as well as one feature extractor layers,
all of them trained via gradient descent. Despite the many-to-
one nature of the task, the networks are trained in a many-
to-may manner corresponding to the “none” merging strategy
described in the paper (use duplicated targets to achieve a 1-1
mapping between input words and targets). Results show that
ESNs compete with SVM methods.

ESNs have also been used in the context of named entity
recognition (NER) [23]. Here, various pre-trained embeddings
are also used as features. Bi-directional ESNs with logistic
regression or deep readout layers are trained via gradient
descent. The NER task imposes a many-to-many training
scheme. The method achieves competitive results in terms of
accuracy and training times.

Finally, a relevant attention-based ESN model has been
proposed in the context of question classification [24]. In this
study, a multi-ring reservoir topology is considered. The many-
to-one training scheme is achieved through the consideration
of a self-attention mechanism which concatenates the bidirec-
tional reservoir dynamics into a single contextual vector. The
enhanced model is trained via gradient descent. The model
achieves a high accuracy on the TREC-6 dataset (93.5%=+0.9)
with reasonable training time (6518 seconds). By comparison,
our model achieves an accuracy of 91.12% + 0.48 and a
training time of 2.64 £ 0.12 seconds on the same dataset. No
other dataset is considered in their study.

V. CONCLUSION

We studied the the learning capabilities of ESNs with pre-
trained word embedding as input features on two text classi-
fication tasks: sentiment analysis and question classification.
More specifically, we first proposed a customized training
paradigm targeted to the many-to-one nature of the tasks.
In this context, the many-to-one reduction of the networks’
dynamics is achieved by means of straightforward merging
strategies. This simplified representation of the sequential
inputs is actually capable of retaining relevant information
from the ESN dynamics. As a result, competitive performance
with extremely fast training times are obtained.

Nowadays, state-of-the-art NLP models achieve remarkable
performance on more and more complex tasks. Oftentimes, the
best models are children of the “transformer revolution” [36,
37]. In this context, the consideration of deep feedforward
architectures coupled with attention mechanisms and a specific
2-step training paradigm — pre-training and fine-tuning — are
capable of surpassing the power of recurrent architectures. But
those models are often monstrous in terms resources, even
if very recently, a lot of progress has been made towards

the design of smaller, faster, cheaper and lighter versions of
them [38].

In contrast, this study falls within the context of light and
fast-to-train NLP models. Our choice of rudimentary merging
strategies, as opposed to trainable attention-based ones, has
been made with the intention of prioritizing the size and speed
of the models. Our results show that ESNs can be considered
as robust, efficient and fast ML methods for text classification.
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