
Expressive Power of Evolving Neural Networks
Working on Infinite Input Streams

Jérémie Cabessa1(B) and Olivier Finkel2(B)

1 Laboratoire d’économie mathématique – LEMMA,
Université Paris 2, 4 Rue Blaise Desgoffe, 75006 Paris, France

jeremie.cabessa@u-paris2.fr
2 Institut de Mathématiques de Jussieu - Paris Rive Gauche, CNRS et Université
Paris Diderot, UFR de mathématiques case 7012, 75205 Paris Cedex 13, France

finkel@math.univ-paris-diderot.fr

Abstract. Evolving recurrent neural networks represent a natural
model of computation beyond the Turing limits. Here, we consider evolv-
ing recurrent neural networks working on infinite input streams. The
expressive power of these networks is related to their attractor dynamics
and is measured by the topological complexity of their underlying neural
ω-languages. In this context, the deterministic and non-deterministic
evolving neural networks recognize the (boldface) topological classes of
BC(Π0

2) and Σ1
1 ω-languages, respectively. These results can actually

be significantly refined: the deterministic and nondeterministic evolving
networks which employ α ∈ 2ω as sole binary evolving weight recognize
the (lightface) relativized topological classes of BC(Π0

2)(α) and Σ1
1(α) ω-

languages, respectively. As a consequence, a proper hierarchy of classes of
evolving neural nets, based on the complexity of their underlying evolv-
ing weights, can be obtained. The hierarchy contains chains of length ω1

as well as uncountable antichains.

Keywords: Neural networks · Attractors · Formal languages ·
ω-languages · Borel sets · Analytic sets · Effective Borel and
analytic sets

1 Introduction

The theoretical approach to neural computation has mainly been focused on
comparing the computational capabilities of diverse neural models with those
of abstract computing machines. Nowadays, the computational capabilities of
various models of neural networks have been shown to range from the finite
automaton degree [14–16,18], up to the Turing [20,23] or even to the super-
Turing level [4,6,19,21].

In particular, the real-weighted (or analog) neural networks are strictly more
powerful than Turing machines. They decide the complexity class P/poly in
polynomial time of computation [19]. The precise computational capabilities
of these networks can actually be characterized in terms of the Kolmogorov
c⃝ Springer-Verlag GmbH Germany 2017
R. Klasing and M. Zeitoun (Eds.): FCT 2017, LNCS 10472, pp. 150–163, 2017.
DOI: 10.1007/978-3-662-55751-8 13

jeremie.cabessa@u-paris2.fr

Expressive Power of Evolving ω-Neural Networks 151

complexity of their underlying synaptic real weights. As a consequence, a proper
hierarchy of classes of analog neural nets employing real weights of increasing
Kolmogorov complexity has been obtained [2]. On the other hand, the evolving
neural networks (i.e., those employing time-dependent synaptic weights) turn
out to be computationally equivalent to the analog ones, irrespectively of the
nature (rational or real) of their underlying synaptic weights [4,6].

More recently, based on biological as well as theoretical considerations, these
studies have been extended to the paradigm of infinite computation [3,5–10].
In this context, the expressive power of the networks is intrinsically related
to their attractor dynamics, and is measured by the topological complexity of
their underlying neural ω-languages. In this case, the Boolean recurrent neural
networks provided with certain type specification of their attractors are com-
putationally equivalent to Büchi or Muller automata [8]. The rational-weighted
neural nets are equivalent to Muller Turing machines. The deterministic and
nondeterministic analog and evolving neural networks recognize the (boldface)
topological classes of BC(Π0

2) and Σ1
1 ω-languages, respectively, and in this

respect, are super-Turing [3,9].
Here, we refine the above mentioned results for the case of evolving neural

networks. More precisely, we focus without loss of generality on evolving neural
nets employing only one time-dependent binary weight throughout their compu-
tational process. We show that the deterministic and nondeterministic evolving
networks using the sole changing weight α ∈ 2ω recognize the (lightface) rela-
tivized topological classes of BC(Π0

2)(α) and Σ1
1(α) ω-languages, respectively. As

a consequence, a proper hierarchy of classes of evolving neural nets, based on the
complexity of their underlying evolving weights, can be obtained. The hierarchy
contains chains of length ω1 as well as uncountable antichains. These achieve-
ments generalize the proper hierarchy of classes of analog networks obtained in
the context of classical computation [2].

2 Preliminaries

Given a finite set X, usually referred to as an alphabet, we let X∗ and Xω denote
the sets of finite sequences (or finite words) and infinite sequences (or infinite
words) of elements of X. A set L ⊆ X∗ or L ⊆ Xω is called a language or an
ω-language, respectively. In the sequel, any space of the form Xω will be assumed
to be equipped with the product topology of the discrete topology on X. Accord-
ingly, the basic open sets of Xω are of the form p · Xω, for some p ∈ X∗. The
general open sets are countable unions of basic open sets. In particular, the space
of infinite words of bits (Cantor space) and that of infinite words ofN -dimensional
Boolean vectors will be denoted by 2ω = {0, 1}ω and (BN)ω, respectively. They
are assumed to be equipped with the above mentioned topology.

Let (X , T) be one of the above topological spaces, or a product of such
spaces. The class of Borel subsets of X , denoted by ∆1

1 (boldface), is the σ-
algebra generated by T , i.e., the smallest collection of subsets of X containing
all open sets and closed under countable union and complementation. For every

jeremie.cabessa@u-paris2.fr

152 J. Cabessa and O. Finkel

non-null countable ordinal α < ω1, where ω1 is the first uncountable ordinal, the
Borel classes Σ0

α, Π0
α and ∆0

α of X are defined as follows:

• Σ0
1 is the class of open subsets of X (namely T).

• Π0
1 is the class of closed subsets of X , i.e., that of complements of open sets.

• Σ0
α is the class of countable unions of subsets of X in

⋃
γ<α Π0

γ .
• Π0

α is the class of countable intersections of subsets of X in
⋃

γ<α Σ0
γ .

• ∆0
α = Σ0

α ∩ Π0
α.

The Borel classes Σ0
α, Π0

α and ∆0
α provide a stratification of the class of Borel

sets known as the Borel hierarchy. One has ∆1
1 =

⋃
α<ω1

Σ0
α =

⋃
α<ω1

Π0
α [12].

The rank of a Borel set A ⊆ X is the smallest ordinal α such that A ∈ Σ0
α ∪Π0

α.
It is commonly considered as a relevant measure of the topological complexity
of Borel sets. The class of sets obtained as finite Boolean combinations (unions,
intersections and complementations) of Π0

2-sets is denoted by BC(Π0
2).

Analytic sets are more complicated than Borel sets. They are obtained as
projections of either Π0

2-sets or general Borel sets [12]. More precisely, a set
A ⊆ X is analytic if there exists some Π0

2-set B ⊆ X × 2ω such that A = {x ∈
X : (x,β) ∈ B, for some β ∈ 2ω} = π1(B) [12]. The class of analytic sets is
denoted by Σ1

1. It strictly contains that of Borel sets, i.e., ∆1
1 ! Σ1

1 [12].
The effective (lightface) counterpart of the Borel and analytic classes, denoted

by Σ0
n,Π0

n,∆0
n as well as ∆1

1 and Σ1
1, are obtained by a similar effective construc-

tion, yet starting from the class Σ0
1 of effective open sets [17]. The class of finite

Boolean combinations of Π0
2-sets, denoted by BC(Π0

2) (lightface), and that of
effective analytic sets, denoted by Σ1

1 (lightface), correspond to the collections of
ω-languages recognizable by deterministic and nondeterministic Muller Turing
machines, respectively [22]. One has BC(Π0

2) ! BC(Π0
2) and Σ1

1 ! Σ1
1.

Any topological class Γ of the underlying topological space X will also be
written as Γ ! X , whenever we want X to be specified. In addition, for any point
x ∈ X , we will use the notation x ∈ Γ to mean that {x} ∈ Γ. Besides, any
product space X × Y is assumed to be equipped with the product topology. If
A ⊆ X×Y and y ∈ Y, the y-section of A is defined by Ay = {x ∈ X : (x, y) ∈ A}.
For any class Γ equal to Σ0

1, BC(Π0
2), Σ1

1, or Π1
1 with underlying product space

X × Y, and for any y ∈ Y, we consider the relativization of Γ to y, denoted by
Γ(y), which is the class of all y-sections of sets in Γ. In other words: A ∈ Γ(y) ! X
if and only if there exists B ∈ Γ ! X ×Y such that A = By. Moreover, we denote
as usual ∆1

1(y) = Σ1
1(y) ∩ Π1

1(y) [17, p. 118].
For any α ∈ 2ω, one can show that the relativized classes BC(Π0

2)(α) and
Σ1

1(α) correspond to the collections of ω-languages recognizable by determinis-
tic and nondeterministic Muller Turing machine with oracle α, respectively. In
addition, it can be shown that x ∈ Σ0

1(α) if and only if the successive letters
of x can be produced step by step by some TM with oracle α. Besides, one has
x ∈ Σ1

1(α) iff x ∈ ∆1
1(α), for any α ∈ 2ω [17].

Finally, the spaces (BM)ω × 2ω and (BM+1)ω are isomorphic via the natural
identification. Accordingly, subsets of these spaces will be identified without it
being explicitly mentioned.

jeremie.cabessa@u-paris2.fr

Expressive Power of Evolving ω-Neural Networks 153

3 Recurrent Neural Networks on Infinite Input Streams

We consider first-order recurrent neural networks composed of Boolean input
cells, Boolean output cells and sigmoidal internal cells. The sigmoidal internal
neurons introduce the biological source of nonlinearity which is crucial to neural
computation. They provide the possibility to surpass the capabilities of finite
state automata, or even of Turing machines. The Boolean input and output
cells carry out the exchange of discrete information between the network and
the environment. When some infinite input stream is supplied, the output cells
eventually enter into some attractor dynamics. The expressive power of the net-
works is related to the attractor dynamics of their Boolean output cells.

3.1 Deterministic Case

A deterministic (first-order) recurrent neural network, denoted by D-RNN, con-
sists of a synchronous network of neurons related together in a general archi-
tecture. It is composed of M Boolean input cells (ui)Mi=1, N sigmoidal internal
neurons (xi)Ni=1, and P Boolean output cells (yi)Pi=1. The dynamics of the net-
work is computed as follows: given the activation values of the input and internal
neurons (uj)Mj=1 and (xj)Nj=1 at time t, the activation values of each internal and
output neuron xi and yi at time t + 1 are updated by the following equations,
respectively:

xi(t+1) = σ

⎛

⎝
N∑

j=1

aij(t) · xj(t) +
M∑

j=1

bij(t) · uj(t) + ci(t)

⎞

⎠ for i = 1, . . . , N (1)

yi(t+ 1) = θ

⎛

⎝
N∑

j=1

aij(t) · xj(t) +
M∑

j=1

bij(t) · uj(t) + ci(t)

⎞

⎠ for i = 1, . . . , P (2)

where aij(t), bij(t), and ci(t) are the time dependent synaptic weights and bias
of the network at time t, and σ and θ are the linear-sigmoid1 and Heaviside step
activation functions defined by

σ(x) =

⎧
⎪⎨

⎪⎩

0, if x < 0
x, if 0 ≤ x ≤ 1
1, if x > 1

and θ(x) =

{
0, if x < 1
1, if x ≥ 1

A synaptic weight or a bias w will be called static if it remains constant over
time, i.e., if w(t) = c for all t ≥ 0. It will be called bi-valued evolving if it varies
among two possible values over time, i.e., if w(t) ∈ {0, 1} for all t ≥ 0. A D-RNN
is illustrated in Fig. 1.

1 The results of the paper remain valid for any other kind of sigmoidal activation
function satisfying the properties mentioned in [13, Sect. 4].

jeremie.cabessa@u-paris2.fr

154 J. Cabessa and O. Finkel

The dynamics of a D-RNN N is therefore given by the function fN : BM ×
BN → BN × BP defined by

fN (u(t),x(t)) = (x(t+ 1),y(t+ 1))

where the components of x(t + 1) and y(t + 1) are given by Eqs. (1) and (2),
respectively.

Consider some D-RNN N provided with M Boolean input cells, N sigmoidal
internal cells, and P Boolean output cells. For each time step t ≥ 0, the state of
N at time t consists of a pair of the form

⟨x(t),y(t)⟩ ∈ [0, 1]N × BP .

The second element of this pair, namely y(t), is the output state of N at time t.
Assuming the initial state of the network to be ⟨x(0),y(0)⟩ = ⟨0,0⟩, any

infinite input stream

s = (u(t))t∈N = u(0)u(1)u(2) · · · ∈ (BM)ω

induces via Eqs. (1) and (2) an infinite sequence of consecutive states

cs = (⟨x(t),y(t)⟩)t∈N = ⟨x(0),y(0)⟩⟨x(1),y(1)⟩ · · · ∈ ([0, 1]N × BP)ω

which is the computation of N induced by s. The corresponding infinite sequence
of output states

bcs = (y(t))t∈N = y(0)y(1)y(2) · · · ∈ (BP)ω

is the Boolean computation of N induced by s. The computation of such a
D-RNN is illustrated in Fig. 1.

Note that any D-RNN N with P Boolean output cells can only have 2P –
i.e., finitely many – possible distinct output states. Consequently, any Boolean
computation bcs necessarily consists of a finite prefix of output states followed
by an infinite suffix of output states that repeat infinitely often – yet not nec-
essarily in a periodic manner – denoted by inf(bcs). A set of states of the form
inf(bcs) ⊆ BP will be called an attractor2 of N [8], as illustrated in Fig. 1. A
precise definition can be given as follows:

Definition 1. Let N be some D-RNN. A set A = {y0, . . . ,yk} ⊆ BP is an
attractor for N if there exists some infinite input stream s such that the corre-
sponding Boolean computation bcs satisfies inf(bcs) = A.

We suppose that the attractors are of two distinct types, either accepting or
rejecting. The type specification of these attractors is not the subject of this work
(cf. [8]), and from this point onwards, we assume that any D-RNN is equipped
2 In words, an attractor of N is a set of output states into which the Boolean com-
putation of the network could become forever trapped – yet not necessarily in a
periodic manner.

jeremie.cabessa@u-paris2.fr

Expressive Power of Evolving ω-Neural Networks 155

Attractor (periodic)

Infinite Boolean
output stream bcs

Infinite Boolean
input stream s

Boolean
input
cells

Boolean
output
cells

Sigmoid
internal
cells

Fig. 1. Illustration of the computational process performed by some D-RNN. The
infinite Boolean input stream s = u(0)u(1)u(2) · · · ∈ (BM)ω, represented by the first
pattern, induces a corresponding Boolean output stream – or Boolean computation –
bcs = y(0)y(1)y(2) · · · ∈ (BP)ω, represented by the second pattern. The filled and
empty circles represent active and quiet Boolean cells, respectively. From some time
step onwards, a certain set of output states begins to repeat infinitely often, which
corresponds to the attractor dynamics associated with input stream s.

with a corresponding classification of all of its attractors into accepting and
rejecting types.

This classification of attractors yields the following Muller acceptance con-
dition: given some D-RNN N , an infinite input stream s ∈ (BM)ω is accepted
N if inf(bcs) is an accepting attractor; it is rejected by N if inf(bcs) is a reject-
ing attractor. The set of all accepted input streams of N is called the neural
ω-language recognized by N , denoted by L(N). A set L ⊆ (BM)ω is said to be
recognizable by some D-RNN if there exists a network N such that L(N) = L.

Two different models of D-RNNs can be considered according to the nature
of their synaptic weights:

1. The class of deterministic static rational neural nets, denoted by D-St-
RNN[Q], which refers to the D-RNNs whose every weights are static and
modelled by rational values.

2. The class of deterministic bi-valued evolving rational neural nets, denoted by
D-Ev2-RNN[Q], which refers to the D-RNNs whose every evolving weights
are bi-valued and every static weights are rational. In this case, the subclass
of networks containing α1, . . . ,αk ∈ 2ω as sole bi-valued evolving weights, all
other ones being static rational, is denoted by D-Ev2-RNN[Q,α1, . . . ,αk].

3.2 Nondeterministic Case

We also consider nondeterministic recurrent neural networks, as introduced in
[19,20]. The nondeterminism is expressed by means of an external binary guess
stream processed via some additional Boolean guess cell.

jeremie.cabessa@u-paris2.fr

156 J. Cabessa and O. Finkel

Formally, a nondeterministic (first-order) recurrent neural network, denoted
by N-RNN, consists of a recurrent neural network N as described in previous
Sect. 3.1, except that it contains M + 1 Boolean input cells (ui)M+1

i=1 , rather
than M . The cell uM+1, called the guess cell, carries the Boolean source of
nondeterminism to be considered [3,7,9,19,20].

Given some N-RNN N , any sequence g = g(0)g(1)g(2) · · · ∈ 2ω submitted
to guess cell uM+1 is a guess stream for N . Assuming the initial state of the
network to be ⟨x(0),y(0)⟩ = ⟨0,0⟩, any infinite input and guess streams

s = (u(t))t∈N ∈ (BM)ω and g = (g(t))t∈N ∈ 2ω

induce via Eqs. (1) and (2) two infinite sequences of states and output states

c(s,g) = (⟨x(t),y(t)⟩)t∈N ∈ ([0, 1]N × BP)ω

bc(s,g) = (y(t))t∈N ∈ (BP)ω

called the computation and Boolean computation of N induced by (s, g), respec-
tively. Furthermore, Definition 1 of an attractor remains unchanged in this case.

We also assume that any N-RNN N is equipped with a corresponding classifi-
cation of all of its attractors into accepting and rejecting types. An infinite input
stream s ∈ (BM)ω is accepted by N if there exists some guess stream g ∈ 2ω such
that inf(bc(s,g)) is an accepting attractor. It is rejected by N otherwise, i.e., if
for all guess streams g ∈ 2ω, the set inf(bc(s,g)) is a rejecting attractor. The set
of all accepted input streams is the neural ω-language recognized by N , denoted
by L(N). A set L ⊆ (BM)ω is said to be recognizable by some nondeterministic
recurrent neural network if there exists a N-RNN N such that L(N) = L.

As for the deterministic case, the following classes and subclasses of N-RNNs
will be considered according to the nature of their synaptic weights:

1. The class of nondeterministic static rational neural nets, denoted by N-St-
RNN[Q].

2. The class of nondeterministic bi-valued evolving rational neural nets, denoted
by N-Ev2-RNN[Q], which is stratified into the subclasses of N-Ev2-
RNN[Q,α1, . . . ,αk], where α1, . . . ,αk ∈ 2ω.

4 Expressive Power of Neural Networks

We provide a precise characterization of the expressive power of the evolving
neural networks, according to the specific evolving weights that they employ. As
a consequence, a proper hierarchy of classes of evolving networks, related to the
complexity of their underlying evolving weights, will be obtained in Sect. 5.

4.1 Deterministic Case

The expressive powers of the classes D-St-RNN[Q] and D-Ev2-RNN[Q] have been
established in [9, Theorems 1, 2]. We recall these results:

jeremie.cabessa@u-paris2.fr

Expressive Power of Evolving ω-Neural Networks 157

Theorem 1 [9, Theorems 1 and 2]. Let L ⊆ (BM)ω be some ω-language.

(a) L is recognizable by some D-St-RNN[Q] iff L is recognizable by some deter-
ministic Muller Turing machine iff L ∈ BC(Π2

0).
(b) L is recognizable by some D-Ev2-RNN[Q] iff L ∈ BC(Π2

0).

Theorem1 states that D-St-RNN[Q]s are Turing equivalent and D-Ev2-
RNN[Q]s are strictly more powerful than deterministic Muller Turing machines,
since BC(Π2

0) ! BC(Π2
0). In this sense, the deterministic evolving neural net-

works are super-Turing.

Remark 1. The proof of Theorem 1(b) [9, Theorem 2] shows that any ω-language
L ∈ BC(Π2

0) can be recognized by some D-Ev2-RNN[Q] employing only one bi-
valued evolving weight given in the form of a bias. In other words, any D-Ev2-
RNN[Q] is expressively equivalent to some D-Ev2-RNN[Q,α], for some α ∈ 2ω.
Hence, from this point onwards, we will without loss of generality focus on the
latter subclass of networks.

A precise characterization of the expressive power of the subclass of D-Ev2-
RNN[Q,α] can be obtained, for any α ∈ 2ω. The result is achieved by forthcom-
ing Propositions 1 and 2.

Proposition 1. Let L ⊆ (BM)ω be some ω-language and α ∈ 2ω. If L ∈
BC(Π2

0)(α), then L is recognizable by some D-Ev2-RNN[Q,α].

Proof. If L ∈ BC(Π2
0)(α) ! (BM)ω, then by definition, there exists L′ ∈

BC(Π2
0) ! (BM+1)ω such that L = L′

α = {s ∈ (BM)ω : (s,α) ∈ L′}. Theorem1
ensures that there exists a D-St-RNN[Q] N ′ with M+1 input cells u1, . . . , uM+1

such that L(N ′) = L′.
Now, we consider the D-Ev2-RNN[Q,α] N which consists in a slight modi-

fication of the D-St-RNN[Q] N ′. More precisely, N contains the same cells and
synaptic connections asN ′, it admits only u1, . . . , uM as its input cells, but uM+1

is transformed into an internal cell receiving the bi-valued evolving weight α ∈ 2ω

in the form of a bias. Moreover, the attractors of N are the same as those of N ′.
By construction, on every input s ∈ (BM)ω, N receives the bi-valued evolving
weight α as bias and it works precisely like N ′ on input (s,α) ∈ (BM+1)ω. Conse-
quently, s ∈ L(N) if and only if (s,α) ∈ L(N ′) = L′. Therefore, L(N) = L′

α = L,
meaning that L is recognized by the D-Ev2-RNN[Q,α] N . ⊓,

Proposition 2. Let L ⊆ (BM)ω be some ω-language and α ∈ 2ω. If L is recog-
nizable by some D-Ev2-RNN[Q,α], then L ∈ BC(Π2

0)(α).

Proof. Let N be a D-Ev2-RNN[Q,α] such that L(N) = L. By Remark 1, we may
assume without loss generality that the bi-valued evolving weight α ofN is a bias
related to some cell x. Let N ′ be the D-St-RNN[Q] obtained by replacing in N
the evolving bias α ∈ 2ω by a new input cell uM+1 related to x with a weight of 1.
Hence, N ′ is a D-St-RNN[Q] with M+1 input cells, and Theorem 1 ensures that
L(N ′) ∈ BC(Π2

0). By construction, if N ′ receives input (s,α) ∈ (BM+1)ω, then

jeremie.cabessa@u-paris2.fr

158 J. Cabessa and O. Finkel

it works precisely like N on input s ∈ (BM)ω, which means that (s,α) ∈ L(N ′) if
and only if s ∈ L(N). Thus L(N) = L(N ′)α. Since L(N ′) ∈ BC(Π2

0), it follows
that L(N) ∈ BC(Π2

0)(α). ⊓,

By combining Propositions 1 and 2, one obtains the following theorem:

Theorem 2. Let L ⊆ (BM)ω be some ω-language and α ∈ 2ω. The following
conditions are equivalent:

(a) L ∈ BC(Π2
0)(α);

(b) L is recognizable by some D-Ev2-RNN[Q,α].

From Theorem 2 and Remark 1, the following set-theoretical result can be
retrieved: BC(Π2

0) =
⋃

α∈2ω BC(Π2
0)(α). Indeed, L ∈ BC(Π2

0) if and only if,
by Remark 1, L is recognizable by some D-Ev2-RNN[Q,α], for some α ∈ 2ω,
if and only if, by Theorem2, L ∈ BC(Π2

0)(α), for some α ∈ 2ω. In words, the
relativized classes BC(Π2

0)(α) span the class BC(Π2
0), when α varies over 2ω.

4.2 Nondeterministic Case

The expressive power of the classes N-St-RNN[Q] and N-Ev2-RNN[Q] has also
been established in [3, Theorems 1 and 2]. We have the following results:

Theorem 3 [3, Theorems 1 and 2]. Let L ⊆ (BM)ω be some ω-language.

(a) L is recognizable by some N-St-RNN[Q] iff L ∈ Σ1
1;

(b) L is recognizable by some N-Ev2-RNN[Q] iff L ∈ Σ1
1.

Theorem3 states that N-St-RNN[Q]s are Turing equivalent and that N-
Ev2-RNN[Q] are strictly more powerful than nondeterministic Muller Turing
machines, since Σ1

1 ! Σ1
1. In this sense, the nondeterministic evolving neural

networks are also super-Turing.

Remark 2. The nondeterministic counterpart of Remark 1 holds. More precisely,
the proof of Theorem 3(b) [3, Theorem 2] shows that any ω-language L ∈ Σ1

1

can be recognized by some N-Ev2-RNN[Q] employing only one bi-valued evolving
weight given in the form of a bias. Consequently, from this point onwards, we
will without loss of generality focus on the subclass of N-Ev2-RNN[Q,α], for
α ∈ 2ω.

We now provide a precise characterization of the expressive power of the
subclass of N-Ev2-RNN[Q,α], for some given α ∈ 2ω. The result is achieved via
forthcoming Propositions 3 and 4, which are simple generalizations of Proposi-
tions 1 and 2, respectively.

Proposition 3. Let L ⊆ (BM)ω be some ω-language. If L ∈ Σ1
1(α), with α ∈ 2ω,

then L is recognizable by some N-Ev2-RNN[Q,α].

jeremie.cabessa@u-paris2.fr

Expressive Power of Evolving ω-Neural Networks 159

Proof. If L ∈ Σ1
1(α) ! (BM)ω, then by definition, there exists L′ ∈ Σ1

1 ! (BM+1)ω
such that L = L′

α = {s ∈ (BM)ω : (s,α) ∈ L′}. Theorem 3 ensures that there
exists a N-St-RNN[Q] N ′ with M+1 input cells such that L(N ′) = L′. As in the
proof of Proposition 1, one can modify network N ′ to obtain a N-Ev2-RNN[Q,α]
N1 such that L(N1) = L′

α = L. ⊓,

Proposition 4. Let L ⊆ (BM)ω be some ω-language. If, for some α ∈ 2ω, L is
recognizable by some N-Ev2-RNN[Q,α], then L ∈ Σ1

1(α).

Proof. Let N be a N-Ev2-RNN[Q,α] such that L(N) = L. By Remark 2, we may
assume without loss generality that the bi-valued evolving weight α of N is a
bias. As in the proof of Proposition 2, there exists a N-St-RNN[Q] N ′ with P +1
input cells such that (s,α) ∈ L(N ′) if and only if s ∈ L(N). This means that
L(N) = L(N ′)α. In addition, Theorem 3 ensures that L(N ′) ∈ Σ1

1. Therefore,
L(N) ∈ Σ1

1(α). ⊓,

By combining Propositions 3 and 4, the following theorem is obtained:

Theorem 4. Let L ⊆ (BM)ω be some ω-language and α ∈ 2ω. The following
conditions are equivalent:

(a) L ∈ Σ1
1(α);

(b) L is recognizable by some N-Ev2-RNN[Q,α].

From Theorem 4 and Remark 2, the following set-theoretical result can be
retrieved: Σ1

1 =
⋃

α∈2ω Σ1
1(α). In other words, the relativized classes Σ1

1(α) span
the class Σ1

1, when α varies over 2ω.

5 The Hierarchy Theorem

Theorems 2 and 4 provide a precise characterization of the expressive power of
the classes of D-Ev2-RNN[Q,α] and N-Ev2-RNN[Q,α], for α ∈ 2ω. We first
present some conditions that the evolving weights satisfy whenever their corre-
sponding relativized classes are included one into the other.

Proposition 5. Let α,β ∈ 2ω. The following relations hold:

BC(Π0
2)(α) ⊆ BC(Π0

2)(β) −→ α ∈ ∆1
1(β) (3)

Σ1
1(α) ⊆ Σ1

1(β) ←→ α ∈ ∆1
1(β) (4)

Proof. We prove both left-to-right implications. Recall that α ∈ Σ0
1(α). In the

first case, one has α ∈ Σ0
1(α) ⊆ BC(Π0

2)(α) ⊆ BC(Π0
2)(β) ⊆ ∆1

1(β). In the
second case, α ∈ Σ0

1(α) ⊆ Σ1
1(α) ⊆ Σ1

1(β). Hence, α ∈ ∆1
1(β), by [17].

For the converse implication of Relation (4), suppose that α ∈ ∆1
1(β). Then

α ∈ Σ1
1(β), which means that the ω-language {α} is recognized by some non-

deterministic Muller TM M1 with oracle β. Now, let L ∈ Σ1
1(α). Then L is

recognized by a nondeterministic Muller TM M2 with oracle α. Consider the

jeremie.cabessa@u-paris2.fr

160 J. Cabessa and O. Finkel

nondeterministic Muller TMM with oracle β which works as follows: if x is writ-
ten on its input tape, then M nondeterministically writes some y ∈ 2ω bit by bit
on one of its work tape, and concomitantly, simulates in parallel the behaviors
of M1 on y as well as that of M2 with oracle y on x. The TM M is suitably
programmed in order to always have enough bits of y being written on its work
tape so that the next simulations steps of M1 with oracle y can be performed
without fail. In addition, the machine M accepts input x iff both simulation
processes of M1 and M2 are accepting, i.e., iff y = α and the simulation of M2

with oracle y = α accepts x, which is to say that x ∈ L(M2) = L. Hence, M
recognizes L also, and thus L ∈ Σ1

1(β). This shows that Σ1
1(α) ⊆ Σ1

1(β). ⊓,

We now show the existence of an infinite sequence of weights whose corre-
sponding succession of relativized classes properly stratify the “super-Turing”
classes of BC(Π0

2) and Σ1
1 neural ω-languages. The hierarchy induced by the

inclusion relation between the relativized classes possesses chains of length ω1

as well as uncountable antichains.

Proposition 6. There exists a sequence (αi)i<ω1 , where αi ∈ 2ω for all i < ω1,
such that

(a) BC(Π0
2)(α0) = BC(Π0

2) and BC(Π0
2)(αi) ! BC(Π0

2)(αj), for all i < j < ω1;
(b) Σ1

1(α0) = Σ1
1 and Σ1

1(αi) ! Σ1
1(αj), for all i < j < ω1.

Moreover, there exists some uncountable set A ⊆ 2ω such that BC(Π0
2)(αi) ̸⊆

BC(Π0
2)(αj) and Σ1

1(αi) ̸⊆ Σ1
1(αj), for every distinct αi,αj ∈ A.

Proof. Take α0 ∈ Σ0
1. Suppose that for γ < ω1, the sequence (αi)i<γ has been

constructed and satisfies the required property. We build the next element αγ

of that sequence, i.e., the element such that Σ1
1(αi) ! Σ1

1(αγ), for all i < γ.
Note that, for each i < γ, the set ∆1

1(αi) is countable. Since γ < ω1, the union⋃
i<γ ∆1

1(αi) is countable too. Hence, there exists α ∈ 2ω \
⋃

i<γ ∆1
1(αi). Now,

let {βi : i < ω} be an enumeration of the countable set {α} ∪ {αi : i < γ},
and let αγ ∈ 2ω be the encoding of {βi : i < ω} given by αγ(⟨i, n⟩) = βi(n),
where ⟨., .⟩ : ω2 → ω is a classical recursive pairing function. Each function
fi : αγ 0→ (αγ)i = βi is recursive, and therefore, βi ∈ Σ0

1(αγ), for each i < ω.
We show that BC(Π0

2)(αj) ⊆ BC(Π0
2)(αγ), for all j < γ. Let L ∈

BC(Π0
2)(αj) = BC(Π0

2)(βi), for some i < ω. This means that L is recogniz-
able by some deterministic Muller TM M with oracle βi. Since βi ∈ Σ0

1(αγ),
L is also recognized by the deterministic Muller TM M′ with oracle αγ which,
in a suitable alternating manner, produces βi bit by bit from αγ , and works
precisely like M with oracle βi. Therefore, L ∈ BC(Π0

2)(αγ). By replacing in
this argument every occurrences of “BC(Π0

2)” by “Σ1
1” and of “deterministic”

by “nondeterministic”, one obtains that Σ1
1(αj) ⊆ Σ1

1(αγ), for all j < γ.
We now show that BC(Π0

2)(αj) ! BC(Π0
2)(αγ) and Σ1

1(αj) ! Σ1
1(αγ), for

all j < γ. Towards a contradiction, suppose that BC(Π0
2)(αγ) ⊆ BC(Π0

2)(αj)
or Σ1

1(αγ) ⊆ Σ1
1(αj), for some j < γ. Then Relations (3) and (4) ensure that

αγ ∈ ∆1
1(αj). But α = βk for some k < ω, and by the above stated fact,

jeremie.cabessa@u-paris2.fr

Expressive Power of Evolving ω-Neural Networks 161

α = βk ∈ Σ0
1(αγ). The two relations α ∈ Σ0

1(αγ) and αγ ∈ ∆1
1(αj) imply that

α ∈ ∆1
1(αj). This contradicts the fact that α ∈ 2ω \

⋃
i<γ ∆1

1(αi).
We finally prove the existence of an uncountable antichain. There exists an

uncountable set A ⊆ 2ω such that αi ̸∈ ∆1
1(αj), for all distinct αi,αj ∈ A [1].

By Relations (3) and (4), BC(Π0
2)(αi) ̸⊆ BC(Π0

2)(αj) and Σ1
1(αi) ̸⊆ Σ1

1(αj), for
all distinct αi,αj ∈ A. ⊓,

Let L(D-Ev2-RNN[Q,α]) and L(N-Ev2-RNN[Q,α]) denote the classes of
neural ω-languages recognized by D-Ev2-RNN[Q,α] and N-Ev2-RNN[Q,α],
respectively. Theorems 2 and 4 together with Proposition 6 imply the existence of
two proper hierarchies of classes of deterministic and nondeterministic evolving
neural networks of increasing expressive power.

Theorem 5. There exists a sequence of binary evolving weights (αi)i<ω1 such
that
(a) L(D-Ev2-RNN[Q,αi]) ! L(D-Ev2-RNN[Q,αj]), for all i < j < ω1;
(b) L(N-Ev2-RNN[Q,αi]) ! L(N-Ev2-RNN[Q,αj]), for all i < j < ω1.

Finally, let R be the equivalence relation defined by R(α,β) iff L(N-Ev2-
RNN[Q,α]) = L(N-Ev2-RNN[Q,β]). This relation represents the decision prob-
lem of whether two classes of nondeterministic evolving networks (determined
by the evolving weights α and β) have the same expressive power. We show that
this relation is undecidable and of complexity of Π1

1 \ Σ1
1.

Proposition 7. The equivalence relation R is in the class Π1
1 \ Σ1

1.

Proof. According to Theorem4 and Relation (4), the relation R ⊆ 2ω × 2ω sat-
isfies R(α1,α2) iff α1 ∈ ∆1

1(α2) and α2 ∈ ∆1
1(α1). It is known that the relation

“α ∈ ∆1
1(β)” is a Π1

1 relation which can be expressed by a Π1
1-formula φ(α,β),

see [17, 4D.14 p. 171] and [11]. Thus R is a Π1
1-relation. Towards a contradiction,

assume now that R is Σ1
1, and take β ∈ Σ0

1. Then R(.,β) = {α : R(α,β)} = {α :
α ∈ ∆1

1(β) & β ∈ ∆1
1(α)} = {α : α ∈ ∆1

1(β)} = {α : α ∈ ∆1
1} should also be in

Σ1
1. But it is known that the set {α : α ∈ ∆1

1} is not Σ1
1, see [17, 4D.16 p. 171].

This concludes the proof. ⊓,

6 Conclusion

The expressive power of evolving neural networks working on infinite input
streams has been finely characterized in terms of relativized topological classes.
As a consequence, a proper hierarchy of classes of evolving neural nets, based
on the complexity of their underlying evolving weights, has been obtained. The
hierarchy contains chains of length ω1 as well as uncountable antichains.

These results (together with [3,9]) show that evolving and analog neural
networks represent a natural model for oracle-based ω-computation. For future
work, a similar refined characterization of the expressive power of analog neural
networks is expected to be studied. In fact, we prove in an extended version of
this paper that if rα ∈ R is some recursive encoding of α ∈ 2ω, then the analog
networks employing rα ∈ R as sole real weight are computationally equivalent
to the evolving networks employing α as sole evolving weight.

jeremie.cabessa@u-paris2.fr

162 J. Cabessa and O. Finkel

References

1. Apt, K.R.: ω-models in analytical hierarchy. Bulletin de l’académie polonaise des
sciences XX(11), 901–904 (1972)

2. Balcázar, J.L., Gavaldà, R., Siegelmann, H.T.: Computational power of neural
networks: a characterization in terms of Kolmogorov complexity. IEEE Trans. Inf.
Theory 43(4), 1175–1183 (1997)

3. Cabessa, J., Duparc, J.: Expressive power of nondeterministic recurrent neural
networks in terms of their attractor dynamics. IJUC 12(1), 25–50 (2016)

4. Cabessa, J., Siegelmann, H.T.: Evolving recurrent neural networks are super-
Turing. In: Proceedings of IJCNN 2011, pp. 3200–3206. IEEE (2011)

5. Cabessa, J., Siegelmann, H.T.: The computational power of interactive recurrent
neural networks. Neural Comput. 24(4), 996–1019 (2012)

6. Cabessa, J., Siegelmann, H.T.: The super-turing computational power of plastic
recurrent neural networks. Int. J. Neural Syst. 24(8), 1450029 (2014)

7. Cabessa, J., Villa, A.E.P.: The expressive power of analog recurrent neural net-
works on infinite input streams. Theor. Comput. Sci. 436, 23–34 (2012)

8. Cabessa, J., Villa, A.E.P.: An attractor-based complexity measurement for Boolean
recurrent neural networks. PLoS ONE 9(4), e94204+ (2014)

9. Cabessa, J., Villa, A.E.P.: Expressive power of first-order recurrent neural networks
determined by their attractor dynamics. J. Comput. Syst. Sci. 82(8), 1232–1250
(2016)

10. Cabessa, J., Villa, A.E.P.: Recurrent neural networks and super-turing interactive
computation. In: Koprinkova-Hristova, P., Mladenov, V., Kasabov, N.K. (eds.)
Artificial Neural Networks. SSB, vol. 4, pp. 1–29. Springer, Cham (2015). doi:10.
1007/978-3-319-09903-3 1

11. Finkel, O.: Ambiguity of omega-languages of turing machines. Log. Methods Com-
put. Sci. 10(3), 1–18 (2014)

12. Kechris, A.S.: Classical Descriptive Set Theory. Graduate Texts in Mathematics,
vol. 156. Springer, New York (1995)

13. Kilian, J., Siegelmann, H.T.: The dynamic universality of sigmoidal neural net-
works. Inf. Comput. 128(1), 48–56 (1996)

14. Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Shan-
non, C., McCarthy, J. (eds.) Automata Studies, pp. 3–41. Princeton University
Press, Princeton (1956)

15. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous
activity. Bull. Math. Biophys. 5, 115–133 (1943)

16. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall Inc.,
Englewood Cliffs (1967)

17. Moschovakis, Y.N.: Descriptive Set Theory. Mathematical Surveys and Mono-
graphs, 2nd edn. American Mathematical Society, Providence (2009)

18. Siegelmann, H.T.: Recurrent neural networks and finite automata. Comput. Intell.
12, 567–574 (1996)

19. Siegelmann, H.T., Sontag, E.D.: Analog computation via neural networks. Theor.
Comput. Sci. 131(2), 331–360 (1994)

20. Siegelmann, H.T., Sontag, E.D.: On the computational power of neural nets. J.
Comput. Syst. Sci. 50(1), 132–150 (1995)

21. Śıma, J., Orponen, P.: General-purpose computation with neural networks: a sur-
vey of complexity theoretic results. Neural Comput. 15(12), 2727–2778 (2003)

jeremie.cabessa@u-paris2.fr

Expressive Power of Evolving ω-Neural Networks 163

22. Staiger, L.: ω-languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal
Languages: Beyond Words, vol. 3, pp. 339–387. Springer, New York (1997)

23. Turing, A.M.: Intelligent machinery. Technical report, National Physical Labora-
tory, Teddington, UK (1948)

jeremie.cabessa@u-paris2.fr

	Preface
	Organization
	Abstracts of Invited Papers
	Automata and Program Analysis
	Optimal Dual-Pivot Quicksort: Exact Comparison Count
	What One Has to Know When Attacking P vs. NP (Extended Abstract)
	A Tour of Recent Results on Word Transducers
	Some Results of Zoltán Ésik on Regular Languages
	Contents
	Invited Papers
	Automata and Program Analysis
	1 Program Analysis and Termination
	2 Size-Change Abstraction
	3 Max-Plus Automata
	4 Complexity Analysis
	5 Related Work
	References

	What One Has to Know When Attacking P vs. NP (Extended Abstract)
	1 Introduction
	2 Rice's Theorem on Unprovability
	3 Hardness of Complexity Analysis of Concrete Algorithms
	4 P vs. NP in AV-Mathematics and the Existence of Constructive Proofs
	5 Making Nonconstructive Proofs Constructive
	A Concept of the Proof of Theorem 4
	References

	A Tour of Recent Results on Word Transducers
	References

	Some Results of Zoltán Ésik on Regular Languages
	1 Regular Languages and Varieties
	2 The Shuffle Operation
	3 Logic on Words
	4 Back to the Shuffle Operation
	References

	Contributed Papers
	Contextuality in Multipartite Pseudo-Telepathy Graph Games
	1 Introduction
	2 Pseudo-Telepathy Graph Games, Multipartiteness and Contextuality Scenarios
	3 Simulating a Probability Distribution is the Same as Winning the Pseudo-Telepathy Graph Game
	4 Locally Equivalent Games
	5 Scenarios with Linear Multipartiteness Width
	6 Conclusion
	References

	Generalized Satisfiability Problems via Operator Assignments
	1 Introduction and Summary of Results
	2 Definitions and Technical Background
	3 The Strong Spectral Theorem
	4 Reductions via Primitive Positive Formulas
	5 Satisfiability Gaps via Operator Assignments
	5.1 No Gaps of Any Kind
	5.2 Gaps of Every Kind

	6 Further Applications
	7 Closure Operations
	References

	New Results on Routing via Matchings on Graphs
	1 Introduction
	1.1 Prior Results
	1.2 Our Results

	2 Computational Results
	2.1 An O(n2.5) Time Algorithm for Determining if rt(G,) 2
	2.2 Determining rt(G,) k is Hard for any k 3
	2.3 Connected Colored Partition Problem (CCPP)
	2.4 Routing as Best You Can

	3 Structural Results on the Routing Number
	3.1 An Upper Bound for h-Connected Graphs
	3.2 Relation Between Clique Number and Routing Number

	References

	Energy-Efficient Fast Delivery by Mobile Agents
	1 Introduction
	2 Uniform Weights
	3 Vertex Handovers
	4 Full Solution
	5 Conclusion
	References

	Parameterized Aspects of Triangle Enumeration
	1 Introduction
	2 Preliminaries
	3 New Notions of Hardness and Kernelization
	3.1 Computational Hardness
	3.2 Enum-Advice Kernelization

	4 Algorithms
	4.1 Parameters Lower-Bounded by Degeneracy
	4.2 Parameters Incomparable with Degeneracy

	5 Conclusion
	References

	Testing Polynomial Equivalence by Scaling Matrices
	1 Introduction
	2 Preliminaries
	3 Hardness of the PolyProj Problem
	4 Extracting a degree-basis of a Polynomial
	5 Testing for Equivalence by Scaling
	References

	Strong Duality in Horn Minimization
	1 Introduction
	2 Definitions
	2.1 Boolean Functions
	2.2 Pure Horn Functions
	2.3 Forward Chaining
	2.4 Essential Sets of Implicates

	3 Strong Duality
	4 Algorithmic Consequences
	References

	Token Jumping in Minor-Closed Classes
	1 Introduction
	2 Density of K,-Free Graphs
	3 Polynomial Kernel on K,-Free Graphs
	3.1 The Algorithm
	3.2 Size of the Reduced Graph
	3.3 Equivalence of Transformations

	4 Bounded VC-Dimension
	References

	Expressive Power of Evolving Neural Networks Working on Infinite Input Streams
	1 Introduction
	2 Preliminaries
	3 Recurrent Neural Networks on Infinite Input Streams
	3.1 Deterministic Case
	3.2 Nondeterministic Case

	4 Expressive Power of Neural Networks
	4.1 Deterministic Case
	4.2 Nondeterministic Case

	5 The Hierarchy Theorem
	6 Conclusion
	References

	Minimal Absent Words in a Sliding Window and Applications to On-Line Pattern Matching
	1 Introduction
	2 Combinatorial Results
	2.1 Changes When Appending One Letter to the Window
	2.2 Changes When Removing the First Letter of the Window
	2.3 Changes When Sliding a Window over a Text

	3 Minimal Absent Words in a Sliding Window
	3.1 An Overview of Senft's Algorithm
	3.2 Our Algorithm

	4 Applications to On-Line Pattern Matching
	References

	Subquadratic Non-adaptive Threshold Group Testing
	1 Introduction
	1.1 Problem Definition
	1.2 Previous Results
	1.3 Our Results

	2 Preliminaries
	2.1 Technical Results

	3 Single Threshold
	3.1 Upper Bound
	3.2 Lower Bound

	4 Multiple Thresholds
	5 Concluding Remarks
	References

	The Snow Team Problem
	1 Introduction
	2 The ST Problem is Fixed-Parameter Tractable
	2.1 Variations on the Snow Team Problem
	2.2 The Tree Pattern Embedding Problem
	2.3 Embedding Directed Forests

	3 The ST Problem is Hard
	4 Open Problem
	References

	FO Model Checking on Map Graphs
	1 Introduction
	2 Preliminaries
	2.1 Logic
	2.2 Graphs
	2.3 Map Graphs

	3 The Maximal Clique Graph
	4 Neighbourhood Equivalence
	5 3-Connected Map Graphs
	6 General Map Graphs
	7 Squares of Trees
	References

	Multiple Context-Free Tree Grammars and Multi-component Tree Adjoining Grammars
	1 Introduction
	2 Preliminaries
	3 Multiple Context-Free Tree Grammars
	4 Lexicalization
	5 MCFTG and MCTAG
	References

	On Circuits: The Role of Middle Fan-In, Homogeneity and Bottom Degree
	1 Introduction
	2 Preliminaries
	3 Projected Multilinear Derivatives and Proof of Theorems1 and 2
	4 Dimension of Shifted Partial Derivatives
	References

	Decidable Weighted Expressions with Presburger Combinators
	1 Introduction
	2 Quantitative Languages
	3 Monolithic Expressions
	4 Expressions with Iterated Sum
	5 Decidability of Synchronised Iterated Sum Expressions
	6 Discussion
	References

	The Complexity of Routing with Few Collisions
	1 Introduction
	2 Preliminaries
	3 Everything is Equal on DAGs
	3.1 Constant Number of Shared Arcs
	3.2 Arbitrary Number of Shared Arcs

	4 Path-RCA
	5 Trail-RCA
	5.1 On Undirected Graphs
	5.2 On Directed Graphs

	6 Walk-RCA
	6.1 On Undirected Graphs
	6.2 On Directed Graphs

	7 Conclusion and Outlook
	References

	Parikh Image of Pushdown Automata
	1 Introduction
	2 Preliminaries
	3 A Tree-Based Semantics for Pushdown Automata
	4 Parikh-Equivalent Context-Free Grammars
	4.1 The Family P(n,k) of PDAs
	4.2 The Case of Unary Deterministic Pushdown Automata

	5 Parikh-Equivalent Finite State Automata
	References

	Tropical Combinatorial Nullstellensatz and Fewnomials Testing
	1 Introduction
	2 Preliminaries
	3 Tropical Combinatorial Nullstellensatz
	4 Tropical Analog of Schwartz-Zippel Lemma
	5 Tropical Universal Testing Set
	5.1 Testing Sets over R
	5.2 Testing Sets Over Q
	5.3 Constructive Lower Bounds

	References

	On Weak-Space Complexity over Complex Numbers
	1 Introduction
	2 Preliminaries
	3 Boolean Parts of Weak Space Classes
	4 Weak Space Lower Bounds
	5 Polynomials Divisible by Elementary Symmetric Polynomials
	6 Conclusions and Future Directions
	References

	Deterministic Oblivious Local Broadcast in the SINR Model
	1 Introduction
	1.1 The Network Model
	1.2 Problem Definition and Related Work
	1.3 Our Contribution and Open Problems

	2 Preliminaries
	3 Non-adaptive Algorithms
	3.1 Application of Strongly Selective Families
	3.2 Balanced Strongly Selective Families
	3.3 Oblivious Local Broadcast with BSSFs

	4 Local Broadcast with Feedback
	4.1 Fractional Balanced Selectors
	4.2 Semi-oblivious Algorithm with Acknowledgements

	References

	Undecidability of the Lambek Calculus with Subexponential and Bracket Modalities
	1 Linguistic Introduction
	2 Logical Introduction
	3 Cut Elimination in !bL1
	4 Calculi Without Brackets: !L1, !wL1, L1
	5 Undecidability of !bL1
	6 A Decidable Fragment
	7 Conclusions and Future Work
	References

	Decision Problems for Subclasses of Rational Relations over Finite and Infinite Words
	1 Introduction
	2 Preliminaries
	3 The Equivalence Problem for Deterministic Büchi Transducers
	4 Deciding Recognizability of -Automatic Relations
	5 Deciding Recognizability of Automatic Relations
	6 Conclusion
	References

	Listing All Fixed-Length Simple Cycles in Sparse Graphs in Optimal Time
	1 Introduction
	2 Notations and Definitions
	3 Basic Results
	4 Algorithm
	5 Conclusion
	References

	Reliable Communication via Semilattice Properties of Partial Knowledge
	1 Introduction
	1.1 Related Work
	1.2 Our Results
	1.3 Model and Definitions

	2 The Algebraic Structure of Partial Knowledge
	3 A Tight Condition for RMT
	3.1 The RMT Partial Knowledge Algorithm (RMT-PKA)

	4 Conclusions and Open Questions
	References

	Polynomial-Time Algorithms for the Subset Feedback Vertex Set Problem on Interval Graphs and Permutation Graphs
	1 Introduction
	2 Preliminaries
	3 Computing SFVS on Interval Graphs
	4 Computing SFVS on Permutation Graphs
	5 Concluding Remarks
	References

	Determinism and Computational Power of Real Measurement-Based Quantum Computation
	1 Introduction
	2 Measurement-Based Quantum Computation, Generalized Flow and Pauli Flow
	2.1 MBQC, Concretely, Abstractly
	2.2 Measurement-Calculus Patterns: An Assembly Language
	2.3 A Graph-Based Representation
	2.4 Semantics and Determinism
	2.5 Graphical Conditions for Determinism

	3 Characterising Robust Determinism
	4 Applications: Computational Power of Real Bipartite MBQC
	4.1 Real Bipartite MBQC in Constant Depth
	4.2 Interactive Proofs

	5 Conclusion and Future Work
	References

	Busy Beaver Scores and Alphabet Size
	1 Introduction
	2 Results
	3 Discussion
	References

	Automatic Kolmogorov Complexity and Normality Revisited
	1 Introduction
	2 Automatic Kolmogorov Complexity
	3 Normal Sequences and Numbers
	4 Normality and Incompressibility
	5 Wall's Theorem
	6 Pairs as Descriptions and Agafonov's Theorem
	7 Discussion
	References

	Author Index

