
JID:YJCSS AID:3198 /FLA [m3G; v1.248; Prn:18/12/2018; 9:12] P.1 (1-14)

Journal of Computer and System Sciences ••• (••••) •••–•••
Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

Computational capabilities of analog and evolving neural
networks over infinite input streams

Jérémie Cabessa a,∗, Olivier Finkel b

a Laboratoire d’économie mathématique et de microéconomie appliquée (LEMMA), Université Paris 2 – Panthéon-Assas, 4 Rue Blaise Desgoffe,
75006 Paris, France
b Institut de Mathématiques de Jussieu – Paris Rive Gauche, CNRS et Université Paris Diderot, UFR de mathématiques case 7012, 75205 Paris
Cedex 13, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 20 March 2018
Accepted 20 November 2018
Available online xxxx

Keywords:
Recurrent neural networks
Analog computation
Infinite computation
Attractors
Turing machines
Turing machines with oracles
Super-Turing
ω-languages
Borel sets
Analytic sets

Analog and evolving recurrent neural networks are super-Turing powerful. Here, we
consider analog and evolving neural nets over infinite input streams. We then characterize
the topological complexity of their ω-languages as a function of the specific analog or
evolving weights that they employ. As a consequence, two infinite hierarchies of classes
of analog and evolving neural networks based on the complexity of their underlying
weights can be derived. These results constitute an optimal refinement of the super-Turing
expressive power of analog and evolving neural networks. They show that analog and
evolving neural nets represent natural models for oracle-based infinite computation.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Understanding the computational and dynamical capabilities of biological neural networks is an issue of major impor-
tance, with repercussions in the fields of theoretical neuroscience, bio-inspired computing, artificial intelligence, robotics
and philosophy.

In this context, the theoretical approach to neural computation consists of studying the computational power of neural
network models from the perspective of automata theory. The capabilities of neural networks are known to be related to
the kind of activation functions used by the neurons, to the nature of their synaptic connections, to the eventual presence
of noise in the model, and to the possibility for the neural architecture to evolve over time. The computational capabilities
of diverse neural models have been shown to range from the finite automaton level [34,30,35,41], up to the Turing [50,39,
22,45,29,25,37] or even to the super-Turing degree [44,4,42,43,8,10] (for detailed survey, see [46]).

More specifically, real-weighted neural networks, also referred to as analog neural nets, are strictly more powerful than
Turing machines. In exponential time of computation, they can decide any possible discrete language. In polynomial time
of computation, they are equivalent to Turing machines with polynomially bounded advice, and hence decide the com-
plexity class P/poly [44,42,43]. Interestingly, the super-Turing computational capabilities of analog networks can be finely

* Corresponding author.
E-mail addresses: jeremie.cabessa@u-paris2.fr (J. Cabessa), finkel@math.univ-paris-diderot.fr (O. Finkel).
https://doi.org/10.1016/j.jcss.2018.11.003
0022-0000/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcss.2018.11.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
mailto:jeremie.cabessa@u-paris2.fr
mailto:finkel@math.univ-paris-diderot.fr
https://doi.org/10.1016/j.jcss.2018.11.003

JID:YJCSS AID:3198 /FLA [m3G; v1.248; Prn:18/12/2018; 9:12] P.2 (1-14)

2 J. Cabessa, O. Finkel / Journal of Computer and System Sciences ••• (••••) •••–•••
characterized in terms of the Kolmogorov complexity of their underlying synaptic real weights. A proper infinite hierar-
chy of classes of analog neural nets with real weights of increasing Kolmogorov complexity has been obtained [4]. Besides
this, it has been shown that neural networks employing time-dependent synaptic weights, called evolving neural nets,1 are
computationally equivalent to the analog ones. This computational equivalence holds irrespectively of whether the synaptic
weights of networks are modeled by rational or real numbers and their patterns of evolution restricted to binary updates
or expressed by more general form of updating [8,10].

Based on biological and computational considerations, these studies have been extended to alternative paradigms of
computation where the networks process infinite rather than finite input streams [8,9,11–13,10,15,14,16,17,5,6,18]. This
approach conciliates two important biological and computer scientist perspectives about neural attractor dynamics on the
one hand [2] and non-terminating computational processes on the other [49,38]. The networks are provided with Boolean
input and output cells carrying out the discrete exchange of information with their environment. When subjected to some
infinite input stream, the outputs of the networks eventually get trapped into some attractor dynamics. The set of input
streams inducing a meaningful attractor dynamics is the neural ω-language recognized by the network. The expressive
power of the networks is then characterized by the topological complexity of their underlying neural ω-languages.

Within this framework, the Boolean neural networks provided with certain type specification of their attractors are
computationally equivalent to Büchi or Muller automata [11,14]. As a consequence, a novel attractor-based measure of
complexity for Boolean neural networks has been obtained. This complexity measure refers to the ability of the networks to
perform more or less complicated classification tasks of their input streams via the manifestation of meaningful or spurious
attractor dynamics.

The sigmoidal neural networks are strictly more powerful than their Boolean counterparts. The static rational-weighted
neural networks are computationally equivalent to Muller Turing machines. In the deterministic and nondeterministic cases,
these networks recognize the (lightface) topological classes of BC(�0

2) and �1
1 neural ω-languages, respectively [16,18]. By

contrast, the static real-weighted (or analog) neural networks are super-Turing. In the deterministic and nondeterministic
cases, they recognize the (boldface) topological classes of BC(�0

2) and �1
1 neural ω-languages, respectively [5,6,16,18]. In

addition, the evolving neural networks are computationally equivalent to the static analog ones. This equivalence holds
irrespectively of whether the static and evolving weights of the networks are modeled by rational or real numbers, and the
patterns of evolution restricted to binary updates or expressed by more general forms of updating.

In this paper, we provide an optimal refinement of these results and complete our study undertaken in [7], where only
the case of evolving neural nets is treated in a more succinct way. We fully characterize the expressive power of analog
and evolving networks according to the specific analog and evolving weights that they employ. Without loss of generality,
we focus on analog or evolving networks using only one analog or one evolving weight, respectively. For any α ∈ 2ω with
corresponding encoding rα ∈ R, we show that deterministic and nondeterministic analog or evolving networks employing
either the single static analog weight rα or the single evolving weight α recognize the (lightface) relativized topological
classes of BC(�0

2)(α) and �1
1(α) ω-languages, respectively. As a consequence, we show the existence of two infinite refined

hierarchies of classes of analog and evolving neural nets based on the complexity of their underlying analog and evolving
weights. These hierarchies contain chains of length ω1 and antichains of uncountable size.

From the point of view of theoretical computer science, these results constitute a generalization of the fundamental
hierarchy of classes of analog networks based on the Kolmogorov complexity of their underlying analog weights [4]. They
provide an optimal refinement of the super-Turing expressive power of analog and evolving neural networks working on
infinite input streams. They also show that analog and evolving neural networks represent natural models for oracle-based
infinite computation, beyond the Turing limits. From a biological point of view, these achievements may constitute a theo-
retical foundation of the primary role played by synaptic plasticity in the computational capabilities of neural networks [1,
33,40,19].

2. Preliminaries

Given a finite set X , referred to as an alphabet, we let X∗ and Xω denote the sets of finite sequences (or finite words)
and infinite sequences (or infinite words) of elements of X . A set L ⊆ X∗ or L ⊆ Xω is called a language or an ω-language,
respectively.

We assume the reader to be familiar with basic considerations about Turing machines (TM). A Muller Turing machine is a
TM working on infinite words. It is defined as a pair (M, T), where M is a classical multitape TM whose input tape is
associated with a one way read-only head, and the Muller table T = {T1, . . . , Tk} is a finite collection of sets of states of M.
In the deterministic (resp., non deterministic) context, an infinite word s is accepted by (M, T) if and only if the unique
infinite run (resp. there exists an infinite run) of M on s induces (resp. which induces) a set of states that are visited
infinitely often Ti which belongs to T . The set of all infinite words accepted by (M, T) is the ω-language recognized by
(M, T). For any infinite word α, a Muller Turing machine with oracle α is a Muller Turing machine having an additional
oracle tape with α written on it.

1 Throughout this paper, the expressions evolving neural networks refers to neural networks with time-dependent synaptic weights, along the lines of [10,
6,18]. This expression is not to be understood in the sense of Evolving Connectionist Systems (ECoS) [26] nor in that of Evolving Neural Networks through
Augmenting Topologies (NEAT) [48].

JID:YJCSS AID:3198 /FLA [m3G; v1.248; Prn:18/12/2018; 9:12] P.3 (1-14)

J. Cabessa, O. Finkel / Journal of Computer and System Sciences ••• (••••) •••–••• 3
In the sequel, any space of the form Xω is assumed to be equipped with the product topology of the discrete topology
on X . Accordingly, the basic open sets of Xω are of the form p · Xω , for some p ∈ X∗ . The general open sets are countable
unions of basic open sets. In particular, the space of infinite words of bits (Cantor space) and that of infinite words of
N-dimensional Boolean vectors will be denoted by 2ω = {0, 1}ω and (BN)ω , respectively. They are assumed to be equipped
with the above mentioned topology.

Let (X , T) be one of the above topological spaces, or a product of such spaces. The class of Borel subsets of X , denoted
by �1

1 (boldface), is the σ -algebra generated by T , i.e., the smallest collection of subsets of X containing all open sets and
closed under countable union and complementation. For every non-null countable ordinal α < ω1, where ω1 is the first
uncountable ordinal, the Borel classes �0

α , �0
α and �0

α of X are defined as follows:

• �0
1 is the class of open subsets of X (namely T)

• �0
1 is the class of closed subsets of X , i.e., that of complements of open sets

• �0
α is the class of countable unions of subsets of X in

⋃
γ <α �0

γ

• �0
α is the class of countable intersections of subsets of X in

⋃
γ <α �0

γ .

• �0
α = �0

α ∩ �0
α

The classes �0
α , �0

α and �0
α provide a stratification of the class of Borel sets known as the Borel hierarchy. One has �1

1 =⋃
α<ω1

�0
α = ⋃

α<ω1
�0

α [28]. The rank of a Borel set A ⊆X is the smallest ordinal α such that A ∈ �0
α ∪�0

α . It is commonly
considered as a relevant measure of the topological complexity of Borel sets. The class of sets obtained as finite Boolean
combinations (unions, intersections and complementations) of �0

2-sets is denoted by BC(�0
2).

Analytic sets are obtained as projections of either �0
2-sets or general Borel sets [28]. More precisely, a set A ⊆X is analytic

if there exists some �0
2-set B ⊆ X × 2ω such that A = {x ∈ X : (x, β) ∈ B,

for some β ∈ 2ω} = π1(B) [28]. The class of analytic sets is denoted by �1
1 . It strictly contains that of Borel sets, i.e.,

�1
1 ��1

1 [28].
The effective (lightface) counterpart of the Borel and analytic classes, denoted by �0

n, �0
n,
0

n as well as
1
1 and �1

1,
are obtained by a similar effective construction, but starting from the class �0

1 of effective open sets [36]. The class of
finite Boolean combinations of �0

2-sets, denoted by BC(�0
2) (lightface), and that of effective analytic sets, denoted by �1

1
(lightface), correspond to the collections of ω-languages recognizable by deterministic and nondeterministic Muller Turing
machines, respectively [47]. One has BC(�0

2) � BC(�0
2) and �1

1 � �1
1 .

Any topological class � of the topological space X will also be written as � � X , whenever the underlying space X is
needed to be specified. In addition, for any point x ∈ X , we will use the notation x ∈ � to mean that {x} ∈ �. Besides, any
product space X × Y is assumed to be equipped with the product topology. If A ⊆ X × Y and y ∈ Y , the y-section of A
is defined by A y = {x ∈ X : (x, y) ∈ A}. For any class � being equal to �0

1, BC(�0
2), �1

1, or �1
1 with underlying product

space X × Y and for any y ∈ Y , the relativization of � to y, denoted by �(y), is the class of all y-sections of sets in �.
In other words, A ∈ �(y) � X if and only if there exists B ∈ � � X × Y such that A = B y . Moreover, we denote as usual

1

1(y) = �1
1(y) ∩ �1

1(y) [36, p. 118].
For any α ∈ 2ω , one can show that the relativized classes BC(�0

2)(α) and �1
1(α) correspond to the collections of

ω-languages recognizable by deterministic and nondeterministic Muller Turing machine with oracle α, respectively. In addi-
tion, it can be shown that x ∈ �0

1(α) if and only if the successive letters of x can be produced step by step by some Turing
machine with oracle α. Besides, one has x ∈ �1

1(α) iff x ∈
1
1(α), for any α ∈ 2ω [36].

Finally, the spaces (BM)ω × 2ω and (BM+1)ω are isomorphic via the natural identification. Accordingly, subsets of these
spaces will be identified without it being explicitly mentioned.

3. Recurrent neural networks on infinite input streams

We consider first-order recurrent neural networks composed of Boolean input cells, Boolean output cells and sigmoidal
internal cells. The sigmoidal internal neurons introduce the biological source of nonlinearity which is crucial to neural
computation. They provide the possibility to surpass the capabilities of finite state automata, or even of Turing machines. The
Boolean input and output cells carry out the exchange of discrete information between the network and the environment.
When some infinite input stream is supplied, the output cells eventually enter into some attractor dynamics. The expressive
power of the networks is related to the attractor dynamics of their Boolean output cells.

3.1. Deterministic case

A deterministic (first-order) recurrent neural network (D-RNN) consists of a synchronous network of neurons related together
in a general architecture. It is composed of M Boolean input cells (ui)

M
i=1, N sigmoidal internal neurons (xi)

N
i=1, and P

Boolean output cells (yi)
P
i=1. The dynamics of the network is computed as follows: given the activation values of the input

and internal neurons (u j)
M and (x j)

N at time t , the activation value of each internal and output neuron xi and yi at
j=1 j=1

JID:YJCSS AID:3198 /FLA [m3G; v1.248; Prn:18/12/2018; 9:12] P.4 (1-14)

4 J. Cabessa, O. Finkel / Journal of Computer and System Sciences ••• (••••) •••–•••
Fig. 1. Illustration of the computational process performed by some D-RNN. The infinite Boolean input stream s = �u(0)�u(1)�u(2) · · · ∈ (BM)ω induces a
corresponding Boolean output stream – or Boolean computation – bcs = �y(0)�y(1)�y(2) · · · ∈ (BP)ω . The filled and empty circles represent active and quiet
Boolean cells, respectively. From some time step onwards, a certain set of output states begins to repeat infinitely often, which corresponds to the attractor
dynamics associated with input stream s. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

time t + 1 is updated by the following equations, respectively:

xi(t + 1) = σ

⎛
⎝ N∑

j=1

aij(t) · x j(t) +
M∑

j=1

bij(t) · u j(t) + ci(t)

⎞
⎠ for i = 1, . . . , N (1)

yi(t + 1) = θ

⎛
⎝ N∑

j=1

aij(t) · x j(t) +
M∑

j=1

bij(t) · u j(t) + ci(t)

⎞
⎠ for i = 1, . . . , P (2)

where aij(t), bij(t), and ci(t) are the time dependent synaptic weights and bias of the network at time t , and σ and θ are
the linear-sigmoid2 and Heaviside step activation functions defined by

σ(x) =

⎧⎪⎨
⎪⎩

0, if x < 0

x, if 0 ≤ x ≤ 1

1, if x > 1

and θ(x) =
{

0, if x < 1

1, if x ≥ 1

A synaptic weight or a bias w will be called static if it remains constant over time, i.e., if w(t) = c for all t ≥ 0. It will be
called bi-valued evolving if it varies among two possible values over time, i.e., if w(t) ∈ {0, 1} for all t ≥ 0. It will be called
general evolving otherwise. A D-RNN is illustrated in Fig. 1.

According to these considerations, the dynamics of any D-RNN N is given by the function fN : BM × BN → BN × BP

defined by

fN
(�u(t), �x(t)) = (�x(t + 1), �y(t + 1)

)
where the components of �x(t + 1) and �y(t + 1) are given by Equations (1) and (2), respectively.

Consider some D-RNN N provided with M Boolean input cells, N sigmoidal internal cells, and P Boolean output cells.
For each time step t ≥ 0, the state of N at time t consists of a pair of the form

〈�x(t), �y(t)〉 ∈ [0,1]N ×BP .

The second element of this pair, namely �y(t), is the output state of N at time t .
Assuming the initial state of the network to be 〈�x(0), �y(0)〉 = 〈�0, �0〉, any infinite input stream

s = (�u(t)
)

t∈N = �u(0)�u(1)�u(2) · · · ∈
(
BM

)ω

induces via Equations (1) and (2) an infinite sequence of consecutive states

cs = (〈�x(t), �y(t)〉)t∈N = 〈�x(0), �y(0)〉〈�x(1), �y(1)〉 · · · ∈
(
[0,1]N ×BP

)ω

2 The seminal results concerning the computational power of rational- and real-weighted neural networks have been obtained in this context of linear-
sigmoid functions [44,45]. It has then been shown that these results remain valid for any other kind of sigmoidal activation function satisfying the properties
mentioned in [29, Section 4].

JID:YJCSS AID:3198 /FLA [m3G; v1.248; Prn:18/12/2018; 9:12] P.5 (1-14)

J. Cabessa, O. Finkel / Journal of Computer and System Sciences ••• (••••) •••–••• 5
which is the computation of N induced by s. The corresponding infinite sequence of output states

bcs = (�y(t)
)

t∈N = �y(0)�y(1)�y(2) · · · ∈
(
BP

)ω

is the Boolean computation of N induced by s. The computation of such a D-RNN is illustrated in Fig. 1.
Note that any D-RNN N with P Boolean output cells can only have 2P – i.e., finitely many – possible distinct output

states. Consequently, any Boolean computation bcs necessarily consists of a finite prefix of output states followed by an
infinite suffix of output states that repeat infinitely often – yet not necessarily in a periodic manner – denoted by inf(bcs).
A set of states of the form inf(bcs) ⊆ BP will be called an attractor of N [14]. A precise definition can be given as follows:

Definition 1. Let N be some D-RNN. A set A = { �y0, . . . , �yk} ⊆ BP is an attractor for N if there exists some infinite input
stream s such that the corresponding Boolean computation bcs satisfies inf(bcs) = A.

In words, an attractor of N is a set of output states into which the Boolean computation of the network could become
forever trapped – yet not necessarily in a periodic manner. An attractor of some D-RNN is illustrated in Fig. 1.

In this work, we further suppose that the networks’ attractors can be of two distinct types, namely either accepting or
rejecting. The classification of attractors into meaningful (accepting) or spurious (rejecting) types is an issue of significant
importance in neural network studies [14]; however, it is not the subject of this work. Here, we rather consider that
the type specification of the networks’ attractors has already been established, e.g., according to some neurophysiological
criteria or computational requirements. Hence, from this point onwards, we always assume that a D-RNN is provided with
an associated classification of all of its attractors into accepting and rejecting types.

This classification of attractors leads to the following Muller-like acceptance condition: given some D-RNN N , an infinite
input stream s ∈ (BM)ω is accepted N if inf(bcs) is an accepting attractor; it is rejected by N if inf(bcs) is a rejecting
attractor. The set of all accepted input streams of N is the neural ω-language recognized by N , denoted by L(N). A set
L ⊆ (BM)ω is said to be recognizable by some D-RNN if there exists a network N such that L(N) = L.

We consider six different models of D-RNNs, according to the nature of their synaptic weights:

1. The class of deterministic static rational neural nets refers to the D-RNNs whose all weights are static rational values. It is
denoted by D-St-RNN[Q]s.

2. The class of deterministic static real (or analog) neural nets refers to the D-RNNs whose all weights are static real values.
It is denoted by D-St-RNN[R]s. For the purpose of our study, we stratify this class into uncountably many subclasses,
each one being defined according to some specific real weights involved in the networks. Formally, for each r1, . . . , rk ∈
R, the subclass of networks containing r1, . . . , rk as real weights3 and all other ones being rational is denoted by
D-St-RNN[Q, r1, . . . , rk]s.

3. The class of deterministic bi-valued evolving rational neural nets refers to the D-RNNs whose all non-static weights are
bi-valued evolving and all static weight are rational. It is denoted by D-Ev2-RNN[Q]s. For each α1, . . . , αk ∈ 2ω , the
subclass of networks containing α1, . . . , αk as sole bi-valued evolving weights, all other ones being static rational, is
denoted by D-Ev2-RNN[Q,α1, . . . ,αk]s.

4. The class of deterministic (general) evolving rational neural nets refers to the D-RNNs whose all static and evolving weights
are rational. It is denoted by D-Ev-RNN[Q]s.

5. The class of deterministic bi-valued evolving real neural nets refers to the D-RNNs whose all non-static weights are bi-
valued evolving and all static weight are real. It is denoted by D-Ev2-RNN[R]s.

6. The class of deterministic (general) evolving real neural nets refers to the D-RNNs whose all static and evolving weights are
real. It is denoted by D-Ev-RNN[R]s.

3.2. Nondeterministic case

We also consider nondeterministic recurrent neural networks, as introduced in [44,45]. The nondeterminism is expressed
by means of an external binary guess stream processed via some additional Boolean guess cell.

Formally, a nondeterministic (first-order) recurrent neural network (N-RNN) consists of a recurrent neural network N as
described in previous Section 3.1, except that it contains M + 1 Boolean input cells (ui)

M+1
i=1 , rather than M . The cell uM+1,

called the guess cell, carries the Boolean source of nondeterminism to be considered [44,45,12,6,18]. A N-RNN is illustrated
in Fig. 2.

Given some N-RNN N , any sequence g = g(0)g(1)g(2) · · · ∈ 2ω submitted to guess cell uM+1 is a guess stream for N .
Assuming the initial state of the network to be 〈�x(0), �y(0)〉 = 〈�0, �0〉, any infinite input and guess streams

s = (�u(t)
)

t∈N ∈
(
BM

)ω
and g = (g(t))t∈N ∈ 2ω

3 In this definition, the real weights r1, . . . , rk are not a priori required to be irrational; they could be rational weights which we wish to specify.

JID:YJCSS AID:3198 /FLA [m3G; v1.248; Prn:18/12/2018; 9:12] P.6 (1-14)

6 J. Cabessa, O. Finkel / Journal of Computer and System Sciences ••• (••••) •••–•••
Fig. 2. Illustration of the computational process performed by some N-RNN. The infinite guess stream g = g(0)g(1)g(2) · · · ∈ 2ω together with the infinite
Boolean input stream s = �u(0)�u(1)�u(2) · · · ∈ (BM)ω induce a corresponding Boolean output stream – or Boolean computation – bc(s,g) = �y(0)�y(1)�y(2) · · · ∈
(BP)ω . The filled and empty circles represent active and quiet Boolean cells, respectively. As in Fig. 1, the network necessarily enters into some attractor
dynamics.

induce via Equations (1) and (2) two infinite sequences of states and output states

c(s,g) = (〈�x(t), �y(t)〉)t∈N ∈
(
[0,1]N ×BP

)ω

bc(s,g) = (�y(t)
)

t∈N ∈
(
BP

)ω

called the computation and Boolean computation of N induced by (s, g), respectively. Furthermore, Definition 1 of an attractor
remains unchanged in this case. The computation of an N-RNN is illustrated in Fig. 2.

We also assume that any N-RNN N is equipped with a corresponding classification of all of its attractors into accepting
and rejecting types. An infinite input stream s ∈ (BM)ω is accepted by N if there exists some guess stream g ∈ 2ω such that
inf(bc(s,g)) is an accepting attractor. It is rejected by N otherwise, i.e., if for all guess streams g ∈ 2ω , the set inf(bc(s,g)) is
a rejecting attractor. The set of all accepted input streams is the neural ω-language recognized by N , denoted by L(N). A set
L ⊆ (BM)ω is said to be recognizable by some nondeterministic recurrent neural network if there exists a N-RNN N such
that L(N) = L.

As for the deterministic case, we consider the following classes and subclasses of N-RNNs according to the nature of
their synaptic weights:

1. The class of nondeterministic static rational neural nets N-St-RNN[Q]s.
2. The class of nondeterministic static real (or analog) neural nets N-St-RNN[R]s. For each r1, . . . , rk ∈ R, we consider the

corresponding subclass N-St-RNN[Q, r1, . . . , rk]s.
3. The class of nondeterministic bi-valued evolving rational neural nets N-Ev2-RNN[Q]s. For each α1, . . . , αk ∈ 2ω , we consider

the corresponding subclass N-Ev2-RNN[Q,α1, . . . ,αk]s.
4. The class of nondeterministic (general) evolving rational neural nets N-Ev-RNN[Q]s.
5. The class of nondeterministic bi-valued evolving real neural nets N-Ev2-RNN[R]s.
6. The class of nondeterministic (general) evolving real neural nets N-Ev-RNN[R]s.

4. Expressive power of neural networks

We provide a precise characterization of the expressive power of analog and evolving neural networks based on the
specific analog and evolving weights that these networks employ, respectively. As a consequence, two proper hierarchies of
classes of analog and evolving networks based on the complexity of their underlying weights can be obtained in Section 5.

4.1. Deterministic case

The expressive power of the classes of D-St-RNN[Q], D-St-RNN[R], D-Ev2-RNN[Q], D-Ev-RNN[Q], D-Ev2-RNN[R], and
D-Ev-RNN[R] has been characterized in [18, Theorems 1, 2]. We first recall these results.

Theorem 1. [18, Theorem 1] Let L ⊆ (BM)ω be some ω-language. The following conditions are equivalent:

(a) L ∈ BC(�0
2);

JID:YJCSS AID:3198 /FLA [m3G; v1.248; Prn:18/12/2018; 9:12] P.7 (1-14)

J. Cabessa, O. Finkel / Journal of Computer and System Sciences ••• (••••) •••–••• 7
(b) L is recognizable by some D-St-RNN[Q];
(c) L is recognizable by some deterministic Muller Turing machine.

Theorem 2. [18, Theorem 2] Let L ⊆ (BM)ω be some ω-language. The following conditions are equivalent:

(a) L ∈ BC(�0
2);

(b) L is recognizable by some D-St-RNN[R];
(c) L is recognizable by some D-Ev2-RNN[Q];
(d) L is recognizable by some D-Ev-RNN[Q];
(e) L is recognizable by some D-Ev2-RNN[R];
(f) L is recognizable by some D-Ev-RNN[R].

Theorem 1 states that D-St-RNN[Q]s are Turing equivalent. Theorem 2 shows that the classes D-St-RNN[R]s,
D-Ev2-RNN[Q]s, D-Ev-RNN[Q]s, D-Ev2-RNN[R]s and D-Ev-RNN[R]s are computationally equivalent to each other and strictly
more powerful than deterministic Muller Turing machines, since BC(�0

2) � BC(�0
2). In this sense, the deterministic analog

and evolving neural networks are super-Turing. Note that the D-Ev2-RNN[Q]s achieve a maximal expressive power by recog-
nizing the whole class of BC(�0

2) ω-languages. Indeed, the consideration of either real synaptic weights or more complex
evolving patterns in the model does actually not yield to some higher expressive power.

Remark 1. The proof of implication “(a) → (b)” of Theorem 2, detailed in [18, Proposition 1], shows that any ω-language
L ∈ BC(�0

2) can be recognized by some D-St-RNN[R] employing at most one static irrational weight, which is in the in-
terval [0, 1] and given in the form of a bias. Similarly, the proof of implication “(a) → (c)” of Theorem 2, also detailed in
[18, Proposition 1], ensures that any ω-language L ∈ BC(�0

2) can be recognized by some D-Ev2-RNN[Q] using only one
bi-valued evolving weight given as a bias (cf. [18, Proposition 1] again). By Theorem 2, this means that any D-St-RNN[R]
is expressively equivalent to some D-St-RNN[Q, r], where r ∈ [0, 1], and any D-Ev2-RNN[Q] is expressively equivalent to
some D-Ev2-RNN[Q, α], where α ∈ 2ω . Hence, from this point onwards, we will focus without loss of generality on the two
specific subclasses of analog or evolving networks employing only one analog or evolving weight, respectively.

We now provide a precise characterization of the expressive power of these two subclasses of D-St-RNN[Q, r] and
D-Ev2-RNN[Q, α], for any r ∈ [0, 1] and α ∈ 2ω , respectively. This result constitutes a significant refinement of Theorem 2. It
is obtained via forthcoming Propositions 1, 2, 3 and 4.

Proposition 1. Let L ⊆ (BM)ω be some ω-language and α ∈ 2ω . If L ∈ BC(�0
2)(α), then L is recognizable by some D-Ev2-RNN[Q, α].

Proof. If L ∈ BC(�0
2)(α) � (BM)ω , then by definition, there exists L′ ∈ BC(�0

2) � (BM+1)ω such that

L = L′
α =

{
s ∈ (BM)ω : (s,α) ∈ L′} .

Hence, Theorem 1 ensures that there exists a D-St-RNN[Q] N ′ with M + 1 input cells u1, . . . , uM+1 such that L(N ′) = L′ .
Now, consider the D-Ev2-RNN[Q, α] N which consists in a slight modification of the D-St-RNN[Q] N ′ . More precisely,

N contains the same cells and synaptic connections as N ′ , it admits u1, . . . , uM as its input cells, and the cell uM+1
is transformed into an internal cell receiving the bi-valued evolving weight α ∈ 2ω in the form of a bias. In addition,
the attractors of N are the same as those of N ′ . By construction, for any input s ∈ (BM)ω , N receives the bi-valued
evolving weight α as a bias and works precisely like N ′ on input (s, α) ∈ (BM+1)ω . Consequently, s ∈ L(N) if and only if
(s, α) ∈ L(N ′) = L′ . Therefore, L(N) = L′

α = L. This shows that L is recognized by the D-Ev2-RNN[Q, α] N . �
Proposition 2. Let L ⊆ (BM)ω be some ω-language and α = α1α2α3 · · · ∈ 2ω . If L ∈ BC(�0

2)(α), then L is recognizable by some
D-St-RNN[Q, rα] N , where rα = ∑∞

i=1
2αi+1

4i ∈ [0, 1].

Proof. Suppose that L ∈ BC(�0
2)(α). Then L is recognized by some deterministic Muller Turing machine M with oracle α.

Let

α′ = 00
∞∏

i=1

(0αi) = 000α10α20α30α40 · · · ∈ 2ω.

Clearly, the successive letters αi ’s of α can be produced by some Turing machine with oracle α′ , i.e., α ∈ �1
0(α

′). Conse-
quently, L is also recognized by the deterministic Muller Turing machine with oracle α′ which retrieves step by step the
successive letters of α from its oracle α′ , and concomitantly, simulates the behavior of M with oracle α. This means that
L ∈ BC(�0)(α′). Hence, there exists L′ ∈ BC(�0) � (BM+1)ω such that
2 2

JID:YJCSS AID:3198 /FLA [m3G; v1.248; Prn:18/12/2018; 9:12] P.8 (1-14)

8 J. Cabessa, O. Finkel / Journal of Computer and System Sciences ••• (••••) •••–•••
Fig. 3. Circuit C : nodes represent sigmoidal neurons and labelled edges are weighted synaptic connections between those. Cell x1 receives rα as bias and
cell x7 outputs the successive bits of α′ = 000α10α20α30 · · · . In order to understand this circuit, the following notions need to be recalled [45]. For any
γ = γ1γ2γ3 · · · ∈ 2ω , we suppose that γ is a stack whose elements from top to bottom are γ1, γ2, γ3, We further assume that γ is encoded by the
real number rγ = ∑∞

i=1
2γi +1

4i ∈ [0, 1]. By definition of rγ , the top element γ1 of γ is given by top(γ) = σ(4rγ − 2). In addition, the encoding of the stack
γ2γ3γ4 · · · , which corresponds to the stack γ whose top element has been popped, is given by pop(γ) = σ(4rγ − 2top(γ) − 1). The design of circuit C

is based on these considerations. Cell x3 receives from x1 a permanent activity of intensity rα = ∑∞
i=1

2αi+1
4i from time 2 onwards. But this activity is

neutralized from time 3 onwards, due to the activity coming from x2. Hence, x3 holds activation value rα = ∑∞
i=1

2αi+1
4i at time 2 only. Next, x7 computes

top(rα) = σ(4rα − 2) = α1 at time 3, and thanks to the chain of cells x6, x5 and x4 which brings an activity of intensity −1 to x3, the later cell computes
pop(rα) = σ(4rα − 2top(α) − 1) at time 4. Afterwards, x7 computes top(pop(rα)) = α2 at time 5, and x3 computes pop(pop(rα)) = pop2(rα) at time 6. And
so on ad infinitum. Hence, x7 outputs top(popi(rα)) = αi+1 at successive time steps 2i + 3, for all i ∈ N, and it outputs 0 at any other time step. In other
words, x7 outputs the successive bits of α′ = 000α10α20α30 · · · at successive time steps 0, 1, 2,

L = L′
α′ =

{
s ∈ (BM)ω : (s,α′) ∈ L′} .

By Theorem 1, there exists a D-St-RNN[Q] N ′ with M + 1 input cells u1, . . . , uM+1 such that L(N ′) = L′ .
Now, consider the real encoding of α given by rα = ∑∞

i=1
2αi+1

4i ∈ [0, 1]. Consider also the D-St-RNN[Q, rα] N obtained
by replacing the input cell uM+1 of N ′ by the real-weighted neural circuit C with bias rα depicted in Fig. 3. Circuit C is
designed in such a way that it outputs the successive bits of α′ at each successive time step (see Fig. 3 for further details
of this decoding procedure). By construction, for any s ∈ (BM)ω , the behavior of N on input s is the same as that of N ′
on input (s, α′). In other words, s ∈ L(N) if and only if (s, α′) ∈ L(N ′) = L′ . Therefore, L(N) = L′

α′ = L. This shows that L is
recognized by the D-St-RNN[Q, rα] N . �
Proposition 3. Let L ⊆ (BM)ω be some ω-language and α ∈ 2ω . If L is recognizable by some D-Ev2-RNN[Q, α], then L ∈ BC(�0

2)(α).

Proof. Let N be a D-Ev2-RNN[Q, α] such that L(N) = L. By Remark 1, we may assume without loss generality that the
bi-valued evolving weight α of N is a bias related to some cell x. Let N ′ be the D-St-RNN[Q] obtained by replacing in
N the cell x and its associated bias by a new input cell uM+1. Network N ′ is a D-St-RNN[Q] with M + 1 input cells, and
Theorem 1 ensures that L(N ′) ∈ BC(�0

2). By construction, for any (s, α) ∈ (BM+1)ω , the behavior of N ′ on input (s, α) is
the same as that of N on input s ∈ (BM)ω . In other words, (s, α) ∈ L(N ′) if and only if s ∈ L(N). Thus L(N) = L(N ′)α .
Since L(N ′) ∈ BC(�0

2), it follows that L(N) ∈ BC(�0
2)(α). �

Proposition 4. Let L ⊆ (BM)ω be some ω-language and r ∈ [0, 1]. If L is recognizable by some D-St-RNN[Q, r], then L ∈ BC(�0
2)(α),

for some α ∈ 2ω . In particular, if L is recognizable by some D-St-RNN[Q, rα], where rα = ∑∞
i=1

2αi+1
4i and αi ∈ {0, 1} for each i ∈N∗ ,

then L ∈ BC(�0
2)(α), where α = α1α2α3 · · · .

Proof. If L is recognized by some D-St-RNN[Q, r], then a fortiori L is recognized by some D-St-RNN[R]. By Theorem 2,
L ∈ BC(�0

2). By Theorem 2 again, L is recognized by some D-Ev2-RNN[Q], and by Remark 1, L is recognized by some
D-Ev2-RNN[Q, α], for some α ∈ 2ω . By Proposition 3, L ∈ BC(�0

2)(α).

Now, suppose that L is recognized by some D-St-RNN[Q, rα] N , where rα = ∑∞
i=1

2αi+1
4i and αi ∈ {0, 1}, for each i ∈ N∗ .

By Remark 1, we may assume without loss of generality that the static weight rα of N is a bias. Let rα |K denote the
truncation of rα after K bits, i.e.,

rα|K =
K∑ 2αi + 1

4i
.

i=1

JID:YJCSS AID:3198 /FLA [m3G; v1.248; Prn:18/12/2018; 9:12] P.9 (1-14)

J. Cabessa, O. Finkel / Journal of Computer and System Sciences ••• (••••) •••–••• 9
Algorithm 1 Infinite procedure.
Require: 1. input s = �u(0)�u(1)�u(2) · · · ∈ (BM)ω supplied step by step at successive time steps t = 0, 1, 2, . . .

2. infinite word α = α1α2α3 · · · ∈ 2ω supplied step by step at successive time steps t = 0, 1, 2, . . .

1: SUBROUTINE 1
2: for all time step t ≥ 0 do
3: store the incoming Boolean vector �u(t) ∈ BM

4: store the incoming bit αt+1 ∈ {0, 1}
5: end for
6: END SUBROUTINE 1

7: SUBROUTINE 2
8: for n = 0, 1, 2, 3, . . . do
9: wait that K · n bits of α have been stored

10: compute rα |K ·n // recursive if α given bit by bit
11: simulate the computation of the truncated network N |K ·n working on input prefix �u(0) · · · �u(n), but output the result of that computation only for

the last time step n // recursive, since N |K ·n is a D-St-RNN[Q] [45]
12: end for
13: END SUBROUTINE 2

For each n ≥ 0, let N |K ·n be the network N whose weight rα has been replaced by rα |K ·n , for some constant K > 0
defined in [44, Lemma 4.1]. By [44, Lemma 4.1], the truncated network N |K ·n computes precisely like N up to time step n.
Moreover, N |K ·n is a D-St-RNN[Q], and thus, its behavior can be simulated by some Turing machine [45].

Consider the infinite procedure given by Algorithm 1. The procedure consists in two subroutines performed in parallel. It
receives some input s ∈ (BM)ω together with the infinite word α ∈ 2ω , and it simulates the computation of N working on
input s, by using the successive truncated networks N |K ·n . All instructions of Algorithm 1 are recursive, and thus, can be
simulated by some D-St-RNN[Q] [45]. Hence, the whole Algorithm 1 can be simulated by some D-Ev2-RNN[Q, α] N ′ which
receives α = α1α2α3 as an evolving bias. Every time N ′ enters instruction 11 of Algorithm 1, it simulates the behavior of
the truncated network N |K ·n , and thus, by [44, Lemma 4.1], reproduces the output pattern of N working on input prefix
�u(0) · · · �u(n), to finally release the last output state of N at last time step n. But these successive computational periods
of N ′ are interspersed with delays due to the simulation of the other instructions of Algorithm 1. In order to deal with
these delays, we provide N ′ with an additional output cell y P+1 which is programmed to be active only when the network
simulates the output period of instruction 11. Then, an attractor A ⊆ BP+1 of N ′ is defined to be accepting if and only
if the (P + 1)-th component of each element of A equals 1 (which corresponds to the cell y P+1 being active), and the
projection of A on BP is an accepting attractor of N .

In this way, for any input s ∈ (BM)ω , the subsequence of the Boolean computation of N ′ induced by the active states of
y P+1 is the same as the Boolean computation of N , and hence, s is accepting for N ′ if and only if s is accepting for N .
Consequently, L(N ′) = L(N). Since N ′ is a D-Ev2-RNN[Q, α], Proposition 3 ensures that L(N ′) ∈ BC(�0

2)(α). Therefore,
L(N) ∈ BC(�0

2)(α) too. �
Propositions 1, 2, 3 and 4 lead to the following theorem:

Theorem 3. Let L ⊆ (BM)ω be some ω-language, α = α1α2α3 · · · ∈ 2ω and rα = ∑∞
i=1

2αi+1
4i ∈ [0, 1]. The following conditions are

equivalent:

(a) L ∈ BC(�0
2)(α);

(b) L is recognizable by some D-Ev2-RNN[Q, α];
(c) L is recognizable by some D-St-RNN[Q, rα].

From Theorem 3 and Remark 1, the following set-theoretical result can be retrieved:

BC(�0
2) =

⋃
α∈2ω

BC(�0
2)(α).

Indeed, L ∈ BC(�0
2) if and only if, by Remark 1, L is recognizable by some D-Ev2-RNN[Q, α], for some α ∈ 2ω , if and only if,

by Theorem 3, L ∈ BC(�0
2)(α). In words, the relativized classes BC(�0

2)(α) span the class BC(�0
2), when α varies over 2ω .

4.2. Nondeterministic case

The expressive power of the classes of N-St-RNN[Q], N-Ev2-RNN[Q], N-Ev-RNN[Q], N-Ev2-RNN[R] and N-Ev-RNN[R] has
been established in [6, Theorems 1, 2]. We have the following results:

Theorem 4. [6, Theorems 1] Let L ⊆ (BM)ω be some ω-language. The following conditions are equivalent:

JID:YJCSS AID:3198 /FLA [m3G; v1.248; Prn:18/12/2018; 9:12] P.10 (1-14)

10 J. Cabessa, O. Finkel / Journal of Computer and System Sciences ••• (••••) •••–•••
(a) L ∈ �1
1;

(b) L is recognizable by some N-St-RNN[Q];
(c) L is recognizable by some nondeterministic Muller Turing machine.

Theorem 5. [6, Theorems 2] Let L ⊆ (BM)ω be some ω-language. The following conditions are equivalent:

(a) L ∈ �1
1;

(b) L is recognizable by some N-St-RNN[R];
(c) L is recognizable by some N-Ev2-RNN[Q];
(d) L is recognizable by some N-Ev-RNN[Q];
(e) L is recognizable by some N-Ev2-RNN[R];
(f) L is recognizable by some N-Ev-RNN[R].

Theorem 4 states that N-St-RNN[Q]s are Turing equivalent. Theorem 5 shows that all other classes of N-St-RNN[R]s,
N-Ev2-RNN[Q], N-Ev-RNN[Q], N-Ev2-RNN[R] and N-Ev2-RNN[R] are strictly more powerful than nondeterministic Muller
Turing machines, since �1

1 � �1
1 . In this sense, the nondeterministic analog and evolving neural networks are also super-

Turing.

Remark 2. The nondeterministic counterpart of Remark 1 holds. More precisely, the proof of Theorem 5 [6, Theorem 2]
shows that any ω-language L ∈ �1

1 can be recognized by some N-St-RNN[R] employing at most one static irrational weight
which is in the interval [0, 1] and given in the form of a bias. Similarly, any ω-language L ∈ �1

1 can be recognized by some
N-Ev2-RNN[Q] containing only one bi-valued evolving weight given as a bias. Consequently, from this point onwards, we
will without loss of generality focus on the subclasses of N-St-RNN[Q, r] and N-Ev2-RNN[Q, α], for any r ∈ [0, 1] and α ∈ 2ω .

We now provide a precise characterization of the expressive power of the two subclasses of N-St-RNN[Q, r] and
N-Ev2-RNN[Q, α], for any r ∈ [0, 1] and α ∈ 2ω , respectively. This result is obtained via forthcoming Propositions 5, 6, 7
and 8, which are direct generalizations of Propositions 1, 2, 3 and 4.

Proposition 5. Let L ⊆ (BM)ω be some ω-language and α ∈ 2ω . If L ∈ �1
1(α), then L is recognizable by some N-Ev2-RNN[Q, α].

Proof. If L ∈ �1
1(α) � (BM)ω , then by definition, there exists L′ ∈ �1

1 � (BM+1)ω such that

L = L′
α =

{
s ∈ (BM)ω : (s,α) ∈ L′} .

Theorem 4 ensures that there exists a N-St-RNN[Q] N ′ with M + 1 input cells such that L(N ′) = L′ . As in the proof of
Proposition 1, one can modify network N ′ to obtain a N-Ev2-RNN[Q, α] N such that L(N) = L′

α = L. �
Proposition 6. Let L ⊆ (BM)ω be some ω-language and α = α1α2α3 ∈ 2ω . If L ∈ �1

1(α), then L is recognizable by some
N-St-RNN[Q, rα] N , where r = ∑∞

i=1
2αi+1

4i ∈ [0, 1].

Proof. Suppose that L ∈ �1
1(α). Let α′ = 00

∏∞
i=1(0αi) = 00α10α20α30α40 · · · ∈ 2ω . One has α ∈ �1

0(α
′). The relations L ∈

�1
1(α) and α ∈ �1

0(α
′) imply L ∈ �1

1(α
′). Consequently, there exists L′ ∈ �1

1 � (BM+1)ω such that

L = L′
α′ =

{
s ∈ (BM)ω : (s,α′) ∈ L′} .

By Theorem 1, there exists a N-St-RNN[Q] N ′ with M + 1 input cells u1, . . . , uM+1 and one guess cell uM+2 such that
L(N ′) = L′ .

Now, consider once again the real encoding of α given by rα = ∑∞
i=1

2αi+1
4i ∈ [0, 1]. Consider also the N-St-RNN[Q, rα]

N obtained by replacing the input cell uM+1 of N ′ by the real-weighted neural circuit C with bias rα depicted in Fig. 3.
One has L(N) = L′

α′ = L, which shows that L is recognized by the N-St-RNN[Q, rα] N . �
Proposition 7. Let L ⊆ (BM)ω be some ω-language and α ∈ 2ω . If L is recognizable by some N-Ev2-RNN[Q, α], then L ∈ �1

1(α).

Proof. Let N be a N-Ev2-RNN[Q, α] such that L(N) = L. By Remark 2, we may assume without loss generality that the bi-
valued evolving weight α of N is given as a bias. As in the proof of Proposition 3, we can construct from N a N-St-RNN[Q]
N ′ with P + 1 input cells and one guess cell such that, for any (s, α) ∈ (BM+1)ω , one has (s, α) ∈ L(N ′) if and only if
s ∈ L(N). This shows that L(N) = L(N ′)α . Besides, Theorem 4 ensures that L(N ′) ∈ �1

1. Therefore, L(N) ∈ �1
1(α). �

JID:YJCSS AID:3198 /FLA [m3G; v1.248; Prn:18/12/2018; 9:12] P.11 (1-14)

J. Cabessa, O. Finkel / Journal of Computer and System Sciences ••• (••••) •••–••• 11
Proposition 8. Let L ⊆ (BM)ω be some ω-language and r ∈ [0, 1]. If L is recognizable by some N-St-RNN[Q, r], then L ∈ �1
1(α), for

some α ∈ 2ω . In particular, if L is recognizable by some N-St-RNN[Q, rα], where rα = ∑∞
i=1

2αi+1
4i and αi ∈ {0, 1} for each i ∈ N∗ ,

then L ∈ �1
1(α), where α = α1α2α3 · · · .

Proof. If L is recognized by some N-St-RNN[Q, r], then a fortiori L is recognized by some N-St-RNN[R]. By Theorem 5,
L ∈ �1

1 . By Theorem 5 again, L is recognized by some N-Ev2-RNN[Q], and by Remark 2, L is recognized by some
N-Ev2-RNN[Q, α], for some α ∈ 2ω . By Proposition 7, L ∈ �1

1(α).

Now, suppose that L is recognized by some N-St-RNN[Q, rα] N , where rα = ∑∞
i=1

2αi+1
4i and αi ∈ {0, 1} for each i ∈ N∗ .

By Remark 2, we may assume without loss of generality that the static weight rα of N is given as a bias. Consider the
infinite procedure given in previous Algorithm 1, yet slightly modified in such a way that the algorithm receives as input a
guess stream g ∈ 2ω provided bit by bit in addition to the input stream s ∈ (BM)ω and infinite word α ∈ 2ω . This modified
version of Algorithm 1 can be simulated by some N-Ev2-RNN[Q, α] N ′ receiving g as a guess stream and α = α1α2α3 as an
evolving bias. In addition, the accepting and rejecting attractors of N ′ are defined in the same way as in Proposition 4. By
construction, L(N ′) = L(N). Since N ′ is a N-Ev2-RNN[Q, α], Proposition 7 ensures that L(N ′) ∈ �1

1(α). Therefore, L(N) ∈
�1

1(α) too. �
By combining Propositions 5, 6, 7 and 8, the following theorem is obtained:

Theorem 6. Let L ⊆ (BM)ω be some ω-language, α = α1α2α3 · · · ∈ 2ω and rα = ∑∞
i=1

2αi+1
4i ∈ [0, 1]. The following conditions are

equivalent:

(a) L ∈ �1
1(α);

(b) L is recognizable by some N-Ev2-RNN[Q, α];
(c) L is recognizable by some N-St-RNN[Q, rα].

From Theorem 6 and Remark 2, the following set-theoretical result can be retrieved:

�1
1 =

⋃
α∈2ω

�1
1(α).

In other words, the relativized classes �1
1(α) span the class �1

1 , when α varies over 2ω .

5. The hierarchy theorem

Theorems 3 and 6 provide a precise characterization of the expressive power of the classes of D-St-RNN[Q, rα],
D-Ev2-RNN[Q, α], N-St-RNN[Q, rα] and N-Ev2-RNN[Q, α], for any α ∈ 2ω . We will show that these classes can be stratified
into transfinitely many subclasses based on the complexity of the analog and evolving weights employed by the networks.

Towards this purpose, we first present some conditions that pairs of infinite words necessarily satisfy whenever their
corresponding relativized classes are included one into the other.

Proposition 9. Let α, β ∈ 2ω . The following relations hold:

BC(�0
2)(α) ⊆ BC(�0

2)(β) −→ α ∈
1
1(β) (3)

�1
1(α) ⊆ �1

1(β) ←→ α ∈
1
1(β) (4)

Proof. We prove both left-to-right implications. Recall that α ∈ �0
1(α). In the first case, one has α ∈ �0

1(α) ⊆ BC(�0
2)(α) ⊆

BC(�0
2)(β) ⊆
1

1(β). In the second case, α ∈ �0
1(α) ⊆ �1

1(α) ⊆ �1
1(β), and thus α ∈
1

1(β), by [36].
For the converse implication of relation (4), suppose that α ∈
1

1(β). Then α ∈ �1
1(β), which means that the ω-language

{α} is recognized by some nondeterministic Muller TM M1 with oracle β . Now, let L ∈ �1
1(α). Then L is recognized by a

nondeterministic Muller TM M2 with oracle α. Consider the nondeterministic Muller TM M with oracle β which works
as follows: if x is written on its input tape, then M nondeterministically writes some y ∈ 2ω bit by bit on one of its work
tape, and concomitantly, it simulates in parallel the behaviors of M1 on y as well as that of M2 with oracle y on x. The
TM M is suitably programmed in order to always have enough bits of y being written on its work tape so that the next
simulations steps of M1 with oracle y can be performed without fail. In addition, the machine M accepts input x iff both
simulation processes of M1 and M2 are accepting, i.e., iff y = α and the simulation of M2 with oracle y = α accepts x,
which is to say that x ∈ L(M2) = L. Hence, M recognizes L also, and thus L ∈ �1

1(β). This shows that �1
1(α) ⊆ �1

1(β). �
We now show the existence of an infinite sequence of infinite words whose corresponding succession of relativized

classes properly stratify the “super-Turing” classes of BC(�0
2) and �1

1 neural ω-languages. In addition, the hierarchy induced
by the inclusion relation between the relativized classes possesses chains of length ω1 as well as uncountable antichains.

JID:YJCSS AID:3198 /FLA [m3G; v1.248; Prn:18/12/2018; 9:12] P.12 (1-14)

12 J. Cabessa, O. Finkel / Journal of Computer and System Sciences ••• (••••) •••–•••
Proposition 10. There exists a sequence (αi)i<ω1 , where αi ∈ 2ω for all i < ω1 , such that

(a) BC(�0
2)(α0) = BC(�0

2) and BC(�0
2)(αi) � BC(�0

2)(α j), for all i < j < ω1;

(b) �1
1(α0) = �1

1 and �1
1(αi) ��1

1(α j), for all i < j < ω1 .

Moreover, there exists some uncountable set A ⊆ 2ω such that the following relations BC(�0
2)(αi) � BC(�0

2)(α j) and �1
1(αi) �

�1
1(α j) hold, for every distinct αi, α j ∈ A.

Proof. Take α0 ∈ �0
1. Suppose that for γ < ω1, the sequence (αi)i<γ has been constructed and satisfies the required prop-

erty. We build the next element αγ of that sequence, i.e., the element such that �1
1(αi) � �1

1(αγ), for all i < γ . Note that,
for each i < γ , the set
1

1(αi) is countable. Since γ < ω1, the union
⋃

i<γ
1
1(αi) is countable too. Hence, there exists

α ∈ 2ω \ ⋃
i<γ
1

1(αi). Now, let {βi : i < ω} be an enumeration of the countable set {α} ∪ {αi : i < γ }, and let αγ ∈ 2ω be
the encoding of {βi : i < ω} given by αγ (〈i, n〉) = βi(n), where 〈., .〉 : ω2 → ω is a classical recursive pairing function. Each
function f i : αγ �→ (αγ)i = βi is recursive, and therefore, βi ∈ �0

1(αγ), for each i < ω.
We show that BC(�0

2)(α j) ⊆ BC(�0
2)(αγ), for all j < γ . Let L ∈ BC(�0

2)(α j) = BC(�0
2)(βi), for some i < ω. This means

that L is recognizable by some deterministic Muller TM M with oracle βi . Since βi ∈ �0
1(αγ), L is also recognized by the

deterministic Muller TM M′ with oracle αγ which, in a suitable alternating manner, produces βi bit by bit from αγ , and
works precisely like M with oracle βi . Therefore, L ∈ BC(�0

2)(αγ). By replacing in this argument every occurrences of
“BC(�0

2)” by “�1
1” and of “deterministic” by “nondeterministic”, one obtains that �1

1(α j) ⊆ �1
1(αγ), for all j < γ .

We now show that BC(�0
2)(α j) � BC(�0

2)(αγ) and �1
1(α j) � �1

1(αγ), for all j < γ . Towards a contradiction, suppose
that BC(�0

2)(αγ) ⊆ BC(�0
2)(α j) or �1

1(αγ) ⊆ �1
1(α j), for some j < γ . Then Relations (3) and (4) ensure that αγ ∈
1

1(α j).
But α = βk for some k < ω, and by the above stated fact, α = βk ∈ �0

1(αγ). The two relations α ∈ �0
1(αγ) and αγ ∈
1

1(α j)

imply that α ∈
1
1(α j). This contradicts the fact that α ∈ 2ω \ ⋃

i<γ
1
1(αi).

We finally prove the existence of an uncountable antichain. There exists an uncountable set A ⊆ 2ω such that αi /∈

1

1(α j), for all distinct αi, α j ∈ A [3]. By Relations (3) and (4), BC(�0
2)(αi) � BC(�0

2)(α j) and �1
1(αi) � �1

1(α j), for all
distinct αi, α j ∈ A. �

Let L(D-St-RNN[Q, r]), L(D-Ev2-RNN[Q, α]), L(N-St-RNN[Q, r]) and L(N-Ev2-RNN[Q, α]) denote the classes of neural
ω-languages recognized by D-St-RNN[Q, r], D-Ev2-RNN[Q, α], N-St-RNN[Q, r] and N-Ev2-RNN[Q, α], respectively. Theo-
rems 3 and 6 together with Proposition 10 imply the existence of four proper hierarchies of classes of deterministic and
nondeterministic analog and evolving neural networks of increasing expressive power.

Theorem 7. There exists a sequence of real numbers (ri)i<ω1 and a sequence of infinite words (αi)i<ω1 such that

(a) L(D-St-RNN[Q, ri]) � L(D-St-RNN[Q, r j]), for all i < j < ω1;

(b) L(D-Ev2-RNN[Q, αi]) � L(D-Ev2-RNN[Q, α j]), for all i < j < ω1;

(c) L(N-St-RNN[Q, ri]) � L(N-St-RNN[Q, r j]), for all i < j < ω1;

(d) L(N-Ev2-RNN[Q, αi]) � L(N-Ev2-RNN[Q, α j]), for all i < j < ω1 .

Proof. Theorems 3 and 6 ensure that

L(D-Ev2-RNN[Q,α]) = L(D-St-RNN[Q, rα]) = BC(�0
2)(α)

L(N-Ev2-RNN[Q,α]) = L(N-St-RNN[Q, rα]) = �1
1(α)

where rα is the encoding of α described in Proposition 4, for any α ∈ 2ω . By Proposition 10, there exists some sequence
(αi)i<ω1 satisfying Points (b) and (d). In addition, by taking ri = rαi for all i < ω1, one obtains a sequence (ri)i<ω1 satisfying
Points (a) and (c). �

Finally, let R be the equivalence relation defined by

R(α,β) iff L(N-Ev2-RNN[Q,α]) = L(N-Ev2-RNN[Q, β])
This relation represents the decision problem of whether two classes of nondeterministic evolving networks (determined by
the evolving weights α and β) have the same expressive power. We show that this relation is undecidable and of complexity
�1

1 \ �1
1.

Proposition 11. The equivalence relation R is in the class �1
1 \ �1

1 .

JID:YJCSS AID:3198 /FLA [m3G; v1.248; Prn:18/12/2018; 9:12] P.13 (1-14)

J. Cabessa, O. Finkel / Journal of Computer and System Sciences ••• (••••) •••–••• 13
Proof. According to Theorem 6 and Relation (4), the relation R ⊆ 2ω × 2ω satisfies R(α1, α2) iff α1 ∈
1
1(α2) and α2 ∈

1
1(α1). It is known that the relation “α ∈
1

1(β)” is a �1
1 relation which can be expressed by a �1

1-formula φ(α, β), see
[36, 4D.14, p. 171] and [21]. Thus R is a �1

1-relation. Towards a contradiction, assume now that R is �1
1, and take β ∈ �0

1.
Then R(., β) = {α : R(α, β)} = {α : α ∈
1

1(β) & β ∈
1
1(α)} = {α : α ∈
1

1(β)} = {α : α ∈
1
1} should also be in �1

1. But it is
known that the set {α : α ∈
1

1} is not �1
1, see [36, 4D.16, p. 171]. This concludes the proof. �

6. Conclusion

The present study concerns the expressive power of sigmoidal recurrent neural networks involved in a computational
paradigm based on infinite rather than finite input streams. This approach conciliates two important biological and computer
scientist perspectives about neural attractor dynamics and non-terminating computational processes, respectively.

In this context, we provided a full characterization of the expressive power of the networks. For any α ∈ 2ω with corre-
sponding encoding rα ∈ R, the deterministic and nondeterministic analog or evolving networks employing either the single
static analog weight rα or the single evolving weight α recognize the (lightface) relativized topological classes of BC(�0

2)(α)

and �1
1(α) ω-languages, respectively. As a consequence, two infinite refined hierarchies of classes of analog and evolving

neural nets based on the complexity of their underlying analog and evolving weights are obtained. These hierarchies repre-
sent a generalization to the context of ω-computation of the fundamental previous hierarchy of classes of analog networks
based on the Kolmogorov complexity of their underlying analog weights [4].

From a purely theoretical perspective, these results show that analog and evolving neural networks constitute natural
equivalent models for oracle-based infinite computation, beyond the Turing limits. In the analog case, the extra-recursive
power of the networks arises from their possibility to have access to more and more precise rational approximations of
some given real weights [44]. In the evolving case, the extra capabilities emerge from the non-recursive patterns of evolution
of the synapses [10]. Despite their mathematical equivalence, the two neural models are conceptually distinct: while the
former remains at a purely conceptual level, the later relies on considerations that could be observable in nature.

From a more practical point of view, the two phenomena of attractor dynamics and synaptic plasticity are of primordial
importance to the processing and coding of information in both artificial and biological neural networks. In fact, the concept
of an attractor has been shown to carry strong computational implications. According to Kauffman: “Because many complex
systems harbour attractors to which the system settle down, the attractors literally are most of what the systems do” [27,
p.191]. In the neural network context, alternative attractors are commonly interpreted as alternative memories, but have
also been associated to motor behaviors, perceptions and thoughts [31,32,23,24,2,20]. Likewise, synaptic plasticity is known
to be crucially related to the storage and encoding of memory traces in the central nervous system, and provides the basis
for most models of learning and memory in neural networks [1,33,40,19]. In view of these considerations, our results may
constitute a theoretical foundation of the computational capabilities of neural networks in touch with these two crucial
phenomena.

More generally, this study strengthen the connectedness between the fields of theoretical computer science, with possible
extensions to the more practical domain of machine learning, and theoretical neuroscience. We hope that such comparative
studies between neural networks and abstract machines might eventually bring further insight to the understanding of
both biological and artificial intelligences. Similarly to the foundational work of Turing, which played a crucial role in the
practical realization of modern computers, further theoretical considerations about neural- and natural-based models of
computation might contribute to the emergence of novel computational technologies, and step by step, open the way to the
next computational generation.

Acknowledgments

Partial support from DARPA project no. HR001117S0016-L2M-FP-015 is gratefully acknowledged.

References

[1] L.F. Abbott, S.B. Nelson, Synaptic plasticity: taming the beast, Nat. Neurosci. 3 Suppl. (2000) 1178–1183.
[2] D.J. Amit, Modelling Brain Function: The World of Attractor Neural Networks, 1st edition, Cambridge University Press, New York, NY, USA, 1992.
[3] K.R. Apt, ω-models in analytical hierarchy, Bull. Acad. Pol. Sci. XX (1972) 901–904.
[4] J.L. Balcázar, R. Gavaldà, H.T. Siegelmann, Computational power of neural networks: a characterization in terms of Kolmogorov complexity, IEEE Trans.

Inf. Theory 43 (1997) 1175–1183.
[5] J. Cabessa, J. Duparc, Expressive power of non-deterministic evolving recurrent neural networks in terms of their attractor dynamics, in: C.S. Calude,

M.J. Dinneen (Eds.), Proceedings of UCNC 2015, in: Lecture Notes in Computer Science, vol. 9252, Springer, 2015, pp. 144–156.
[6] J. Cabessa, J. Duparc, Expressive power of nondeterministic recurrent neural networks in terms of their attractor dynamics, Int. J. Unconv. Comput. 12

(2016) 25–50.
[7] J. Cabessa, O. Finkel, Expressive power of evolving neural networks working on infinite input streams, in: R. Klasing, M. Zeitoun (Eds.), Proceedings of

FCT 2017, in: Lecture Notes in Computer Science, vol. 10472, Springer, 2017, pp. 150–163.
[8] J. Cabessa, H.T. Siegelmann, Evolving recurrent neural networks are super-Turing, in: Proceedings of IJCNN 2011, IEEE, 2011, pp. 3200–3206.
[9] J. Cabessa, H.T. Siegelmann, The computational power of interactive recurrent neural networks, Neural Comput. 24 (2012) 996–1019.

[10] J. Cabessa, H.T. Siegelmann, The super-Turing computational power of plastic recurrent neural networks, Int. J. Neural Syst. 24 (2014).

http://refhub.elsevier.com/S0022-0000(18)30170-3/bib4162626F74744E656C736F6E3030s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib416D69743932s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib4170743732s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib53696567656C6D616E6E4574416C3937s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib53696567656C6D616E6E4574416C3937s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib436162657373614475706172633135s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib436162657373614475706172633135s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib436162657373614475706172633136s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib436162657373614475706172633136s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib4361626573736146696E6B656C3137s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib4361626573736146696E6B656C3137s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib4361626573736153696567656C6D616E6E313161s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib4361626573736153696567656C6D616E6E313261s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib4361626573736153696567656C6D616E6E3134s1

JID:YJCSS AID:3198 /FLA [m3G; v1.248; Prn:18/12/2018; 9:12] P.14 (1-14)

14 J. Cabessa, O. Finkel / Journal of Computer and System Sciences ••• (••••) •••–•••
[11] J. Cabessa, A.E.P. Villa, A hierarchical classification of first-Order recurrent neural networks, in: A.H. Dediu, et al. (Eds.), Proceedings of LATA 2010, in:
Lecture Notes in Computer Science, vol. 6031, Springer, 2010, pp. 142–153.

[12] J. Cabessa, A.E.P. Villa, The expressive power of analog recurrent neural networks on infinite input streams, Theor. Comput. Science 436 (2012) 23–34.
[13] J. Cabessa, A.E.P. Villa, The super-Turing computational power of interactive evolving recurrent neural networks, in: V. Mladenov, et al. (Eds.), Proceed-

ings of ICANN 2013, in: Lecture Notes in Computer Science, vol. 8131, Springer, 2013, pp. 58–65.
[14] J. Cabessa, A.E.P. Villa, An attractor-based complexity measurement for boolean recurrent neural networks, PLoS ONE 9 (2014) e94204+.
[15] J. Cabessa, A.E.P. Villa, Interactive evolving recurrent neural networks are super-Turing Universal, in: S. Wermter, et al. (Eds.), Proceedings of ICANN

2014, in: Lecture Notes in Computer Science, vol. 8681, Springer, 2014, pp. 57–64.
[16] J. Cabessa, A.E.P. Villa, Computational capabilities of recurrent neural networks based on their attractor dynamics, in: Proceedings of IJCNN 2015, IEEE,

2015, pp. 1–8.
[17] J. Cabessa, A.E.P. Villa, Recurrent neural networks and super-Turing interactive computation, in: P. Koprinkova-Hristova, V. Mladenov, K.N. Kasabov

(Eds.), Artificial Neural Networks: Methods and Applications in Bio-/Neuroinformatics, Springer, 2015, pp. 1–29.
[18] J. Cabessa, A.E.P. Villa, Expressive power of first-order recurrent neural networks determined by their attractor dynamics, J. Comput. Syst. Sci. 82 (2016)

1232–1250.
[19] N. Caporale, Y. Dan, Spike timing-dependent plasticity: a Hebbian learning rule, Annu. Rev. Neurosci. 31 (2008) 25–46.
[20] C. Eliasmith, A unified approach to building and controlling spiking attractor networks, Neural Comput. 17 (2005) 1276–1314.
[21] O. Finkel, Ambiguity of omega-languages of Turing Machines, Log. Methods Comput. Sci. 10 (2014).
[22] R. Hartley, H. Szu, A comparison of the computational power of neural network models, in: C. Butler (Ed.), Proceedings of the IEEE First International

Conference on Neural Networks, IEEE, 1987, pp. 17–22.
[23] J.J. Hopfield, Neural networks and physical systems with emergent collective computational abilities, Proc. Natl. Acad. Sci. 79 (1982) 2554–2558.
[24] J.J. Hopfield, Neurons with graded response have collective computational properties like those of two-state neurons, Proc. Natl. Acad. Sci. 81 (1984)

3088–3092.
[25] H. Hyötyniemi, Turing machines are recurrent neural networks, in: J. Alander, T. Honkela, M. Jakobsson (Eds.), Proceedings of STeP 1996, University of

Vaasa, Finnish Artificial Intelligence Society (FAIS), 1996, pp. 13–24.
[26] N. Kasabov, Evolving Connectionist Systems – The Knowledge Engineering Approach, 2nd ed., Springer, 2007.
[27] S.A. Kauffman, The Origins of Order: Self-Organization and Selection in Evolution, Oxford University Press, New York, 1993.
[28] A.S. Kechris, Classical Descriptive Set Theory, Graduate Texts in Mathematics, vol. 156, Springer, New York, NY, USA, 1995.
[29] J. Kilian, H.T. Siegelmann, The dynamic universality of sigmoidal neural networks, Inf. Comput. 128 (1996) 48–56.
[30] S.C. Kleene, Representation of events in nerve nets and finite automata, in: C. Shannon, J. McCarthy (Eds.), Automata Studies, Princeton University Press,

Princeton, NJ, 1956, pp. 3–41.
[31] W.A. Little, The existence of persistent states in the brain, Math. Biosci. 19 (1974) 101–120.
[32] W.A. Little, G.L. Shaw, Analytical study of the memory storage capacity of a neural network, Math. Biosci. 39 (1978) 281–290.
[33] S.J. Martin, P.D. Grimwood, R.G.M. Morris, Synaptic plasticity and memory: an evaluation of the hypothesis, Annu. Rev. Neurosci. 23 (2000) 649–711.
[34] W.S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity, Bull. Math. Biophys. 5 (1943) 115–133.
[35] M.L. Minsky, Computation: Finite and Infinite Machines, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1967.
[36] Y.N. Moschovakis, Descriptive Set Theory, Mathematical Surveys and Monographs, second edition, American Mathematical Society, 2009.
[37] J.a.P.G. Neto, H.T. Siegelmann, J.F. Costa, C.P.S. Araujo, Turing universality of neural nets (revisited), in: Proceedings of EUROCAST ’97: Computer Aided

Systems Theory, in: Lecture Notes in Computer Science, vol. 1333, Springer, London, UK, 1997, pp. 361–366.
[38] D. Perrin, J.E. Pin, Infinite Words – Automata, Semigroups, Logic and Games, Pure and Applied Mathematics, vol. 141, Elsevier, 2004.
[39] J.B. Pollack, On Connectionist Models of Natural Language Processing, Ph.D. thesis, Computing Research Laboratory, New Mexico State University, Las

Cruces, NM, 1987.
[40] P.D. Roberts, C.C. Bell, Spike timing dependent synaptic plasticity in biological systems, Biol. Cybern. 87 (2002) 392–403.
[41] H.T. Siegelmann, Recurrent neural networks and finite automata, Comput. Intell. 12 (1996) 567–574.
[42] H.T. Siegelmann, Neural Networks and Analog Computation: Beyond the Turing Limit, Birkhauser Boston Inc., Cambridge, MA, USA, 1999.
[43] H.T. Siegelmann, Neural and super-Turing computing, Minds Mach. 13 (2003) 103–114.
[44] H.T. Siegelmann, E.D. Sontag, Analog computation via neural networks, Theor. Comput. Sci. 131 (1994) 331–360.
[45] H.T. Siegelmann, E.D. Sontag, On the computational power of neural nets, J. Comput. Syst. Sci. 50 (1995) 132–150.
[46] J. Síma, P. Orponen, General-purpose computation with neural networks: a survey of complexity theoretic results, Neural Comput. 15 (2003)

2727–2778.
[47] L. Staiger, ω-languages, in: Handbook of Formal Languages, Vol. 3: Beyond Words, Springer, New York, NY, USA, 1997, pp. 339–387.
[48] K.O. Stanley, R. Miikkulainen, Evolving neural network through augmenting topologies, Evol. Comput. 10 (2002) 99–127.
[49] W. Thomas, Automata on infinite objects, in: J. van Leeuwen (Ed.), Handbook of Theoretical Computer Science, Volume B: Formal Models and Semantics,

Elsevier and MIT Press, 1990, pp. 133–192.
[50] A.M. Turing, Intelligent Machinery, Technical Report, National Physical Laboratory, Teddington, UK, 1948.

http://refhub.elsevier.com/S0022-0000(18)30170-3/bib4361626573736156696C6C613130s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib4361626573736156696C6C613130s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib4361626573736156696C6C613132s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib4361626573736156696C6C613133s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib4361626573736156696C6C613133s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib4361626573736156696C6C61313462s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib4361626573736156696C6C613134s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib4361626573736156696C6C613134s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib4361626573736156696C6C613135s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib4361626573736156696C6C613135s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib4361626573736156696C6C61313563s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib4361626573736156696C6C61313563s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib4361626573736156696C6C613136s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib4361626573736156696C6C613136s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib4361706F72616C6544616E3038s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib456C6961736D6974683035s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib46696E6B656C3134s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib486172746C6579537A753837s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib486172746C6579537A753837s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib486F706669656C643832s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib486F706669656C643834s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib486F706669656C643834s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib48796F74796E69656D693936s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib48796F74796E69656D693936s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib4B617361626F763037s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib4B617566666D616E3933s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib4B6563687269733935s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib4B696C69616E53696567656C6D616E6E3936s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib4B6C65656E653536s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib4B6C65656E653536s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib4C6974746C653734s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib4C6974746C65536861773738s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib4D617274696E4574416C3030s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib4D6343756C6C6F636850697474733433s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib4D696E736B793637s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib4D6F7363686F76616B69733039s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib4E65746F3937s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib4E65746F3937s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib50657272696E50696E3034s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib506F6C6C61636B3837s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib506F6C6C61636B3837s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib526F626572747342656C6C3032s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib53696567656C6D616E6E3936s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib53696567656C6D616E6E3939s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib53696567656C6D616E6E3033s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib53696567656C6D616E6E536F6E7461673934s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib53696567656C6D616E6E536F6E7461673935s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib53696D614F72706F6E656E3033s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib53696D614F72706F6E656E3033s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib686F666C39372F537461696765723937s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib5374616E6C65794D69696B6B756C61696E656E3032s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib54686F6D61733930s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib54686F6D61733930s1
http://refhub.elsevier.com/S0022-0000(18)30170-3/bib547572696E673438s1

	Computational capabilities of analog and evolving neural networks over inﬁnite input streams
	1 Introduction
	2 Preliminaries
	3 Recurrent neural networks on inﬁnite input streams
	3.1 Deterministic case
	3.2 Nondeterministic case

	4 Expressive power of neural networks
	4.1 Deterministic case
	4.2 Nondeterministic case

	5 The hierarchy theorem
	6 Conclusion
	Acknowledgments
	References

