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ABSTRACT (PART I)

How does the brain encode and process information? Assuming that at least some
aspects of the brain processes are of a computational nature, the following ques-
tions naturally arise. What are the computational capabilities of the neural net-
works involved? Do they transcend the limits of classical Turing machines? Is
there an upper bound on this computational power?

Understanding the computational and dynamical capabilities of biological neu-
ral networks represents a most challenging issue, with considerable repercussions,
ranging from theoretical and philosophical considerations to practical implications
in the fields of artificial intelligence, machine learning, bio-inspired computing,
robotics, etc. In this context, the theoretical computer scientist approach to neural
computation has been focused on comparing the computational powers of diverse
neural network models with those of abstract computing devices. Nowadays, the
computational capabilities of neural models are known to be tightly related to the
kind of activation functions used by the neurons, to the nature of their synaptic
connections, to the eventual presence of noise in the model, to the possibility for
the neural architecture to evolve over time, etc. They have been shown to range
from the finite state automaton up to the super-Turing level.

In this manuscript, we review some important results concerning the compu-
tational capabilities of various models recurrent neural networks involved in dif-
ferent paradigms of computation: classical, interactive, and attractor-based. Over-
all, the Boolean neural networks are computationally equivalent to finite state au-
tomata. The static rational-weighted and real-weighted neural networks are equiv-
alent to Turing machines and Turing machines with advices, respectively. The
evolving neural networks are also equivalent to Turing machines with advices –
and hence to static real-weighted networks – irrespective of whether their synaptic
weights are modelled by rational or real numbers, and their patterns of evolvability
restricted to binary updates or expressed by any other more general form of updat-
ing. Accordingly, analog and evolving recurrent neural networks are super-Turing.

These considerations show that recurrent neural networks represent a natu-
ral model of computation beyond the scope of classical Turing machines. The
incorporation of either the power of the continuum or of some minimal evolv-
ing capabilities in a basic neural model provide alternative and equivalent ways
towards the achievement of maximal computational potentialities. In fact, while
Turing-equivalent neural models can only capture brain-like systems that are dis-
crete, based on bit-calculations, and fixed in their architectures, super-Turing neural
models can, by contrast, describe structures involving continuous levels of chem-
icals, comprizing adaptive and evolving architectures, and disclosing non-linear
dynamical properties that are most relevant to brain dynamics, such as rich chaotic
behaviors. Yet, at the current time, the critical issue of the possible achievement
and exploitability of those hypercomputational capabilities by biological or artifi-
cial neural networks remains beyond reach.
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RÉSUMÉ (PARTIE I)

Notre cerveau, cet organe essentiel qui assure la régulation de toutes nos fonctions
vitales, n’a de cesse de traiter en parallèle une multitude de flux informationnels lui
provenant de tout le corps humain. Mais comment procède-t-il ? Comment traite-t-
il cette information ? Quels sont les processus mis en oeuvre dans le codage, le dé-
codage et la transmission de cette information ? En supposant que certains aspects
de ce traitement informationnel soient de nature computationnelle, les questions
suivantes se présentent alors. Quels seraient les capacités calculatoires des réseaux
de neurones impliqués dans ces processus ? Sommes nous en présence, et donc por-
teur, d’un pouvoir computationnel qui se situerait au-delà de celui des machines de
Turing ? Existe-t-il une borne supérieure à ce pouvoir computationnel ?

La compréhension fondamentale des processus computationnels neuronaux re-
présente un enjeu majeur de la recherche scientifique actuelle, avec d’importantes
répercussions non seulement théoriques, dans le cas de considérations philosophi-
co-scientifiques ayant trait au concept de computation ou à l’intelligence biologique
en général, mais également pratiques, de par ses répercussions dans le vaste do-
maine de l’intelligence artificielle, et en particulier, du « machine learning ».

Dans ce contexte, des travaux d’importance majeure ont montré que divers mo-
dèles de réseaux neuronaux possèdaient des capacités computationnelles allant du
niveau des automates finis, à celui des machines de Turing, jusqu’à celui de cer-
taines machines de Turing avec oracles particuliers. Ainsi, les réseaux de neurones
constituent un modèle de calcul dont les potentialités transcendent celles des ma-
chines de Turing, pour se situer au niveau hypercomputationnel, ou super-Turing.
Plus généralement, il a également été montré que divers systèmes dynamiques,
qu’ils soient analogiques, quantiques, ou gouvernés par certaines lois de la phy-
sique classique ou relativistes pouvaient également exhiber des comportements qui
soient non Turing-calculables.

Dans ce manuscrit, je propose de présenter quelques résultats théoriques ma-
jeurs concernant le pouvoir computationnel des réseaux de neurones récurrents.
Ces résultats s’étalent sur une période de soixante-dix ans, du début des années
quarante jusqu’à la période actuelle.

Les chapitres 2, 3 et 4 fournissent respectivement les pré-requis mathématiques,
les définitions des modèles de calculs abstraits, ainsi que la présentation générale
du concept de réseaux de neurones nécessaires à la formalisation des résultats pré-
sentés dans ce travail.

Le chapitre 5 concerne l’étude des capacités computationnelles des réseaux de
neurones impliqués dans un cadre de computation dite « classique », c’est-à-dire
lorsque les systèmes sont vus comme des « boîtes noires fonctionnelles » qui trans-
forment des entrées finies en sorties finies. Dans ce contexte, McCulloch et Pitts,
Kleene et Minsky ont montré que les réseaux de neurones Booléens sont computa-
tionnellement équivalents aux automates finis. Siegelmann et Sontag ont, quant à
eux, montré que lorsque les fonctions d’activation des neurones étaient étendues du
cas Booléen à un contexte sigmoïde, les réseaux correspondants voyaient leur ca-
pacités calculatoires s’accroître de manière drastique. Plus précisément, les réseaux
sigmoïdaux à poids rationnels se trouvent être équivalents à des machines de Tu-
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ring, et ceux à poids réels – appelés réseaux de neurones analogiques – témoignent
de potentialités équivalentes à celles des machines de Turing avec conseils (un cas
particulier de machines de Turing avec oracle). En ce sens précis, les réseaux de
neurones analogiques représente un modèle de calcul qualifié de super-Turing.

Dans cette perspective, nous avons montré que les réseaux de neurones dits
« évolutifs » – i.e., pourvus d’une certaine capacité d’évolution de leur poids sy-
naptiques, ou, plus généralement, de leur architecture globale – étaient également
computionnellement équivalents à des réseaux statiques à poids réels, et donc, à
des machines de Turing avec conseils. De plus, cette équivalence reste valable d’une
part, indépendamment du fait que les poids synaptiques évolutifs soient contraints
à des patterns d’évolutions simplistes, à savoir binaires, ou au contraire, totalement
généraux, sans restriction aucune ; et, d’autre part, indépendamment du fait que les
poids aussi bien statiques qu’évolutifs soient modélisés par des nombres rationnels
ou réels. En résumé, les réseaux neuronaux statiques analogiques et ceux dits évo-
lutifs – à poids rationnels ou réels et à évolution binaire ou générale – sont tous
super-Turing équivalents.

Le chapitre 6 généralise ces notions dans le cadre de la computation dite in-
teractive, où, plutôt que de se comporter de manière purement fonctionnelles, les
systèmes procèdent à un échange séquentiel et continu d’information avec leur en-
vironnement. Les réseaux sont alors considérés comme des ω-transducteurs qui
traduisent pas à pas des suites de bits infinies en suites de bits finies ou infinies.
Dans ce contexte, les réseaux statiques rationnels sont équivalents à des machines
de Turing interactives et réalisent les ω-translations dites récursives continues. Les
réseaux statiques réels ainsi que ceux évolutifs possèdent les mêmes capacités cal-
culatoires que celles des machines de Turing avec conseils ; ils réalisent la classe des
ω-translations continues.

Le chapitre 7 traite, quant à lui, d’un nouveau type de computation neuronale
basée sur le concept d’attracteur. Dans ce cadre, il est supposé que les réseaux neu-
ronaux sont munies d’un certain nombre de cellules Booléennes spécifiques qui,
lorsque le réseau est soumis à flot d’inputs infini, entreront forcément dans une dy-
namique d’attracteur. Les attracteurs sont alors supposés être catégorisés en deux
types distincts : acceptant ou rejetant. L’ω-langage d’un réseau neuronal est alors
défini comme l’ensemble des flots d’inputs infinis qui induisent un attracteur ac-
ceptant, et le pouvoir computationnel des réseaux est caractérisé par la complexité
topologique de leurs ω-langages sous-jacents.

Selon cette approche, les réseaux Booléens sont équivalents à des automates de
Büchi ou de Muller. Par conséquent, la plus fine des hiérarchisations d’ω-langages
peut se transposer du contexte de la théorie des automates à celui des réseaux de
neurones, induisant une nouvelle notion de complexité basée sur la dynamique
attractive des réseaux. Une illustration de cette notion de complexité est fournie
dans le cadre de l’étude d’un modèle Booléen d’un réseau cérébral important.

Dans le cas sigmoïdal, les réseaux déterministes à poids rationnels sont équiva-
lents à des machines de Turing de Muller déterministes. Les réseaux déterministes à
poids réels ou évolutifs reconnaissent, quant à eux, la classe de toutes les combinai-
sons Booléennes des ω-langages Π0

2 (BC(Π0
2)), et, à ce titre, possèdent des capacités

super-Turing.
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Par ailleurs, deux types de non-déterminisme sont considérés. Dans le premier
cas, les réseaux sont munis d’une cellule Booléenne, une « guess cell », qui défi-
nira la condition de non-déterminisme en question. Dans le deuxième cas, les ré-
seaux sont pourvus d’un « espace d’évolution » contenant en puissance tous les pat-
terns d’évolution possibles de leurs poids synaptiques. Au début de chaque com-
putation, le réseau sélectionne au sein de cet espace, de manière non-déterministe,
une évolution spécifique pour ses poids synaptiques, à laquelle il se tiendra en-
suite pour toute la durée infinie de la computation à venir. Six modèles de réseaux
non-déterministes de type I et quatre modèles de type II sont alors considérés en
fonction de la nature rationnelle/réelle et statique/évolutive de leurs poids synap-
tiques. Dans ce contexte, les réseaux statiques rationnels de type I sont computa-
tionellement équivalents à des machines de Turing de Muller non-déterministes, et
reconnaissent donc la classe des ω-langages analytiques effectifs (Σ1

1 lightface). Les
neuf autres modèles de types I et II sont équivalents entre eux et reconnaissent la
classe de tous les ω-langages analytiques (Σ1

1 boldface). Ils sont donc super-Turing
également.

Ces résultats témoignent du fait que les réseaux de neurones récurrents consti-
tuent un modèle de computation naturel au-delà de la barrière du Turing-calculable.
De telles considérations sont parfois évoquées, de manière controversée, pour justi-
fier une certaine supériorité de l’intelligence biologique par rapport à l’intelligence
artificielle. Néanmoins, il paraît raisonnable d’oser affirmer que le modèle super-
Turing des machines de Turing avec conseils semble particulièrement approprié à
capturer certains aspects intrinsèques à la computation neuronale. En effet, alors
que les modèles Turing équivalents ne décrivent des systèmes dynamiques qui
ne sont que discrets et d’architectures statiques, le modèle super-Turing peut, en
revanche, intégrer la modélisation de variables continues, d’architectures adapta-
tives ou évolutives, ainsi que de propriétés biologiques cruciales, tels que certains
aspects de non-linéarité et de chaoticité.

Les capacités hypercomputationnelles des réseaux évolutifs, bien qu’équiva-
lentes à celles des réseaux analogiques, présentent un intérêt particulier. En ef-
fet, alors que le pouvoir du continu apparaît comme un concept mathématique
au service de la modélisation de phénomènes biologiques ou physiques, les ca-
pacités d’évolution et de plasticité constituent, à l’inverse, des phénomènes réel-
lement observables. Toutefois, l’existence d’une telle hypercomputationalité dé-
pend de possibilité qu’aurait la « nature » à réaliser des patterns d’évolution non-
récursifs, sans quoi les réseaux ne seraient réduits qu’à des systèmes qui soient
Turing-équivalents.

La supposition que la nature n’impliquerait pas seulement des patterns pré-
programmés, mais également certains phénomènes non-récursifs, tels que la sto-
chasticité pure par exemple, permet d’affirmer l’existence de capacités hypercom-
putationnelles ou super-Turing. Mais à l’heure actuelle, les questionnements phi-
losophiques et scientifiques à propos tant de la possibilité d’existence que de l’ex-
ploitabilité de telles capacités computationnelles demeurent à leur balbutiement.
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ABSTRACT (PART II)

Nowadays, game theory has become a major field of research, mainly used in math-
ematical economics – towards the modelling of competing behaviors of interacting
agents –, but also with considerable applications in logic, computer science, biol-
ogy, political science, and psychology. In this general framework, formal interactive
epistemology provides a general framework in which epistemic notions – such as
knowledge, belief and subsequent concepts – can be modelled for situations in-
volving multiple agents. When employed in the specific context of game-playing
agents, the discipline, referred to as epistemic game theory, studies the behavioral
implications of such epistemic hypotheses in games. Here, we follow Aumann’s
set-based approach to epistemic game theory, which formalizes epistemic notions
via the consideration of set-theoretic tools.

In this context, the epistemic operator of “common knowledge” has proven to
be of a specific relevance, in being considered either as a basic or as an epistemic
hypothesis in various interactive or game-theoretic situations. But important re-
sults have also unveiled the limitations and paradoxes linked to this operator, and
led to the study of alternative notions of shared knowledge.

Along this line, we introduced the novel epistemic-topological operator limit
knowledge, defined as the topological limit of all higher-order mutual knowledge
claims, and accordingly, linked to both the epistemic as well as the topological fea-
tures of the underlying semantics. We showed that our epistemic-topological op-
erator “limit knowledge” does genuinely differ from “common knowledge”, and
also from “almost common knowledge” and “common p-belief”.

Subsequently, we proved that the operator “limit knowledge” is actually capa-
ble of relevant characterizations of solution concepts in games. In fact, we provided
an example of a concrete Cournot-type game where limit knowledge of rationality
strictly refines common knowledge of rationality, in terms of solution concepts.
Morevoer, we generally showed that, for any given game and epistemic model of it
satisfying some appropriate epistemic-topological conditions, limit knowledge of
rationality is actually capable of characterizing any possible solution concept.

Besides, we revisited Aumann’s seminal “agreement theorem” in light of a novel
epistemic-topological hypothesis induced by limit knowledge. We showed that,
when the hypothesis of common knowledge of their posteriors is replaced by that
of limit knowledge of their posteriors, the impossibility for the agents to agree to
disagree does actually no longer hold.

These considerations argue in favor of a general topological approach to set-
based interactive epistemology and epistemic game theory. It can be used to model
some additional agents’ perceptions of closeness between elements of the semantic
structures, like worlds or events. In turn, it enables to capture broader reasoning
patterns of interacting or game-theoretic agents, which not only depend on the
epistemic but also on the topological features of the interactive situation.
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RÉSUMÉ (PARTIE II)

L’épistémologie interactive fournit un cadre formel permettant de modéliser les
concepts de connaissance et de croyance des agents impliqués dans diverses si-
tuations interactionnelles. Appliquée au cas particulier de la théorie des jeux, cette
approche épistémique permet de modéliser des comportements stratégiques com-
plexes dans lesquels divers aspects de connaissance et de croyance des agents peu-
vent être pris en compte. L’étude des fondements épistémiques de la théorie des
jeux consiste alors à comprendre les relations qui existent entre, d’une part, les hy-
pothèses épistémiques liées à certaines situations interactionnelles, et, d’autre part,
les concepts de solutions qu’elles induisent en théorie des jeux. Dans ce contexte,
l’approche ensembliste de l’épistémologie interactive et de la théorie des jeux épis-
témique, introduite et considérablement développée par Aumann (1976), (1987),
(1995), (1996), (1998a,b), (1999a,b), (2005), fournit un formalisme particulièrement
adéquat pour capturer les aspects de connaissance et de croyance d’agents impli-
qués dans diverses situations interactionnelles et stratégiques.

Dans ce contexte, l’opérateur épistémique de « connaissance commune » (« com-
mon knowledge ») introduit par Lewis (1969) possède une importance toute parti-
culière, d’une part en tant qu’hypothèse de base – par exemple lorsque l’informa-
tion des agents et la forme du jeu considéré est supposée être de connaissance com-
mune parmi les agents en question (voir Aumann (1976) et (1999a)) –, et, d’autre
part en tant qu’hypothèse épistémique – par exemple lorsqu’une certaine forme de
rationalité est supposée être de connaissance commune parmi les agents (voir par
exemple Bernheim (1984), Pearce (1984), TanWerlang (1988), Borgers (1993)). Intui-
tivement, un évènement E est dit de connaissance commune si tout le monde sait
E et tout le monde sait que tout le monde sait E et tout le monde sait que tout le
monde sait que tout le monde sait E, etc. ad infinitum. Autrement dit, le concept
de connaissance commune d’un évènement E apparaît comme la conjonction (ou
l’intersection) infinie des connaissance mutuelles d’ordres supérieurs de cet évène-
ment.

D’importants résultats ont mis à jours les limitations et paradoxes du concept de
connaissance commune (Aumann (1976), Milgrom et Stokey (1982), Morris (2002)),
et, par conséquent, ont amené à étudier la pertinence de cette notion ainsi que la
possibilité de considérer d’autre concepts de connaissances qui seraient plus adé-
quats selon les situations épistémiques considérées (voir par exemple Monderer
et Samet (1989), Rubinstein (1989), Börgers (1994), Lipman(1994), Sonsino (1995),
Neeman (1996a,b), Kajii et Morris (1997), Morris (1999)).

Mon travail de recherche en collaboration avec Christian W. Bach, présenté
dans ce manuscrit, s’inscrit dans précisément dans cette perspective de reconsi-
dération et d’approfondissement de l’opérateur épistémique de connaissance com-
mune. Plus précisément, nous avons d’abord introduit le concept de « structures
de Aumann topologiques » comme des structures de Aumann pourvues d’une to-
pologie1 additionnelle sur l’espace des évènements. De telles structures permettent
alors de modéliser une certaine notion de « rapprochement » ou de « proximité »

1Un espace topologique représente une généralisation du concept d’espace métrique, et donc, permet
de modéliser une généralisation du concept de distance entre ses éléments.
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entre les évènements (il semble en effet naturel de considérer que, pour certains
agents, l’évènement « il pleut » soit plus proche de l’évènement « il fait froid »
que de l’évènement « il fait chaud », et ce bien qu’aucune relation de causalité ou
d’implication stricte n’existe entre ces évènements). Nous avons ensuite introduit
le nouvel opérateur épistémique de « connaissance limite » (« limit knowledge »)
défini comme la limite topologique de la suite des opérateurs de connaissances
mutuelles d’ordres supérieurs.

Nous avons alors pu montrer que dans le cas d’une structures de Aumann
infinie, ce concept de connaissance limite diffère clairement de ceux de connais-
sance commune (common knowledge), de connaissance presque-commune (almost
common knowledge) de Rubinstein (1989) et de p-croyance commune (common p-
belief) de Monderer et Samet (1989).

Nous avons par la suite prouvé que l’opérateur épistémique de connaissance
limite était capable de caractériser de manière pertinente de nouveaux concepts de
solutions en théorie des jeux (voir Bach et Cabessa (2009) et (2011)). Plus précisé-
ment, nous avons construit un jeu et un modèle épistémique de celui-ci pour les-
quels l’hypothèse épistémique de connaissance limite de la rationalité impliquait le
concept de solution « iterated strict dominance » suivi d’une dernière itération de
« weak dominance ». Nous avons également prouvé que sous certaines conditions
de régularité, tout concept de solution peut, d’une manière ou d’une autre, être
caractérisé par un certain type de connaissance limite de la rationalité des agents.
Ces résultats témoignent d’une puissance de caractérisation de l’opérateur épsité-
mique de connaissance limite par rapport à celle de l’opérateur de connaissance
commune.

D’autre part, nous avons montré que l’opérateur épistémique de connaissance
limite était capable de revisiter le fameux théorème de Aumann (« The Agreement
Theorem ») de manière pertinente (voir Bach et Cabessa (2012) et (2016)). En effet,
dans le cas où des agents partageraient une connaissance limite plutôt que com-
mune de leurs croyances postérieures, il leur deviendrait alors possible d’entrete-
nir des croyances postérieures qui diffèrent. Ce résultat témoigne d’une certaine
pertinence du concept de connaissance limite par rapport à celui de connaissance
commune dans d’importantes situations épistémiques.

Le cadre épistémico-topologique formel développé dans notre étude apporte
une dimension de « rapprochement » ou de « proximité » entre les évènements et
permet, d’une part, de modéliser les concepts de connaissance et de croyance des
agents de manière plus raffinée, et, d’autre part, de capturer des patterns de raison-
nement des agents qui vont au-delà de considérations purement logiques.
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Computational Capabilities of
Recurrent Neural Networks
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1 INTRODUCTION

How does the brain encode and process information? According to the compu-
tational theory of mind, the mind itself is a computational system. Leaving aside
the debate between computationalism and connectionism, we assume that at least
some aspects of the brain processes are of a computational nature. Therefore, the
following questions naturally arise. What are the computational capabilities of the
neural networks involved? Do they transcend the limits of classical Turing ma-
chines? Is there an upper bound on this computational power?

Understanding the computational and dynamical capabilities of biological neu-
ral networks is a most challenging issue, with considerable repercussions, ranging
from theoretical and philosophical considerations to practical implications in the
fields of artificial intelligence, machine learning, bio-inspired computing, general
robotics, humanoid robotics, etc.

In this context, the theoretical computer scientist approach to neural computa-
tion has mainly been focused on comparing the computational powers of diverse
theoretical neural models with those of abstract computing devices. Nowadays, the
computational capabilities of neural models is known to be tightly related to the
kind of the activation function used by the neurons, to the nature of their synaptic
connections, to the eventual presence of noise in the model, and to the possibility
for the neural architecture to evolve over time.

More precisely, these studies were initiated by McCulloch and Pitts in 1943 [118].
In their seminal work, they proposed a modeling of the nervous system as a finite
interconnection of logical devices. For the first time, neural networks were consid-
ered as discrete abstract machines, and the issue of their computational capabilities
investigated from the automata-theoretic perspective.

Along these lines, Kleene and Minsky proved that recurrent neural networks
with Boolean activation functions are computationally equivalent to finite state au-
tomata [89, 119]. In Minsky’s own words [119]:

It is evident that each neural network of the kind we have been consid-
ering is a finite-state machine. [. . . ] It is interesting and even surprising
that there is a converse to this. Every finite-state machine is equivalent
to, and can be simulated by, some neural net.

This result turned out to be of specific relevance for the implementation of finite
state machines on parallel hardwares, as well as for the incorporation of prior sym-
bolic knowledge in neural networks, yielding to better learning performances. It
opened the way to some important investigations concerning the simulation of fi-
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4 1. Introduction

nite state machines by various models of neural networks: first-order, second-order,
feedforward, recurrent, with hard-threshold, sigmoid or radial activation functions,
and with several other restrictions on their weights or architectures; and concern-
ing the learning performances of these neural networks; see for instance [10, 11, 44,
50, 53, 54, 59, 66, 73, 92, 124, 125, 136, 152, 183, 189].

Besides, already in 1948, Turing made a significant step forward by showing
the possibility of surpassing the capabilities of finite state machines – and reaching
Turing universality – via some kinds of neural networks called B-type unorganized
machines, consisting of specific interconnections of NAND neuronal-like units [169].
He suggested that the consideration of sufficiently large B-type unorganized ma-
chines could simulate the behavior of a universal Turing machine, up to some mem-
ory bound [169]:

In particular with a B-type unorganized machine with sufficient units
one can find initial conditions which will make it into a universal ma-
chine with a given storage capacity.

The Turing universality of neural networks involving infinitely many binary neu-
rons has further been investigated in many directions, as for instance in [52, 56, 67,
135, 144]. Furthermore, Turing brilliantly anticipated the two concepts of “learn-
ing” and “training” that would later become central in machine learning [169].

If we are trying to produce an intelligent machine, and are following
the human model as closely as we can, we should begin with a machine
with very little capacity to carry out elaborate operations or to react in
a disciplined manner to orders (taking the form of interference). Then
by applying appropriate interference, mimicking education, we should
hope to modify the machine until he could be relied on to produce defi-
nite reactions to certain commands. [. . . ] The process of setting up these
initial conditions so that the machine will carry out some particular use-
ful task may be called ‘organizing’ the machine. ‘Organizing’ it thus a
form of ‘modification’. [. . . ] All of this suggests that the cortex of the
infant is an unorganized machine, which can be organized by suitable
interfering training, or something like it.

Ten years later, in the late 50’s, von Neumann proposed a particularly relevant
approach to the issue of information processing in the brain from the hybrid per-
spective of digital and analog computations [123]. He considered that the non-linear
character of the operations performed by the brain emerges from a combination of
discrete and continuous mechanisms. Accordingly, he envisioned neural computa-
tion as something strictly more powerful than abstract machines.

Almost at the same time, Rosenblatt proposed the perceptron as a more gen-
eral computational neural model than the McCulloch-Pitts units [140]. The sig-
nificant innovation consisted in the introduction of numerical synaptic weights as
well as of a special pattern of interconnection. This neural model gave rise to the
fundamental and still valid algorithmic conception of learning – which is achieved
by adjusting the synaptic weights of the neuronal connections according to some
specific task to be completed. The first learning algorithms, proposed by Rosen-
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blatt [141] and Widrow [187], were concerned with two-layer feedforward net-
works. But Minsky and Papert analyzed the limited capabilities of the perceptron
and notably showed that single-layer perceptrons were unable to implement the
logical XOR [120]. These results dampen the enthusiasm of several researchers in
the field.

These drawbacks lasted until Kohonen suggested to take into account Hebb’s
rule [68] in learning algorithms. He introduced a system model composed of at
least two interacting subsystems of different nature, a competitive neural net and
another subsystem modifying the local synaptic plasticity of the neurons in learn-
ing, leading to the implementation an effective and robust self-organizing sys-
tem [90, 91]. Fukushima introduced the “neocognitron”, a hierarchical multilay-
ered neural network capable of robust visual pattern recognition through learn-
ing [55]. And notably, Rumerlhart et al. proposed the famous “backpropagation”
algorithm as a novel learning technique: the synaptic weights of the network are
continuous variables, updated by backward induction according to some gradient
descent process [142]. Deep learning methods for neural networks is nowadays a
tremendously active field of research; for a very detailed overview, see [143] and the
references therein. Besides this, from a theoretical perspective, feedforward neural
networks turn out to have universal approximation capabilities: they can approxi-
mate any well-behaved continuous or Borel real function to any degree of accuracy
[74, 75].

In 1994 and 1995, Siegelmann and Sontag achieved two significant breakthroughs
in the field. First, based on biological considerations, they chose to focus on sig-
moidal rather than Boolean neurons, and proved the possibility of reaching Turing
universality with finite recurrent neural networks of that kind. In fact, by con-
sidering rational synaptic weights and by extending the activation functions of the
cells from Boolean to linear-sigmoid, the neural networks have their computational
power drastically increased from the finite state automaton up to the Turing ma-
chine level [76, 122, 155]. Kilian and Siegelmann generalized this Turing universal-
ity to a broader class of sigmoidal neural networks [88]. The computational equiv-
alence between so-called rational recurrent neural networks and Turing machines has
now become a standard result in the field.

Secondly, following von Neumann considerations, they assumed that the vari-
ables appearing in the underlying chemical and physical phenomena could be mod-
eled by continuous rather than discrete (rational) numbers. Accordingly, they pro-
posed a precise study of the computational power of recurrent neural networks
from the perspective of analog computation [151]. They introduced the concept of
an analog recurrent neural network as a classical linear-sigmoid neural net equipped
with real-weighted instead of rational-weighted synaptic connections. They proved
that such analog recurrent neural networks are computationally equivalent to Tur-
ing machines with advices, and hence, capable of super-Turing computational power
from polynomial time of computation already [150, 154]. This analog information
processing model turns out to be capable of capturing non-linear dynamical prop-
erties that are most relevant to brain dynamics, such as rich chaotic behaviors [79,
84, 166, 167, 168], as well as dynamical and idealized chaotic systems that cannot
be described by the universal Turing machine model [149]. A transfinite classifica-
tion of analog recurrent neural networks based on the Kolmogorov complexity of
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their underlying real synaptic weights has further been described [17]. According
to these considerations, Siegelmann and Sontag formulated the so-called Thesis of
Analog Computation – an analogous to the Church-Turing thesis, but in the realm of
analog computation – stating that no reasonable abstract analog device can be more
powerful than first-order analog recurrent neural networks [149, 154]. These results
are sometimes invoked to support the debatable claim that some intrinsic dynam-
ical and computational features of neurobiological systems might be beyond the
scope of standard artificial models of computation.

In the late 90’s, the issue of the robustness of the computational power of neu-
ral networks subjected to various kinds of noise was addressed. It was shown that
the presence of analog noise would generally strongly reduce the computational
power of the underlying systems to that of finite state automata, or even below [18,
111, 115]. On the other hand, the incorporation of some discrete source of stochas-
ticity would rather tend to increase or maintain the capabilities of the neural sys-
tems [153].

The next major contribution to the field was provided by Maass, who inten-
sively studied the computational power of networks of spiking neurons. In this case,
the computational states are encoded in the temporal differences between the neu-
rons’ spikes rather than in the activation values of the cells. Maass proved that
single spiking neurons are strictly more powerful than single threshold gates [113,
114]. He further extensively studied the lower and upper bounds on the compu-
tational complexity of networks of classical and noisy spiking neurons, see [103,
104, 106, 108, 110, 112] and [107, 109], respectively. In addition, he showed that
networks of spiking neurons turn out to be capable of simulating analog recurrent
neural networks [105].

Besides, in 2000, Păun introduced the novel concept of a P system – a highly
parallel abstract model of computation inspired from the membrane-like structure
of the biological cell [129, 130]. This foundational work led to the emergence of
a tremendously active field of research, involving from highly theoretical to very
practical results, with countless publications, events, and research groups world-
wide, see [163]. In this context, the computational capabilities of various models
of so-called neural P systems were studied, see for instance [82, 128, 131, 132, 133].
In particular, neural P systems provided with a bio-inspired source of acceleration
were shown to be capable of hypercomputational capabilities, by spanning all lev-
els of the arithmetical hierarchy [37, 58].

For more references and details about the computational power and complexity
of neural networks, one could refer to the deep survey by Šìma and Orponen [156].

But the neural models considered up to that point were generally oversimpli-
fied, lacking many biological features which may be essential to the processing of
information in the real brain.

For instance, as a first point, it is nowadays widely admitted that biological
mechanisms like synaptic plasticity, cell birth and death, and changes in connec-
tivity are intimately related to the storage and encoding of memory traces in the
central nervous system, and provide the basis for most models of learning and
memory in neural networks [1, 38, 42, 117, 138]. In the context of AI, the considera-
tion of such evolving neural architectures in so-called Evolving Connectionist Systems
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(ECoS) has proven to be fruitful, and significantly increased in applications in the
recent years [85, 184].

Following these considerations, we studied the computational capabilities of a
more biologically oriented recurrent neural model where the synaptic weights, the
connectivity pattern, and the number of neurons can evolve rather than stay static.
We showed that the so-called evolving recurrent neural networks are computation-
ally equivalent to Turing machines with advices [24, 26]. This equivalence holds
irrespective of whether the synaptic weights of the networks are modelled by ra-
tional or real numbers, and the patterns of evolvability1 restricted to binary up-
dates or expressed by any other more general form of updating. Consequently, the
evolving and the analog recurrent neural networks disclose the same super-Turing
computational power. It follows that the incorporation of either minimal evolving
capabilities or of the power of the continuum in a basic neural model provide al-
ternative and equivalent ways towards the achievement of maximal computational
potentialities. This feature is of specific interest, since evolving capabilities of neu-
ral networks are observable in nature, as opposed to the power of the continuum
which remains at a conceptual level.

Secondly, it has been argued that the classical computational approach [171]
“no longer fully corresponds to the current notion of computing in modern sys-
tems” [97] – especially when it refers to bio-inspired complex information process-
ing systems. In the brain (or in organic life in general), information is rather pro-
cessed in an interactive way [61, 185]: previous experience must affect the percep-
tion of future inputs, and older memories may themselves change with response to
new inputs.

Accordingly, we studied the computational capabilities of recurrent neural net-
works involved in an interactive paradigm of computation, where information is
processed via a sequential exchange of information between the system and its en-
vironment [95, 98]. We showed that similarly to the classical computational con-
text, the rational-weighted interactive recurrent neural networks are computationally
equivalent to interactive Turing machines; the real-weighted and the evolving in-
teractive recurrent neural networks are computationally equivalent to interactive Tur-
ing machines with advices [21, 25, 32, 35, 36]. Moreover, the interactive analog and
evolving neural networks are universal, in the sense of capturing the computational
capabilities of any possible interactive system [32, 36].

Thirdly, the temporal coding approach to neural information processing stripu-
lates that precise spike timing is a significant element in neural coding [20, 165].
Hence, apart from the firing rate of the neural spikes, the spatiotemporal pattern
of discharges – i.e., ordered and precise interspike interval relationships – are also
asumed to be significantly involved in the processing and coding of information in
the brain [2, 3, 4, 5, 80, 116, 137, 174, 175, 178, 180]; see also the survey by Villa [176]
and the references there. Besides, attractor dynamics or quasi-attractor dynamics have
been associated to perceptions, thoughts and memories, and the chaotic intinerancy
between those with sequences in thinking, speaking and writing [79, 84, 166, 167,
168]. Specific chaotic attractor dynamics associated to spike series have been ex-

1Throughout this manuscript, the concept of “evolvability” is to be understood as a general form of
plasticity, i.e., the possibility to change over time.
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perimentally observed [39, 40, 177]. Furthermore, the correlation between attractor
dynamics and repeating spatiotemporal firing patterns has been observed in sim-
ulations of nonlinear dynamical systems [14, 15] as well as in simulations of large
scale neuronal networks [77, 78]. Consequently, the spatiotemporal patterns could
be the witnesses of an underlying attractor dynamics.

Hence, we initiated the study of the expressive power of recurrent neural net-
works from the perspective of their attractor dynamics. We considered a neural
model where the attractor dynamics of the networks are to the precise phenomena
that underly the arising of spatiotemporal patterns of discharges. In this context,
we first showed that Boolean recurrent neural networks provided with certain bi-
nary type specifications of their attractors are computationally equivalent to Büchi
or Muller automata [27, 28, 29]. As a consequence, a novel attractor-based measure
of complexity for Boolean neural networks can be deduced. This complexity no-
tably refers to the ability of the networks to perform more or less complicated classi-
fication tasks of their input streams via the manifestation of meaningful or spurious
attractor dynamics. As an illustration, the attractor-based complexity of a Boolean
model of the basal-ganglia thalamocortical network has been computed [29].

As a next step, we generalized the approach to the context of sigmoidal (rather
than Boolean) recurrent neural networks [22, 23, 30, 31, 34]. In both deterministic
and nondeterministic cases, we proved that the rational-weighted neural networks
are equivalent to the Muller Turing machines. The real-weighted and the evolv-
ing neural networks are, by contrast, computationally equivalent to each other and
strictly more powerful than the Muller Turing machines. For each model, a pre-
cise mathematical characterization of its expressive power is provided. In this con-
text also, the complexity of the networks refers to their ability to perform more or
less complicated classification tasks of their input streams via the manifestation of
meaningful or spurious attractor dynamics.

In the present manuscript, we provide a review of these achievements concern-
ing the computational capabilities of several neural models involved in diverse
computational frameworks. Chapters 2 contain the necessary mathematical pre-
requisites and Chapter 3 recalls the definitions of the classical abstract models of
computation. Chapter 4 present the general model of first-order neural networks
involved in this work. Chapters 5, 6, and 7 review the main results about the com-
putational capabilities of neural networks involved in classical, interactive, and
attractor-based paradigms of computation, respectively. Finally, Chapter 8 fur-
nishes some concluding remarks.



2 PRELIMINARIES

2.1 TOPOLOGY

A topological space is a pair (S, T ) where S is a set and T is a collection of subsets
of S such that ∅ ∈ T , S ∈ T , and T is closed under arbitrary unions and finite
intersections. The collection T is called a topology on S, and its members are called
open sets. The trivial topology on X is defined by letting only ∅ and X be open (and
hence also closed). By contrast, the discrete topology on X is defined by letting every
subset of X be open (and hence also closed).

Given some topological space (S, T ), the class of Borel subsets of S, denoted
by ∆1

1, is the σ-algebra generated by T , i.e., the smallest collection of subsets of S
containing all open sets and closed under countable union and complementation.
For every ordinal α < ω1 (where ω1 denotes the first uncountable ordinal), one
defines the Borel classes by transfinite induction:

• Σ0
1 = {X ⊆ S : X is open},

• Π0
α = {X ⊆ S : X{ ∈ Σ0

α},

• Σ0
α = {X ⊆ S : X =

⋃
n≥0 Xn, Xn ∈ Π0

αn , αn < α, n ∈N}, for α > 1,

• ∆0
α = Σ0

α ∩Π0
α.

The collection of all classes Σ0
α, Π0

α, and ∆0
α provides a stratification of the whole

class of Borel sets known as the Borel hierarchy. One has [87, Section 11.B]

∆1
1 =

⋃
α<ω1

Σ0
α =

⋃
α<ω1

Π0
α.

The rank of a Borel set X ⊆ S is the smallest ordinal α such that X ∈ Σ0
α ∪Π0

α ∪ ∆0
α,

namely, the minimal number of complementation and countable union operations
that are needed to generate X from an initial collection of open sets. It is commonly
considered as a relevant measure of the topological complexity of Borel sets.

Given two topological spaces (S, T ) and (S′, T ′), a function f : S→ S′ is contin-
uous if the preimage by f of any open set (i.e. Σ0

1-set) of S′ is an open set (i.e. Σ0
1-set)

of S. Consequently, the preimage by f of any Σ0
α-set (resp. Π0

α-set) is a Σ0
α-set (resp.

Π0
α-set), for any ordinal α < ω1. A function f : S → S′ is of Baire class 1 if the

preimage by f of any Σ0
1-set of S′ is a Σ0

2-set of S. Hence, the preimage by f of any
Σ0

α-set (resp. Π0
α-set) is a Σ0

α+1-set (resp. Π0
α+1-set), for any ordinal α < ω1.

9
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2.2 FINITE AND INFINITE WORDS

Given any set A, we let A∗, A+, An, and Aω denote respectively the sets of finite
sequences, non-empty finite sequences, finite sequences of length n, and infinite
sequences of elements of A. We also let A≤ω = A∗ ∪ Aω be the set of all possible
sequences (finite or infinite) over A. The empty sequence is denoted λ. In this
context, the set A is usually called an alphabet, and any x of A∗ or Aω is called a
finite or infinite word over A, respectively, whose every elements are called letters.
Any set L ⊂ A∗ or L ⊂ Aω is then called a language or an ω-language, respectively.

For any word x ∈ A≤ω, the length of x is denoted by |x|, the (i + 1)-th letter
of x will be denoted by x(i) for any 0 ≤ i < |x|, and the subsequence of the n-th
first letters of x is denoted by x[0:n], with the convention that x[0:0] = λ, the empty
word. Hence, any x ∈ A+ and y ∈ Aω can be written as x = x(0)x(1) · · · x(|x| − 1)
and y = y(0)y(1)y(2) · · · , respectively. The fact that x is a prefix (resp. strict prefix) of
y will be denoted by x ⊆ y (resp. x ( y). If x ⊆ y, we let y− x = y(|x|) · · · y(|y| −
1) be the suffix of y that is not common to x (if x = y, then y − x = λ). The
concatenation of x and y is denoted x · y or simply xy, and for any X ⊆ A∗ and Y ⊆
A∗ ∪ Aω, one sets X · Y = {z ∈ A∗ ∪ Aω : z = x · y , for some x ∈ X and y ∈ Y}.
A set of the form {x} · Aω is generally denoted x · Aω. Sometimes, a concatenated
space of the form A0 · A1 · · · · will be naturally identified with the corresponding
product space A0 × A1 × · · · via the identification a0a1 · · · = (a0, a1, . . .).

Given some sequence of finite words {xi : i ∈ N} such that xi ⊆ xi+1 for all
i ≥ 0, one defines the limit of the xi’s, denoted by limi≥0 xi, as the unique finite or
infinite word which is ultimately approached by the sequence of growing prefixes
{xi : i ≥ 0}. Formally, if the sequence {xi : i ∈ N} is eventually constant, i.e.
there exists an index i0 ∈ N such that xj = xi0 for all j ≥ i0, then limi≥0 xi =

xi0 , meaning that limi≥0 xi corresponds to the smallest finite word containing each
word of {xi : i ∈N} as a finite prefix; if the sequence {xi : i ∈N} is not eventually
constant, then limi≥0 xi corresponds to the unique infinite word containing each
word of {xi : i ∈N} as a finite prefix.

A function f : Σ∗ → Σ∗ is called monotone if the relation x ⊆ y implies f (x) ⊆
f (y), for all x, y ∈ Σ∗. It is called recursive if it can be computed by some Turing
machine. Throughout this paper, any function ϕ : Σω → Σ≤ω mapping infinite
words to finite or infinite words will be referred to as an ω-translation.

The spaces of finite and infinite words of bits {0, 1}∗ and {0, 1}ω, respectively,
will be of specific importance. The space {0, 1}ω is naturally assumed to be equipped
with the product topology of the discrete topology on {0, 1}. Accordingly, the basic
open sets are of the form p · {0, 1}ω, for some p ∈ {0, 1}∗. The general open sets
are countable unions of basic open sets. This space is Polish (i.e., separable and
completely metrizable) [87].

Note that any monotone function f : {0, 1}∗ → {0, 1}∗ induces “in the limit” an
ω-translation fω : {0, 1}ω → {0, 1}≤ω defined by

fω(x) = lim
i≥0

f (x[0:i])

for all x ∈ {0, 1}ω. The monotonicity of f ensures that the value fω(x) is well-
defined for all x ∈ {0, 1}ω. In words, the value fω(x) corresponds to the finite or
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infinite word that is ultimately approached by the sequence of growing prefixes
{ f (x[0:i]) : i ≥ 0}.

According to these definitions, an ω-translation ψ : {0, 1}ω → {0, 1}≤ω will be
called continuous1 if there exists a monotone function f : {0, 1}∗ → {0, 1}∗ such
that fω = ψ; it will be called recursive continuous2 if there exists a monotone and
recursive (i.e. Turing computable) function f : {0, 1}∗ → {0, 1}∗ such that fω = ψ.

Besides, we will also consider the spaces of N-dimensional Boolean, rational
and real vectors, denoted by BN , QN and RN , respectively. The space (BN)ω is
naturally assumed to be equipped with the product topology of the discrete topol-
ogy on BN . Accordingly, the basic open sets are of the form p · (BN)ω, for some
p ∈ (BN)∗. The general open sets are countable unions of basic open sets. This
space is Polish (i.e., separable and completely metrizable) [87]. The spaces (QN)ω

and (RN)ω are assumed to be equipped with the product topologies of the usual
topologies on QN and RN , respectively. Accordingly, the basic open sets are of the
form X0 · . . . ·Xn · (QN)ω and X0 · . . . ·Xn · (RN)ω, for some n ≥ 0, where each Xi is
an open set of QN or RN for their usual topologies, respectively. Here also, the gen-
eral open sets are unions of basic open sets. These two spaces are also Polish [87].

In this context, we will use the following two characterizations of analytic sets
as first projections of either Π0

2-sets or general Borel sets [87]. First, an ω-language
L ⊆ (BN)ω is analytic iff there exists some Π0

2-set X ⊆ (BN)ω × {0, 1}ω such that
L = π1(X) = {s ∈ (BN)ω : ∃ e ∈ {0, 1}ω s.t. (s, e) ∈ X} [87, Exercise 14.3].
Equivalently, L ⊆ (BN)ω is analytic iff there exists some Polish space E and some
Borel set X ⊆ (BN)ω × E such that L = π1(X) [87, Exercise 14.3]. The class of
analytic sets, denoted by Σ1

1, strictly contains that of Borel sets, namely, ∆1
1 ( Σ1

1 [87,
Theorem 14.2].

Finally, in the sequel, we will use the word recursive to denote a function, lan-
guage or procedure that is computable by some Turing machine.

1The choice of this name comes from the fact that continuous functions over the Cantor space C =

{0, 1}ω can be precisely characterized as limits of monotone functions. We extend this definition in the
present broader context of functions from {0, 1}ω to {0, 1}≤ω that can also be expressed as limits of
monotone functions.

2Our notion of a recursive continuous ω-translation ψ : {0, 1}ω → {0, 1}≤ω is a transposition to
the present context of the notion of a limit-continuous function ϕ : {0, 1}ω → {0, 1}ω defined in [98,
Definition 12] and [95, Definition 13].





3 AUTOMATA AND TURING MACHINES

In this Chapter, we recall the common abstract models of computation that are
finite state automata, stack machines, and Turing machines. We further provide
basic facts about Turing machines with advices and oracles.

3.1 AUTOMATA

Definition 1. A deterministic finite state automaton is a tuple A = (Q, A, i, δ,F )
where:

• Q is the finite set of states;

• A is the finite alphabet;

• i ∈ Q is the initial state;

• δ : Q× A→ Q is the partial transition function;

• F ⊆ Q is the set of final states.

A finite deterministic finite automaton is generally represented as a transition
diagram, i.e., a directed labelled graph whose nodes and labelled edges correspond
to the states and transitions of the automaton, respectively. Such an automaton is
illustrated in Figure 1.

Given some finite state automatonA = (Q, A, i, δ,F ), every triple (q, a, q′) such
that δ(q, a) = q′ is called a transition of A. Each transition δ(q, a) = q′ signifies
that if the automaton is the computational state q and receives input a, then it will
move to the next computational state q′. A path in A is a sequence of consecutive
transitions

ρ = ((q0, a1, q1), (q1, a2, q2), (q2, a3, q3), . . .)

also denoted by
ρ : q0

a1−→ q1
a2−→ q2

a3−→ q3 · · · .

The path ρ is said to successively visit the states q0, q1, q2, q3 . . ., and the word a1a2a3 · · ·
is the label of ρ. The state q0 is called the origin of path ρ and ρ is said to be initial if
its origin is the initial state, namely if q0 = i. If ρ is an infinite path, the set of states
visited infinitely many times by ρ is denoted by inf(ρ).

An automaton A as defined above is called deterministic since it transition func-
tion is – by the very definition of being a partial function – deterministic. In other

13
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words, for any state q and input a, there exists at most one state q′ such that δ(q, a) =
q′. By contrast, an automaton A is called nondeterministic if its fourth compo-
nent δ consists of a function from Q × A into P(Q) (or equivalently, a relation of
Q× A× Q) rather than a partial function from Q× A into Q. In this case, for any
state q and input a, the automatonAmight have several choices for a next computa-
tional state to be achieved (corresponding to all the triplets (q, a, q1), . . . , (q, a, qn) ∈
δ). A deterministic and a nondeterministic automaton are illustrated in Figures 1
and 2, respectively.

LetA be some deterministic or nondeterministic automaton. A finite initial path
ρ of A is called successful if it ends in a final state q, i.e., if the last state visited by
ρ belongs to F . A word u ∈ A∗ is said to be accepted by A if it is the label of some
successful path. It is rejected by A otherwise. In the deterministic case, this defi-
nition means that u is accepted by A if the unique path induced by u, if it exists,
is successful. In the nondeterministic case, u is accepted by A if there exists some
path induced by u which is successful. The set of all words accepted by A is the
language recognized byA, denoted by L(A). Deterministic and nondeterministic au-
tomata are equivalent in the sense that they recognize the same languages. Exam-
ples languages recognized by some deterministic and nondeterministic automaton
are provided in Figures 1 and 2, respectively.

The class of languages recognized by finite state automata corresponds pre-
cisely to the class of regular languages, those that can be expressed by regular ex-
pressions [71].

0

1

i q0 q1
0

1 0, 1

Figure 1 – A deterministic finite state automaton. The nodes correspond to the states of the
automaton. The node with an incoming edge is the initial state and the double-circled node
is the final state. The labelled edges correspond to the transitions of the automaton: there is
an edge from node q to q′ labelled by a iff δ(q, a) = q′. This automaton recognizes the set of
binary strings which contain 00 as a substring, denoted as A∗00A∗ (where A = {0, 1}).

q1

0, 1

0
i q0

0

0, 1

q1

Figure 2 – A nondeterministic finite state automaton which regognizes the same language
as that of Figure 1.

3.2 TURING MACHINES

Definition 2. A Turing machine (TM) is a tupleM = (Q, Σ, Γ, δ, qin, qacc, qrej), where
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• Q is the finite set of states;

• Σ is the finite input alphabet;

• Γ ) Σ is the finite tape alphabet, with b ∈ Γ \ Σ (b is the blank symbol);

• δ : Q× Γ→ Q× Σ× {L, R} is the transition function;

• qin ∈ Q is the initial state;

• qacc, qrej ∈ Q are the accepting and rejecting states.

A Turing machine is generally represented as in Figure 3. It contains a semi-
infinite tape divided into successive cells as well as a read-write head that can read
and write symbols from and into these cells and move one cell further to the left or
to the right. The behavior of the machine is controlled by its finite programme, i.e.,
by its transition function.

More precisely, at the beginning of the computation, a finite input u ∈ Σ∗ is
written on the input tape (each symbol in a cell), the machine is in state qin, and its
head is positioned on the first cell of the tape. At each computational step, if the
machine is in state q ∈ Q and its head is currently scanning symbol a ∈ Γ, then
it will change to state q′, replace the symbol a by a′, and move its head one cell
further in direction d, where q′, a′, d are given by the relation δ(q, a) = (q′, a′, d).
A sequence of such consecutive transitions is called a run of the machine. A run
starting from input u written on the tape is called a computation on input u. The
computation (or the machine) is said to halt if it eventually reaches one of the states
qacc or qrej. It is non-halting otherwise.

A Turing machineM as defined above is called deterministic since it transition
function is deterministic. By contrast, a machineM is nondeterministic if its fourth
component δ consists of a function from Q× Γ into P(Q×Σ×{L, R}). In this case,
the machine might have several choices for its successive transitions, and in turn,
disclose several possible computations for a same input.

In the deterministic case, an input u ∈ Σ∗ is accepted or rejected by a Turing
machineM if the computation ofM on u eventually reaches the state qacc or qrej,
respectively; otherwise, the input is neither accepted nor rejected. In the nondeter-
ministic case, the input u ∈ Σ∗ is accepted by M if there exists a computation of
M on u which reaches the state qacc; the input is rejected byM if all possible com-
putations of M on u reach the state qrej; otherwise, the input is neither accepted
nor rejected. In Figure 3, the input u written on the tape of the machineM will be
rejected.

The collection of all inputs that are accepted byM is the language recognized by
M, denoted L(M). A language L is then called Turing-recognizable or recursively
enumerable if there exists some Turing machine that recognizes it. Furthermore, if
the machineM has the property of halting on every possible inputs – i.e., of being
a so-called decider – then L(M), the collection of all inputs that are accepted byM,
is called the language decided byM. A language L is then called Turing-decidable or
recursive if there exists some Turing machine that decides it. Hence, by definition,
if L is Turing-decidable, then it is Turing-recognizable. The converse is actually not
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true [71]. In Figure 3, Turing machineM recognizes and decides the language of
all binary strings that end with 0.

It can be shown that single-tape Turing machines as defined above are equiv-
alent to multi-tape Turing machines: they recognize and decide the same class of
languages. Moreover, the deterministic and nondeterministic Turing machines also
recognize and decide the same class of languages [71].

IfM is a deterministic Turing machine that halts on all inputs (a decider), the
time complexity ofM is the function f : N→N, where f (n) is the maximum num-
ber of steps thatM uses on any input of length n. IfM is a nondeterministic, its
time complexity is the function f : N → N, where f (n) is the maximum number
of steps that M uses on any possible computation of every input of length n. If
f (n) = O(p(n)) for some polynomial p, we say that the time complexity is poly-
nomial. The classes of languages decidable in polynomial time by deterministic
and nondeterministic Turing machines are denoted by P and NP, respectively. The
inclusion P ⊆ NP holds by definition; the issue of knowing whether this inclu-
sion is strict or not remains an open problem, a most important one in theoretical
computer science.

1 0 1 10 0

input u

State qin

Transition function �

(qin, 0) 7! (q1, 0, R)
(qin, 1) 7! (q1, 1, R)
(q1, 0) 7! (q1, 0, R)
(q1, 1) 7! (q1, 1, R)
(q1, b) 7! (q2, b, L)
(q2, 0) 7! (qacc, 0, R)
(q2, 1) 7! (qrej , 1, R)

Figure 3 – A deterministic Turing machine M which decides the language of all binary
strings that end with 0, i.e., L(M) = A∗0. At the beginning of the computation, an input u
is written on the tape. Then, the machine follows the transitions given by δ and eventually
halts in either the accepting state qacc or the rejecting state qrej.

Finally, note that the Turing machine paradigm of computation can naturally be
transposed from the context of “languages” to that of “functions”. In this case, we
suppose that Turing machines are equipped with a single halting state qhalt instead
of the two qacc and qrej. Accordingly, a partial function f : Σ∗ → Σ∗ is said to be
Turing-computable or partial-recursive if there exists some Turing machine M such
that, on any input u ∈ Dom( f ),M halts with f (u) written on its tape, and on any
input u 6∈ Dom( f ),M doesn’t halt. A total function f : Σ∗ → Σ∗ is called recursive
if there exists some Turing machine M such that, on any input u, M halts with
f (u) written on its tape.
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3.3 STACK MACHINES

A p-stack machineM is an automaton provided with p binary stacks. The automa-
ton has the ability either to push 0, push 1, or pop the top element of each stack.
At each computational step, if the machine is in state q ∈ Q, receives input bit
x ∈ {0, 1}, and has as top elements ifs stacks t0, . . . , tp−1 ∈ {0, 1, b} (where b is an
blank symbol meaning that the stack is empty), then it will move to state q′ ∈ Q and
either push 0, or push 1, or pop the top element of each stack. Hence, the transition
function ofM is of the form

δ : Q× {0, 1} × ({0, 1}∗)p → Q× ({0, 1}∗)p

where the transformation of each content’s stack is the result of a “push 0”, “push
1”, or “pop” operation. At the beginning of the computation, all stacks are empty.
As usual, an input u is accepted or rejected by M if the computation of M on u
end in an accepting or rejecting state, respectively.

In the sequel, we will use the fact that p-stack machines with p ≥ 2 are com-
putationally equivalent to Turing machines [71]. Indeed, on the one hand, every
p-stack machine S can obviously be simulated by some p-tape Turing machineM:
each stack of S is represented by a corresponding tape of M. Conversely, every
single tape Turing machine M can be simulated by some 2-stack machine S : the
idea of the simulation is to cut the tape ofM in half at the location of its read-write
head, and then, register the content of each half of the tape into some corresponding
stack of S . In other words, S is designed such that, at each computational step, the
contents of its two stacks corresponds precisely to the “left part” and “right part”
of the tape ofM.

3.4 TURING MACHINES WITH ORACLES AND ADVICES

In complexity theory, oracle Turing machines are used to characterize classes of
complexity that are beyond the scope of the classical Turing machine model [127].

An oracle Turing machine (TM/O) consists of a 2-tape Turing machine M =

(Q, Σ, Γ, δ, qin, qacc, qrej) together with an oracle function α : Σ∗ → Σ∗ and a des-
ignated oracle state qoracle ∈ Q. The first and second tapes are the work and the
oracle tape, respectively. At the beginning of the computation, a finite input u ∈ Σ∗

is written on the work tape, the oracle tape is empty, the machine is in state qin, and
its two heads are positioned on the first cells of each tape. Along the computation,
every time the machine reaches the oracle state qoracle, it makes a so-called extra-
recursive call to its oracle and has the word α(w) being written instantaneously on
its oracle tape, where w is the current content of the work tape. With the use of
the oracle functions that are non-recursive, oracle Turing machines are obviously
strictly more powerful than classical Turing machines. An oracle Turing machine is
illustrated in Figure 4.

In this work, we will focus on specific oracle Turing machines whose oracles
are uniform for all inputs of the same length. These are the Turing machines with
advice. Formally, a Turing machine with advice (TM/A) consists of a 2-tape Turing
machineM = (Q, Σ, Γ, δ, qin, qacc, qrej) together with a function α : N → Σ∗. Note
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0 1 10 01

input u

10 11 1 110 00 0

oracle ↵(u)

Finite
Program

state qoracle

Figure 4 – An oracle Turing machine.

that the domain of the advice function is now restricted to N. The first and second
tapes are the work and the advice tape, respectively. At the beginning of the com-
putation, a finite input u ∈ Σ∗ of length n is written on the work tape, the advice
tape is empty, the machine is in state qin, and its two heads are positioned on the
first cells of each tape. Then, at the first computational step (and only at this time),
by means of a so-called extra-recursive call, the machine has the advice word α(n)
being written on its advice tape. Consequently, the same word α(n) is queried for
all inputs of length n. Afterwards, the machine continues its computation in the
classical way, with the two input and advice words written on its two tapes. A
Turing machine with advice is illustrated in Figure 4.

0 1 10 01

input u

10 11 1 110 00 0

advice ↵(|u|)

Finite
Program

state qin

Figure 5 – A Turing machine with advice.

It can easily be show that Turing machines with advice of exponential length are
capable of deciding all possible languages. Hence, of specific interest are the Turing
machines with advice whose advices are not large, i.e., polynomially bounded. A
Turing machine with polynomially bounded advice (TM/poly(A)) is a Turing machine
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with adviceM whose advice function α satisfies n 7→ |α(n)| ∈ O(p(n)), for some
polynomial p. The class of languages decidable in polynomial time by Turing ma-
chines with polynomially bounded advice is denoted by P/poly (the “P” refers the
the polynomial time of computation and the “poly” to the polynomially-bounded
length of the advice). It is known that Turing machines with polynomially bounded
advice are strictly more powerful that classical Turing machine. In fact, P ( P/poly
and P/poly even contains non-recursive languages [16].





4 RECURRENT NEURAL NETWORKS

4.1 GENERALITIES

In this work, a neural network consists of a finite set of entities – the neurons or cells –
interconnected together in a directed way by means of synaptic connections. It can be
depicted as a graph whose nodes and directed labelled edges represent the neurons
and weighted synaptic connections between those, respectively. The processing of
information consists of a flow of values that propagates throughout the neurons via
their synaptic connections. This issue will be more precise in the sequel. A neural
network is illustrated in Figure 6.
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-1
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0.64 0.9 0.3
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Figure 6 – A neural network. The nodes and labelled directed edges represent the neurons
and weighted synaptic connections, respectively.

Artificial neural networks are particularly appropriate for the implementation
of learning algorithms, i.e., algorithms that infer some input-output correlation from
existing data, rather than having it explicitly implemented by static program in-
structions. In artificial neural networks, learning is achieved via successive modi-
fications of the neural architecture, usually the synaptic weights, with the purpose
of building a suitable model for the task to be performed. Nowadays, deep learn-
ing methods for neural networks represents a highly active field of research. For a
detailed overview, see [143] and the references therein.
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A neural network is called feedforward if its architecture doesn’t contain any
loop, i.e., if its corresponding directed graph is acyclic. Feedforward neural net-
works were the first and simplest type of artificial neural networks considered. In
these latter, the information is processed in only one direction: forward. Such neu-
ral networks have an extensive range of applications. Their architecture turns out to
be particularly suitable for the implementation of learning methods, and in particu-
lar, for the famous class of backpropagation algorithms [139, 142, 143]. In this case,
the synaptic weights of the network are updated by backward induction accord-
ing to some gradient descent process. From a theoretical perspective, feedforward
neural networks turn out to have universal approximation capabilities: they can
approximate any well-behaved continuous or Borel real function to any degree of
accuracy [74, 75].

A neural network is called recurrent if its architecture contains some loop, i.e.,
if its corresponding directed graph is cyclic. The dynamics of these networks is
intrinsically more complex than that of feedforward nets. In fact, the information
might be recurrently processed forever – by entering into some cycle of the graph
– thus creating some internal memory of the network. In their seminal theoretical
study concerning the capabilities of neural networks, McCulloch and Pitts already
distinguished the cases of feedforward and recurrent neural networks [118]. They
write: “The treatment of nets which do not satisfy our previous assumption of free-
dom of circle is very much more difficult.” Nowadays, recurrent neural networks
can be applied to tasks such as unsegmented connected handwriting recognition
or speech recognition. From a theoretical perspective, their computational power
is drastically more important than that of feedforward nets, for they can implement
some notion of memory that is impossible to be achieved in feedforward nets.

4.2 FIRST-ORDER RECURRENT NEURAL NETWORKS

In general, the dynamics of a neural network refers to the successive values that the
neurons of the network will take – their activation values – as time elapses. These
activation values are computed by means of an activation function associated to each
neuron. Throughout this work, time is assumed to be discretized and to elapse by
steps of 1. Moreover, the neurons are assumed to update their activation values in a
synchronous way – i.e., all cells are updated at the same time – at each discrete time
step. These updating procedures can be of various kinds. Here, we will exclusively
focus on first-order recurrent neural networks. In this case, the activation values
of every neuron are updated by means of weighted sums of other cells’ activation
values and inputs. By contrast, in higher-order recurrent neural networks, the ac-
tivation values of every cell are computed by means of polynomials of other cells’
activation values and inputs. The degree of the polynomial represents the order of
the network.

Formally, a first-order recurrent neural network (RNN) consists of a synchronous
network of neurons related together in a general architecture. The network contains
N internal neurons (xi)

N
i=1, M parallel input neurons (ui)

M
i=1, and P designated out-

put neurons (xij)
P
j=1 chosen among the N. At each time step, the activation value

of every neuron is updated by applying a function to some weighted affine combi-
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nation of the activation values of other internal and input neurons at the previous
time step. Besides, in our work, the synaptic weights will often be supposed to
be time dependent. Hence, given the activation values of the internal and input
cells (xj)

N
j=1 and (uj)

M
j=1 at time t, the activation value of each cell xi at time t + 1 is

updated by the following equation:

xi(t + 1) = f

(
N

∑
j=1

aij(t) · xj(t) +
M

∑
j=1

bij(t) · uj(t) + ci(t)

)
for i = 1, . . . , N (4.1)

where the aij(t) and bij(t) are bounded and time dependent synaptic weights, the
ci(t) are bounded and time dependent biases for the cells xi, and f is the activation
function of the neurons, which can be of two following kinds:

• the Heaviside step function, usually denoted by θ, and defined by

θ(x) =

{
0 if x < 1,

1 if x ≥ 1;

• the linear-sigmoid function, usually denoted by σ, and defined by

σ(x) =


0 if x < 0,

x if 0 ≤ x ≤ 1,

1 if x > 1.

The dynamics of a neuron given by Equation (4.1) and provided with a Heaviside
or a linear-sigmoid activation function are illustrated in Figure 7.
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Figure 7 – Illustration of the dynamics of a neuron given by Equation (4.1) in the case of the
activation function being given by the Heaviside function θ or the linear-sigmoid function σ,
respectively.

The time dependence of the synaptic weights captures the evolving capabilities
of the network. The boundedness condition expresses the fact that the synaptic
strengths are confined into a certain range of values imposed by the biological con-
stitution of the neurons. It formally states that there exist a lower and an upper
bound S and S′ such that aij(t), bij(t), ci(t) ∈ [S, S′] for every t ≥ 0.
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In the sequel, a neuron will be called Boolean if its activation values are always
0 or 1. A network whose all neurons are Boolean is also called Boolean. In partic-
ular, a network whose activation functions of every neurons are Heaviside is nec-
essarily Boolean. A neuron will be called sigmoidal if its activation function is the
linear-sigmoid one. A network which contains at least one sigmoidal cell is called
sigmoidal.

Moreover, a synaptic weight w will be called static if w(t) = C, for all t ≥ 0.
It is bi-valued evolving if w(t) ∈ {0, 1}, for all t ≥ 0, and it is (general) evolving if
w(t) ∈ [S, S′], for all t ≥ 0. Note that static and bi-valued evolving weights are
particular cases of general evolving weights.

Consider some RNN N provided with M Boolean input cells and N internal
cells. For each time step t ≥ 0, the Boolean vectors

u(t) = (u1(t), . . . , uM(t)) and x(t) = (x1(t), . . . , xN(t))

describing the activation values of the M input and N internal units of N at time t
are the input and state of N at time t. Assuming the initial state of the network to
be x(0) = 0, any input stream

s = u(0)u(1) · · · u(n− 1)

induces via Equation (4.1) a sequence of consecutive states

cs = x(0)x(1) · · · x(n).

called the computation induced by s.

The dynamics of a simple recurrent neural network is illustrated below.

Example 3. Consider the Boolean recurrent neural network N whose dynamics is
governed by the following system of equations:(

x1(t+1)
x2(t+1)
x3(t+1)

)
= f

[(
0 − 1

2 0
1
2 0 0
1
2 0 0

)
·
(

x1(t)
x2(t)
x3(t)

)
+

(
1
2 0
0 0
0 1

2

)
·
(

u1(t)
u2(t)

)
+

(
1
2
1
2
0

)]
(4.2)

The network N is depicted in Figure 8.

Figure 8 – A simple Boolean neural network with two input units (u1, u2) and three internal
cells (x1, x2, x3).



4.2. First-Order Recurrent Neural Networks 25

If the activation function f of Equation (4.2) is the Heaviside function θ, the
network is Boolean. In this case, if we assume that the initial state of the network is
x(0) = 0, then the input stream

s =
(

0
0
) (

1
0
) (

0
1
) (

0
0
)

induces the corresponding sequences of states

cs =
( 0

0
0

) ( 0
0
0

) ( 1
0
0

) ( 0
1
1

) ( 0
1
1

)
.

If the activation function f of Equation (4.2) is the linear-sigmoid function σ, the
network is not anymore Boolean but sigmoidal. In this case, if we assume that the
initial state of the network is x(0) = 0, then the input stream s induces the sequence
of states

cs =
( 0

0
0

) ( 0
0
0

)( 1
1/2
0

)(
1/4
1
1

)(
0

5/8
1/8

)
.





5 CLASSICAL COMPUTATION

5.1 INTRODUCTION

We assume that at least some aspects of the brain processes are of a classical com-
putational nature, along the lines defined by Turing [171], namely, as black box
function-based transformation of a given input into some corresponding output.1

But if the brain computes, it certainly does it differently than today’s computers. In
particular, the brain admits a highly flexible neural architecture. Biological mecha-
nisms like synaptic plasticity, cell birth and death, and changes in connectivity are
intimately related to the storage and encoding of memory traces in the central ner-
vous system. They provide the basis for most models of learning and memory in
neural networks [1, 38, 42, 117, 138].

More precisely, the embryonic nervous system is initially driven by genetic pro-
grams that control neural stem cell proliferation, differentiation, and migration, via
the actions of a limited set of trophic factors and guidance cues. After a relatively
short period of stable synaptic density, a pruning process begins: synapses are con-
stantly removed, yielding a marked decrease in synaptic density due to apoptosis
– genetically programmed cell death – and selective axon pruning [81]. Overpro-
duction of a critical mass of synapses in each cortical area may be essential for
their parallel emergence through competitive interactions between extrinsic affer-
ent projections [41]. Background activity and selected patterns of afferent activity
are likely to shape deeply the emergent circuit wiring [147]. Synapses can change
their strength in response to the activity of both pre- and post-synaptic cells follow-
ing spike timing dependent plasticity (STDP) rules [138]. Developmental and/or
learning processes are likely to potentiate or weaken certain pathways through the
network by affecting the number or efficacy of synaptic interactions between the
neurons.

In the context of AI, the consideration of evolving neural architectures in so-
called Evolving Connectionist Systems (ECoS) has proven to be fruitful and signif-
icantly increased in applications [85, 184].

From a theoretical perspective, the general issue of evolvability and plasticity
is difficult to handle in brain’s modelling, and has generally been neglected in the
classical literature concerning the computational capabilities of brain-like models
(see e.g. [89, 118, 119, 120, 123, 151, 153, 154, 155, 156]). Hence, the following
questions naturally arise: Can we approach the issue of the brain’s capabilities

1We do not enter into the philosophical considerations about the meaning of “computing” and the
justification that the brain “computes” in a relevant sense.

27
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from a non-static perspective? Can we understand and characterize the compu-
tational capabilities of a neural model incorporating the crucial feature of plasticity
or evolvability?

We answered positively by providing a detailed study of the computational ca-
pabilities of an evolving neural model, where the networks can update their archi-
tectures at each discrete time step [24, 26]. Our study focuses on the mere concept
of evolvability of the model, with no assumption on the particular environment, so
that the nature of the updates is assumed to be not constrained. In this general con-
text, we show that the evolving recurrent neural networks are computationally equiv-
alent to Turing machines with polynomially bounded advices, and accordingly,
achieve a super-Turing computational power, equivalent to that of analog recurrent
neural networks [149, 154]. These capabilities are attained irrespective of whether
the synaptic weights of the networks are modelled by rational or real numbers, and
moreover, irrespective of whether the patterns of evolvability are restricted to bi-
valued updates (namely changes between two possible distinct synaptic weights,
like 0 and 1) or expressed by any other more general form of updating.

Besides, a natural question to be addressed concerns the robustness of the super-
Turing computational power of these evolving networks when subjected to various
kinds of noise. It has been shown that the presence of analog noise would gen-
erally strongly decrease the computational power of the underlying systems [18,
111, 115], whereas the consideration of some discrete source of stochasticity would
rather tend to increase or maintain the capabilities of the systems [153]. We showed
that the evolving neural network models falls under the scope of these results [26].
More precisely, on the one hand, both evolving rational and evolving real recurrent
neural networks have their computational power decreased to regular or definite
languages in the presence of analog noise, as described in [111, 115], respectively.
On the other hand, the evolving networks have their capabilities maintained to the
super-Turing level in the presence of some discrete source of stochasticity, as pre-
sented in [153].

Overall, these results allow to drop any kind of analog assumption and replace it
by the more biological concept of evolvability in neural network models. They sup-
port the claim that the general mechanism of evolvability is crucially involved in
the computational and dynamical capabilities of biological neural networks. In this
sense, they provide a theoretical complement to the numerous experimental stud-
ies about the importance of the general mechanism of evolvability in the brain’s
information processing [1, 48, 69].

In this Chapter, we review the main results concerning the computational power
of recurrent neural networks. Section 5.2 concerns the correspondence between
Boolean recurrent neural networks and finite state automata [89, 119]. Sections 5.3
and 5.4 concern the computational equivalence between rational-weighted or real-
weighted recurrent neural networks and Turing machines or Turing machines with
advices, respectively [154, 155]. Section 5.5 presents in details the computational
capabilities of evolving recurrent neural networks [24, 26]. Section 5.6 provides
some concluding remarks.
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5.2 BOOLEAN NEURAL NETWORKS

It has early been observed that Boolean recurrent neural networks are computation-
ally equivalent to finite state automata [89, 119]. More precisely, recurrent neural
networks composed of McCulloch and Piits’s cells, the Boolean neurons described
in Chapter 4, can simulate and be simulated by finite state automata. In Minsky’s
own words:

It is evident that each neural network of the kind we have been consid-
ering is a finite-state machine. [...] It is interesting and even surprising
that there is a converse to this. Every finite-state machine is equivalent
to, and can be “simulated” by, some neural net [119].

Here, a Boolean recurrent neural network (B-RNN) is a neural network as de-
fined in Chapter 4, i.e., with M Boolean input cells, N internal cells, and a dynamics
governed by the following equation:

xi(t + 1) = θ

(
N

∑
j=1

aij(t) · xj(t) +
M

∑
j=1

bij(t) · uj(t) + ci(t)

)
for i = 1, . . . , N (5.1)

where θ is the Heaviside step activation function. We suppose that the weights
and bias can be indifferently modelled by rational or real numbers. The following
results are not affected by this condition.

The concept of language recognition can be straightforwardly adapted to the
context of Boolean neural networks. The idea is to consider that certain state(s) of
the network are final, and to define that some input stream is accepted or rejected by
the network if this latter ends in a final or a non-final state after having processed
input u, respectively. The language decided by the network consists of the set of in-
put streams that are accepted by it. A language is decidable by some Boolean neural
net if it can be decided by such a network. According to these considerations, the
computational equivalence between Boolean recurrent neural networks and finite
state automata [119] can be stated as follows.

Theorem 4. Let L ⊆ (BM)∗ be some language. The following conditions are equivalent:

(a) L is decidable by some Boolean recurrent neural network;

(b) L is decidable by some finite state automaton;

(c) L is regular.

We provide a sketch of the proof of this result. First, note that the equivalence
between conditions (b) and (c) is well-known in automata theory [71].

For the implication (a) → (b), we show that any Boolean recurrent neural net-
work can be simulated by some finite state automaton. Given some network N ,
one constructs a corresponding automatonAwhose nodes correspond to the states
ofN , and such that there is an edge from node s to s′ labelled by x inA if and only
if the networkN moves from state s to s′ when it receives the Boolean input vector
x. Since N contains finitely many cells, say N, then it contains also finitely many
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Figure 9 – Translation from a Boolean recurrent neural network N to an equivalent finite
state automaton A. The nodes of A are the different states of N . They are represented as
colored triple dots that depict the three internal cells ofN : a white or a colored dot depicts a
quiet or a spiking cell. Moreover, there is an edge from node s to node s′ labelled by x in A
if and only if the network N moves from state s to s′ when it receives input x.

states, namely 2N , and therefore, A contains finitely many nodes, i.e., it is a finite
state automaton. This construction is illustrated in Figure 9.

Concerning the converse implication (b) → (a), we show that any finite state
automaton can be simulated by some Boolean recurrent neural network. Given
some automaton A working on alphabet A, one constructs a network N which
contains sufficiently many input cells to encode all letters of A, and whose internal
cells are oganized in a grid manner: each row of cells correspond to some specific
letter of A and each column of cells correspond to some state ofA. Then, it is possi-
ble to design the weighted synaptic connections between the cells such that the cell
of location (i, j) in the grid will spike if and only if the automatonA had previously
received the i-th letter of alphabet A and is currently in the j-th computational state.
In this way, for any input u, one has a biunivocal correspondence between the suc-
cessive states visited by A and the successive spiking configurations of N . The
automaton A is therefore perfectly simulated by the network N . This construction
is illustrated in Figure 10.

5.3 RATIONAL-WEIGHTED NEURAL NETWORKS

The study of the computational power of recurrent neural networks requires the
consideration of a specific model of RNNs capable to perform computation and
decision of formal languages. In his way, a mathematical comparison with the
languages computed by classical abstract models of computation, like Turing ma-
chines and Turing machines with advice in our case, becomes possible.

For this purpose, we consider a notion of formal recurrent neural networks
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Figure 10 – Translation from a finite state automaton A to an equivalent Boolean recurrent
neural networkN . The networkN contains sufficiently many input cells to encode all letters
of A: in this case, one Boolean input cell is sufficient to encode the two possible letters 0 and
1. The internal cells of N are oganized in a grid manner: each row of cells correspond to
some specific letter of alphabet A (two rows here, for the letters 0 and 1) and each column
of cells correspond to some state of A (three columns here, for the states q1, q2, and q3). The
weighted synaptic connections are designed such that the cell of location (i, j) in the grid
will spike if and only if the automaton A had previously received the i-th letter of alphabet
A and is currently in the j-th computational state. This pattern is realized with a time delay
of 2. The start cell spikes only at time t = 0.

which adheres to a rigid encoding of the way binary strings are processed as in-
put and output between the network and the environment, as presented in [154,
155]. A formal recurrent neural network is a recurrent neural network, as described in
Chapter 4, provided with two Boolean input cells ud and uv, N internal sigmoidal
cells (xi)

N
i=1, and two Boolean output cells yd and yv. The so-called data lines ud

and yd carry some uninterrupted incoming and outgoing binary data, respectively;
the so-called validation lines uv and yv take value 1 to indicate when their corre-
sponding data line is active and take value 0 otherwise. Moreover, the networks
are assumed to be designed in such a way that the two output cells yd and yv are
not fed into any other cell.

The dynamics of the network is computed in the usual way: given the activa-
tion values of the inputs ud and uv and the internal neurons (xj)

N
j=1 at time t, the

activation values of each internal and output neuron xi, yd and yv at time t + 1 are
updated by the following equations, respectively:

xi(t + 1) = σ

 N

∑
j=1

aij(t) · xj(t) + ∑
j∈{d,v}

bij(t) · uj(t) + ci(t)

 for i = 1, . . . , N (5.2)

yi(t + 1) = θ

 N

∑
j=1

aij(t) · xj(t) + ∑
j∈{d,v}

bij(t) · u(t) + ci(t)

 for i = d, v (5.3)

where aij(t), bi(t), and ci(t) are the weights of the synaptic connections and the
bias of the network at time t, and σ and θ are the linear-sigmoid and Heaviside step



32 5. Classical Computation

activation functions, respectively. From this point onwards, all considered neural
networks will be assumed to be of that form. A formal recurrent neural network is
illustrated in Figure 11.

internal
cells

input
data cell

output
data cell

output
validation cell

input
validation cell

Figure 11 – Schematic representation of a formal recurrent neural network.

The formal RNNs perform computation over finite input strings of bits as fol-
lows: given some formal RNN N and some input string u = u0 · · · uk ∈ {0, 1}+,
we say that u is classified in time τ by N if given the input streams

ud(0)ud(1)ud(2) · · · = u0 · · · uk000 · · ·
uv(0)uv(1)uv(2) · · · = 1 · · · 1︸ ︷︷ ︸

k+1

000 · · ·

the network N produces the corresponding output streams

yd(0)yd(1)yd(2) · · · = 0 · · · 0︸ ︷︷ ︸
τ−1

ηu000 · · ·

yv(0)yv(1)yv(2) · · · = 0 · · · 0︸ ︷︷ ︸
τ−1

1000 · · ·

where ηu ∈ {0, 1}. The input string u is said to be accepted or rejected byN if ηu = 1
or ηu = 0, respectively. Moreover, for any non-decreasing function f : N∗ → N∗

and any language L ⊆ {0, 1}+, we say that L is decided byN in time f if and only if
every string u ∈ {0, 1}+ is classified by N in time τ ≤ f (|u|), and u ∈ L⇔ ηu = 1.
Finally, a given language L is then said to be decidable in time f by some network if
and only if there exists a RNN N that decides L in time f . A language L is simply
said to be decidable by some network if and only if there exist a RNN N and a non-
decreasing function f : N∗ →N∗ such that N decides L in time f .

In this section, we consider that the synaptic weights and bias of the network are
static and modelled by rational numbers.2 The corresponding networks are called
static rational recurrent neural networks, and denoted by St-RNN[Q]s.

In this context, Siegelmann and Sontag proved that first-order rational recur-
rent neural networks involving only finitely many cells and simple short rational
weights are Turing equivalent [151, 155]. In fact, on the one hand, any function de-
termined by Equations (5.2) and (5.3) and involving static rational weights is nec-
essarily recursive, i.e., computable by some Turing machine. On the other hand,

2We recall that a weight w(t) is static and rational if w(t) = C ∈ Q, for all t ≥ 0.
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any Turing machine can be simulated in real time by some static rational recurrent
neural network. The result can be expressed as follows.

Theorem 5. St-RNN[Q]s are Turing equivalent. More precisely, a language L is decidable
by some St-RNN[Q] if and only if L is decidable by some TM, i.e., iff L is recursive.

For sake of completeness, we provide a sketch of the proof of this result. First,
as already mentioned, any St-RNN[Q] N has its dynamics governed by Equations
(5.2) and (5.3), which in the case of rational weights, is obviously recursive. Conse-
quently, N can be simulated by some Turing machineM.

Conversely, consider some Turing machine M. Then M is computationally
equivalently to some p-stack machine S with p ≥ 2 (See Section 3.3). We show that
S can be simulated by some St-RNN[Q] N .

Towards this purpose, we encode every stack content w = w0 · · ·wn−1 ∈ {0, 1}∗
as the rational number qw = ∑n−1

i=0
2·w(i)+1

4i ∈ [0, 1]. For instance, w = 1110 is en-
coded into qw = 3

4 + 3
16 + 3

64 + 1
256 . According to this encoding, the required stack

operations can be performed by simple functions involving the sigmoid-linear func-
tion σ, as described above:

• Reading the top of the stack: top(qw) = σ(4qw − 2)

• Pushing 0 into the stack: push0(qw) = σ( 1
4 qw + 1

4 )

• Pushing 1 into the stack: push1(qw) = σ( 1
4 qw + 3

4 )

• Popping the stack: pop(qw) = σ(4qw − (2top(qw) + 1))

• Emptiness of the stack: empty(qw) = σ(4qw)

For instance, if w = 1110, then qw = 3
4 + 3

16 + 3
64 + 1

256 and one has:

• top(qw) = 1

• push0(qw) =
1
4 + 3

16 + 3
64 + 3

256 + 1
1024

• push1(qw) =
3
4 + 3

16 + 3
64 + 3

256 + 1
1024

• pop(qw) =
3
4 + 3

16 + 1
64

• empty(qw) = 1 (meaning that w is not empty).

Consequently, one can store the encoding of each stack qw as the rational activa-
tion value of a neuron, and every stack operation on qw can be performed by some
simple neural circuit implementing the corresponding function.

Based on these considerations, one can design a St-RNN[Q] N which correctly
simulates the p-stack machine S . The network N contains 3 neurons per stack:
one which encodes the content of the stack, one which reads the top element of the
stack, and one which stores the answer of the emptyness test of the stack. Moreover,
N contains a pool of neurons which encodes the possible computational states of
S and another pool of neurons which implements the transition function of S . Ac-
cordingly, given any computational state, input bit, and contents of the stacks, the
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Figure 12 – A St-RNN[Q] N which simulates a p-stack machineM.

network N computes a next computational state and updates the contents of the
stacks in accordance with the transition function of S . In this way, the network N
simulates correctly the behavior of the p-stack machine S . Furthermore, it can be
remarked the the simulation is performed in real time. The networkN is illustrated
in Figure 12.

5.4 REAL-WEIGHTED OR ANALOG NEURAL NETWORKS

Static real-weighted recurrent neural networks – or so-called ‘analog’ RNNs – are
actually strictly more powerful than their rational counterparts, and hence also
than Turing machines [151, 154]. More precisely, in exponential time of compu-
tation, the analog neural networks are capable of unbounded capabilities. When
restricted to polynomial time of computation, the networks are computationally
equivalent to Turing machines with polynomially bounded advice (TM/poly(A))3.
Since TM/poly(A)s are strictly more powerful than TMs (i.e., they can decide strictly
more languages), it follows that the analog RNNs are capable of extra-recursive
computational capabilities from polynomial time of computation already. In this
precise sense, they are super-Turing.

More precisely, let us defines static real-weighted – or analog – recurrent neural
networks, denoted by St-RNN[R]s as formal neural networks as defined in previous
Section 5.3, with a dynamics governed by Equations (5.2) and (5.3), and provided
with static real weights and bias.4 The result can thus be expressed as follows [151,
154].

Theorem 6. St-RNN[R]s are super-Turing. More precisely:

(a) A language L is decidable in polynomial time by some St-RNN[R] iff L is decidable
in polynomial time by some TM/poly(A), i.e., iff L ∈ P/poly.

3We recall that the set of languages decidable in polynomial time by some TM/poly(A) corresponds
to the complexity class P/poly.

4We recall that a weight w(t) is static and real if w(t) = C ∈ R, for all t ≥ 0.
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(b) Any language L can be decided in exponential time by some St-RNN[R].

We provide a sketch of the proof of this result. First, let L ∈ P/poly. By some
alternative characterization of P/poly, there exists a polynomial size circuits family5

C = {Cn : n ≥ 0} such that each circuit Cn decides the sub-language of all words
of length n of L, i.e., L ∩ {0, 1}n [16].

We now consider some recursive encoding of the circuit family C into a real
number r(C). More precisely, first, each circuit Cn of C is encoded by some finite
word wCn ∈ {0, 2, 4, 6}∗, and the whole family C is encoded by the infinite word
wC = 8wC08wC18wC28 · · · ∈ {0, 2, 4, 6, 8}ω. Afterwards, the infinite word wC is

encoded by the real number r(C) = ∑∞
i=0

wC (i)
9i .

According to this encoding, one can build some St-RNN[R] N which contains
the real number r(C) as a synaptic weight, and which, given some input u of length
n, decodes the circuit Cn of the family C from r(C), simulates it, and outputs the
result in polynomial time. Since the circuits family C decides L, so does N in poly-
nomial time. Therefore, L(N ) = L. The network N is illustrated in Figure 13.

validation

output Cn(u)

yv

ydinput u

validation

ud

uv

From the synaptic real weight r(C),
decode and simulate the circuit Cn

Store u in memory

Compute the length n of u

r(C)

Figure 13 – A St-RNN[R] N which simulates a polynomial size circuits family C = {Cn :
n ≥ 0}.

The converse implication is more subtle and relies on an important property of
recurrent neural networks. Let L be decidable in polynomial time p by some St-
RNN[R] N . Then, by some technical lemma, there exists a family of St-RNN[Q]s
{Np(n) : n ≥ 0} which suitably approximates N , in the sense that each network
Np(n) satisfies the following properties:

• the synaptic weights of Np(n) are the same as those of N but truncated after
K · p(n) bits, for some constant K.

• if one truncates the successive activation values of every neuron ofNp(n) after
K · p(n) bits, then Np(n) still provide the same outputs as N up to time p(n).

Such a network Np(n) is illustrated in Figure 14.

According to these considerations, one can build a TM/poly(A)M which sim-
ulates the behavior of the St-RNN[R] N in polynomial time. The advice function

5For a precise definition of a circuits family, see [16].
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ãij(t), b̃ij(t), c̃i(t)

activation values computed
up to K · p(n) precision bits
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ũd
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Figure 14 – Relationship between the St-RNN[R] N and a St-RNN[Q] Np(n) of a family
{Np(n) : n ≥ 0} which suitably approximates N . The networks N and Np(n) provide the
same outputs up to time p(n).

is given by α(n) = pNp(n)q for each n ≥ 0, where pNp(n)q is some suitable polyno-
mially bounded binary encoding of Np(n). The machine is designed such that, on
every input u of length n, it first calls the advice value pNp(n)q, decodes the descrip-
tion ofNp(n) from it, and then simulates the behaviour ofNp(n) on u in polynomial
time. In this way, the machineM provides the same output as Np(n), which itself
provides the same output as N , for all inputs of length n. Since N andM provide
the same answer on every input u, they decide the same language, i.e., L(M) = L.
Therefore, L ∈ P/poly. The TM/poly(A)M is illustrated in Figure 15.

Finally, Theorems 5 and 6 show that the introduction of real synaptic weights in
a standard first-order neural model drastically increases the computational power
of the networks from Turing to super-Turing capabilities.

5.5 EVOLVING NEURAL NETWORKS

5.5.1 THE MODEL

We now characterize the computational capabilities of various kinds of evolving
recurrent neural networks, i.e., networks where the synaptic weights can update at
each discrete time step.

More precisely, we consider once again formal recurrent neural networks, as
defined in previous Section 5.3, and with a dynamics governed by Equations (5.2)
and (5.3). In this case, six models of RNNs can be considered according to the
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simulates the behavior of the network
Np(n) written on its advice tape

TM/poly(A) M

…

…advice: pNp(n)q

input: u of length n

Figure 15 – A TM/poly(A)M which simulates the behavior of a St-RNN[R] N in polyno-
mial time.

nature of their synaptic weights (the two first ones have already been considered).

1. the static rational RNNs (St-RNN[Q]s) refer to the class of all RNNs whose
every weights are static and modelled by rational values.

2. the static real (or analog) RNNs (St-RNN[R]s) refer to the class of all RNNs
whose every weights are static and modelled by real values.

3. the bi-valued evolving rational RNNs (Ev2-RNN[Q]s) refer to the class of all
RNNs whose every evolving weights are bi-valued and every static weights
are rational.

4. the bi-valued evolving real RNNs (Ev2-RNN[R]s) refer to the class of all RNNs
whose every evolving weights are bi-valued and every static weights are real.

5. the (general) evolving rational RNNs (Ev-RNN[Q]s) refer to the class of all RNNs
whose every evolving and static weights are rational.

6. the (general) evolving real RNNs (Ev-RNN[R]s) refer to the class of all RNNs
whose every evolving and static weights are real.

Since rational numbers are included in real numbers and since static weights
are particular evolving weights that remain constant over time, the following strict
inclusions hold by definition:

St-RNN[Q]s ( Ev2-RNN[Q]s ( Ev-RNN[Q]s( ( (

St-RNN[R]s ( Ev2-RNN[R]s ( Ev-RNN[R]s

Note that the various evolving neural models described above can capture im-
portant architectural evolving capabilities other than the sole synaptic plasticity.
For instance, creation or deterioration of synapses can be modelled by switching the
corresponding synaptic weights on or off, respectively, and cell birth and death are
modelled by simultaneously switching on or off all the adjacent synaptic weights
of a given cell, respectively.
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5.5.2 COMPUTATIONAL POWER

We show that evolving recurrent neural networks are capable of breaking the Tur-
ing barrier of computation. We then provide a precise characterization of their
computational power.

More precisely, we first show that rational-weighted evolving recurrent neural
networks provided with only bi-valued evolving capabilities are computationally
equivalent to static analog neural networks, and therefore, are super-Turing (The-
orem 12). We next show that evolving recurrent neural networks remain super-
Turing equivalent irrespective of whether their synaptic weights are modelled by
rational or real numbers, and moreover, irrespective of whether their patterns of
evolvability are restricted to bi-valued updates or expressed by any other more
general form of updating (Theorems 13 and 14). Consequently, the four models of
Ev2-RNN[Q]s, Ev-RNN[Q]s), Ev2-RNN[R]s, and Ev-RNN[R]s are all super-Turing
computationally equivalent (Corollary 15). These considerations are summarized
in Table 1.

STATIC BI-VALUED EVOLVING GENERAL EVOLVING

Q
St-RNN[Q]s Ev2-RNN[Q]s Ev-RNN[Q]s

Turing super-Turing super-Turing

R
St-RNN[R]s Ev2-RNN[R]s Ev-RNN[R]s

super-Turing super-Turing super-Turing

Table 1 – Computational power of static and evolving neural networks according to the
nature of their synaptic weights and patterns of evolvability.

We now turn to the proofs of the results. These rely on a key technical lemma
which is interesting on its own. It is a generalization of the so-called “linear-
precision suffices lemma” [154, Lemma 4.1]. Intuitively, the result states that for
every Ev-RNN[R] N deciding some language L in time f , there exists a family of
Ev-RNN[Q]s {N f (n) : n > 0} such that each network N f (n) can compute precisely
like N up to time step f (n) by using only about f (n) precision bits to describe
its weights and activation values at every time steps. In other words, every Ev-
RNN[R] N can be approximated by some Ev-RNN[Q] N f (n) – in the sense that
N f (n) computes precisely like N up to time step f (n) – where N f (n) only requires
about f (n) precision bits for each instantaneous description.

Formally, consider some Ev-RNN[R] N given by its input neurons ud and uv,
its output neurons yd and yv, the sequence of its internal neurons (xi)

N−2
i=1 , and the

sequence of its evolving weights (aij(t))t≥0, (bij(t))t≥0, (ci(t))t≥0. Consider also
some non-decreasing function f : N∗ → N∗. An f -truncated family over N consists
of a family of Ev-RNN[Q]s {N f (n) : n > 0} where each network N f (n) is described
as follows (cf. Figure 16):

• the non-outputting part of network N f (n) contains the same number of cells
as N , denoted by ũd, ũv, ỹd, ỹv, and (x̃i)

N−2
i=1 , and the same connectivity pat-

terns between those cells as N ;
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Figure 16 – Relationship between an Ev-RNN[R] N and the Ev-RNN[Q] N f (n) of an f -
truncated family over N .

• the outputting part ofN f (n) consists of two additional cells ỹ′d and ỹ′v playing
the role of output processors and related to ỹd and ỹv by the relation ỹ′d(t +
1) = σ(2 · ỹd(t)− 1

2 ) and ỹ′v(t + 1) = σ(2 · ỹv(t)− 1
2 );

• the dynamics of N f (n) is given as follows: at each time step, the weights of
N f (n), denoted by ãij(t), b̃ij(t), c̃i(t), correspond to the weights aij(t), bij(t),
ci(t) ofN truncated after K · f (n) bits, for some constant K independent of n,
and the activation values of all non-outputting processors of N f (n) at time t,
denoted by x̃i(t), ỹd(t), ỹv(t), are computed only up to K · f (n) precision bits,
for the same some constant K independent of n.

The relationship between a Ev-RNN[R] N and the Ev-RNN[Q] N f (n) of an f -
truncated family over N is illustrated in Figure 16. As explained in more detail in
the forthcoming proof of Lemma 7, the networks N f (n) are designed in such a way
that the output processors yd, yv and ỹ′d, ỹ′v of the respective networksN andN f (n)
would generate the very same binary output values as long as the activation values
between yd, yv and ỹd, ỹv are not too distant (this distance being arbitrarily chosen
as 1

4 in our case).

The following result shows that any Ev-RNN[R] can be perfectly simulated by
a family of Ev-RNN[Q]s in a precise sense.

Lemma 7. Let N be some Ev-RNN[R] and f : N∗ → N∗ be some non-decreasing
function. Then there exists an f -truncated family {N f (n) : n > 0} of Ev-RNN[Q]s over
N such that, for every input u and every n > 0, the output processors of N and N f (n)
satisfy yd(t) = ỹ′d(t + 1) and yv(t) = ỹ′v(t + 1) for all time steps t ≤ f (n).
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Proof. By definition of an f -truncated family {N f (n) : n > 0} over N , for each
n > 0, the dynamics of the non-output processors of N f (n) is defined by x̃i(0) = 0
and

x̃i(t + 1) =[
σ

( N

∑
j=1

[
aij(t)

]
K· f (n) · x̃j(t) +

M

∑
j=1

[
bij(t)

]
K· f (n) · ũj(t) + [ci(t)]K· f (n)

)]
K· f (n)

(5.4)

for i = 1, . . . , N, where [α]K· f (n) denotes the value of α truncated after K · f (n)
bits for some constant K (independent of n), and the dynamics of the two output
processors ỹ′d and ỹ′d is given by

ỹ′d(t + 1) = σ(2 · ỹd(t)−
1
2
)

ỹ′v(t + 1) = σ(2 · ỹv(t)−
1
2
).

In order to prove the existence of an f -truncated family {N f (n) : n > 0} overN
with the required properties, we need to prove the existence of a constant K such
that, for every n > 0 and on every input u ∈ {0, 1}+, the Ev-RNN[Q] N f (n) and
the Ev-RNN[R] N whose dynamics are respectively governed by Equations (5.4)
as well as (5.2) and (5.3) actually satisfy yd(t) = ỹ′d(t + 1) and yv(t) = ỹ′v(t + 1),
for all time steps t ≤ f (n). Given some n > 0, some input u ∈ {0, 1}+, and some
time step t ≥ 0, let ud(t), uv(t), (xi(t))N−2

i=1 , xN−1(t) = yd(t), xN(t) = yv(t) be the
activation values ofN at time t, and let aij(t), bij(t), ci(t) be the weights ofN at time
t, when working on input u; similarly, let ũd(t), ũv(t), (x̃i(t))N−2

i=1 , x̃N−1(t) = ỹd(t),
x̃N(t) = ỹv(t), ỹ′d(t), ỹ′v(t) denote the activation values of network N f (n) at time
t, and let ãij(t) =

[
aij(t)

]
K· f (n), b̃ij(t) =

[
bij(t)

]
K· f (n), c̃i(t) = [ci(t)]K· f (n) denote

the weights of network N f (n) at time t, when working on u. Note that since we
consider the same input u, one has ud(t) = ũd(t) and uv(t) = ũv(t). Let also W =

max{|S|, |S′|}, where S and S′ are the bounds on the weights of N . Furthermore,
let the largest truncation errors of the processors and weight at time t as well as the
largest accumulated error at time t be given by:

δp(u, t) = max
i

∣∣∣∣∣[σ( N

∑
j=1

ãij(t) · x̃j(t) +
M

∑
j=1

b̃ij(t) · uj(t) + c̃i(t)
)]

K· f (n)

− σ
( N

∑
j=1

ãij(t) · x̃j(t) +
M

∑
j=1

b̃ij(t) · uj(t) + c̃i(t)
)∣∣∣∣∣

δw(t) = max
{

max
i,j
|ãij(t)− aij(t)| , max

i.j
|b̃ij(t)− bij(t)| , max

i
|c̃i(t)− ci(t)|

}
ε(t) = max

i
|x̃i(t)− xi(t)|

Now, let δp be the supremum of all values δp(u, t) over all possible inputs u and
time steps t, i.e. δp = supu∈{0,1}+ ,t≥0 δp(u, t). Since any possible activation value
always belongs to [0, 1], one has δp(u, t) ≤ δp ≤ 1. Let also δw be the supremum of
all values δw(t) over all possible time steps (note that δw(t) does not depend on the
input u), i.e. δw = supt≥0 δw(t). Since every possible weight belongs by definition
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to [s, s′], the weight’s largest truncation errors cannot exceed W = max{|S|, |S′|},
and one thus has δw(t) ≤ δw ≤W.

According to these definitions, using the global Lipschitz property |σ(x)−σ(y)| ≤
|x− y| and the fact that uj(t) = ũj(t), one has

ε(t + 1) = max
i

|x̃i(t + 1)− xi(t + 1)|

= max
i

∣∣∣∣∣[σ( N

∑
j=1

ãij(t) · x̃j(t) +
M

∑
j=1

b̃ij(t) · uj(t) + c̃i(t)
)]

K· f (n)
−

σ
( N

∑
j=1

aij(t) · xj(t) +
M

∑
j=1

bij(t) · uj(t) + ci(t)
)∣∣∣∣∣

≤ max
i

∣∣∣∣∣ σ
( N

∑
j=1

ãij(t) · x̃j(t) +
M

∑
j=1

b̃ij(t) · uj(t) + c̃i(t)
)
−

σ
( N

∑
j=1

aij(t) · xj(t) +
M

∑
j=1

bij(t) · uj(t) + ci(t)
)∣∣∣∣∣ +

δp(u, t)

≤ max
i

∣∣∣∣∣ ( N

∑
j=1

ãij(t) · x̃j(t) +
M

∑
j=1

b̃ij(t) · uj(t) + c̃i(t)
)
−

( N

∑
j=1

aij(t) · xj(t) +
M

∑
j=1

bij(t) · uj(t) + ci(t)
)∣∣∣∣∣ +

δp(u, t)

≤ max
i

∣∣∣∣∣ N

∑
j=1

ãij(t) · x̃j(t)−
N

∑
j=1

aij(t) · xj(t)

∣∣∣∣∣ +∣∣∣∣∣ M

∑
j=1

b̃ij(t) · uj(t)−
M

∑
j=1

bij(t) · uj(t)

∣∣∣∣∣ +∣∣∣c̃i(t)− ci(t)
∣∣∣+ δp(u, t)

≤ max
i

∣∣∣∣∣ N

∑
j=1

ãij(t) · x̃j(t)−
N

∑
j=1

ãij(t) · xj(t)

∣∣∣∣∣ +∣∣∣∣∣ N

∑
j=1

ãij(t) · xj(t)−
N

∑
j=1

aij(t) · xj(t)

∣∣∣∣∣ +∣∣∣∣∣ M

∑
j=1

b̃ij(t) · uj(t)−
M

∑
j=1

bij(t) · uj(t)

∣∣∣∣∣ +∣∣∣c̃i(t)− ci(t)
∣∣∣+ δp(u, t)

≤ N · (W + δw(t)) · ε(t) + (N + M + 1) · δw(t) + δp(u, t)

≤ N · 2 ·W · ε(t) + (N + M + 1) · δw(t) + δp(u, t)

≤ N · 2 ·W · ε(t) + (N + M + 1) · δw + δp
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= K1 · ε(t) + K2 · δw + δp

where K1 = 2 · N ·W and K2 = N + M + 1 are constants. Using the fact that
ε(0) = maxi |x̃i(0)− xi(0)| = 0 and the geometric series formula, one has

ε(t + 1) ≤
t

∑
i=0

Ki
1 · (K2 · δw + δp) ≤ Kt+1

1 · (K2 · δw + δp) (5.5)

Now, we want to show the existence of a constant K such that the binary output
values yd(t), yv(t) and ỹ′d(t + 1), ỹ′v(t + 1) of the respective network N and trun-
cated network N f (n) satisfy the relations yd(t) = ỹ′d(t + 1) and yv(t) = ỹ′v(t + 1),
for all t ≤ f (n). In other words, according to the dynamics of ỹ′d and ỹ′v, one must
have for all t ≤ f (n):

if yd(t) = 0 then σ

(
2 · ỹd(t)−

1
2

)
= 0 i.e. 2 · ỹd(t)−

1
2
≤ 0

if yd(t) = 1 then σ

(
2 · ỹd(t)−

1
2

)
= 1 i.e. 2 · ỹd(t)−

1
2
≥ 1

if yv(t) = 0 then σ

(
2 · ỹv(t)−

1
2

)
= 0 i.e. 2 · ỹv(t)−

1
2
≤ 0

if yv(t) = 1 then σ

(
2 · ỹv(t)−

1
2

)
= 1 i.e. 2 · ỹv(t)−

1
2
≥ 1

for all t ≤ f (n). Note that the above relations hold whenever |ỹd(t)− yd(t)| ≤ 1
4

and |ỹv(t) − yv(t)| ≤ 1
4 for all 0 ≤ t ≤ f (n), and hence in particular whenever

ε(t) ≤ 1
4 for all t ≤ f (n) (since yd and yv belong to the xi’s). This latter inequality

is satisfied for t = 0 (since ε(0) = 0 ≤ 1
4 ), and according to Inequality (5.5), it also

holds for all 0 < t ≤ f (n) if

Kt
1 · (K2 · δw + δp) ≤

1
4

for all 0 < t ≤ f (n).

Now, note that the previous relations hold if δw and δp are both bounded by all
values 1

5 (K1 · K2)
−t, for all 0 < t ≤ f (n) (for the case t = 1, use the fact that

K2 ≥ 5, and for the cases t > 1, use the fact that K2 + 1 ≤ Kt
2). Since 1

5 (K1 ·
K2)
− f (n) ≤ 1

5 (K1 · K2)
−t for all t ≤ f (n), the above relations are also satisfied if

δw and δp are both bounded by 1
5 (K1 · K2)

− f (n). Moreover, we recall that if the
truncations in δw and δp occur at K · f (n) bits after the decimal point, then δw and
δp are bounded by 2−K· f (n). Hence, in order to have δw and δp bounded by 1

5 (K1 ·
K2)
− f (n) as requested, it suffices to have 2−K· f (n) ≤ 1

5 (K1 ·K2)
− f (n), i.e., to have K ≥

log( 1
5 (K1 ·K2)). Therefore, by taking K = plog( 1

5 (K1 ·K2))q (where pxq denotes the
least integer above x), the dynamics given by Equation (5.4) ensures that the output
binary values yd(t), yv(t) as well as ỹ′d(t + 1), ỹ′v(t + 1) produced by the respective
networks N and N f (n) will be the very same for all time steps t ≤ f (n). This
concludes the proof.

The following Propositions 8 and 9 constitute the core of the main results.
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Proposition 8. Let L ⊆ {0, 1}+ be some language.

(i) There exists some Ev2-RNN[Q] that decides L in exponential time.

(ii) There exists some Ev-RNN[Q] that decides L in exponential time.

Proof. Note that Point (ii) is a direct consequence of Point (i), since any Ev2-RNN[Q]
is a particular Ev-RNN[Q]. We now prove Point (i). The main idea of the proof is
illustrated in Figure 17.

We prove Point (i). First of all, let w1, w2, w3, . . . denote the infinite lexicograph-
ical enumeration of all words of {0, 1}+ (i.e. w1 = 0, w2 = 1, w3 = 00, w4 = 01,
w5 = 10, w6 = 11, w7 = 000, etc.), and for every i > 0, let εi be the L-characteristic
bit χL(wi) of wi, i.e. εi = 1 iff wi ∈ L. Now, let w be the binary infinite word defined
as the succession of all wi’s and εi’s separated by 0’s, i.e.

w = w10ε10w20ε20w30ε30w40ε40 · · · .

In words, w represents a description of all successive binary words followed by the
information of whether each of these words belongs to L or not. Besides, consider
also the binary infinite word z which has the same structure as w except that every
sub-word wi is replaced by a block of 1’s of the same length and every bit εi is
replaced by a 1, i.e.

z = 101010101101011010 · · · .

The idea is that the infinite word z acts as a validation line for the infinite word w,
i.e., the positions of the active bits of z correspond to those of the data bits of w. The
superposition bit by bit of the words w and z is as follows:

w1 0 ε1 0 w2 0 ε2 0 w3 0 ε3 0 w4 0 ε4 0 · · ·
1 0 1 0 1 0 1 0 11 0 1 0 11 0 1 0 · · ·

We provide the description of a Ev2-RNN[Q] NL that decides L in exponential
time. The networkNL actually consists of one evolving and one static rational sub-
network connected together.

The evolving rational-weighted part ofNL is made up of two designated proces-
sors xp and xp′ . Both neurons xp and xp′ receive as incoming synaptic connections a
background activity of changing intensity cp(t) and cp′(t), respectively. The synap-
tic weight cp(t) takes as values the successive bits composing the infinite word w.
The synaptic weight cp′(t) takes as values the successive bits composing the infinite
word z. At each time step, cp(t) and cp′(t) switch from one bit to the next. In this
way, the synaptic weights cp(t) and cp′(t) evolve among only two possible values,
namely 0 or 1. In words, the neurons xp and xp′ respectively receive as background
activities the two binary infinite words w and z in parallel.

The static rational-weighted part of NL is designed in order to perform the re-
cursive neural procedure described by Algorithm 1 below. Algorithm 1 receives
some finite binary input u bit by bit, uses the information provided by the evolving
neurons xp and xp′ , and eventually decides whether u belongs to L or not.

Algorithm 1 consists of two subroutines performed in parallel until some return
instruction is eventually reached. It involves 7 designated neurons xu, xp, xp′ , xw,
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xw′ , xz, xz′ . Concerning instructions 4, 5 and 12, the way to store successive incom-
ing bits into some designated neuron is described in details in [155]. Intuitively,
the activation value of a neuron can be employed to encode the content a binary
stack, and every new incoming bit can be pushed into the stack in constant time
[155]. These tasks can be achieved by some simple static rational-weighted RNNs
[155]. In order to be able to store binary words of any possible finite length, one
needs to dispose of an unbounded memory. This is achieved via the possibility to
dispose of an arbitrary precision for the rational activation values of the neurons
[155]. For instructions 7 and 14, the implementation of a counter by some static ra-
tional RNN is described in details in [155]. The counter is implemented as a unary
stack. Incrementing or decrementing the counter is achieved by pushing or pop-
ping an element to and from the stack. The content of the unary stack is encoded
by the activation value of a neuron [155]. In instructions 15 and 16, the two copies
are achieved by simply triggering two synaptic connections of intensities 1 from
xw to xw′ , and from xz to xz′ , respectively. Instructions 17 to 23 are written in a
high-level language, but it is clear that they can be performed by some three-tape
Turing machine, where the words u, w′, and z′ encoded in neurons xu, xw′ , and
xz′ are written on each tape at the beginning of the computation. According to the
real-time computational equivalence between Turing machines and static rational-
weighted RNNs [155], this instruction block can also be simulated by some static
rational RNNs with the words u, w′ and z′ encoded as rational activation values
of the three designated neurons xu, xw′ and xz′ at the beginning of the computa-
tion. The possibility to encode and decode any finite binary word into and from
the activation value of some neuron is described in details in [155].

Besides, note that every time instructions 14, 15, 16 are re-executed (via instruc-
tion 22), the activation values of xw′ and xz′ will represent the encodings of two
words w′ and z′ which strictly extend those two involved in the previous execu-
tion of these instructions. Now, since (wi)i>0 is an enumeration of {0, 1}+, there
exists some k > 0 such that u = wk. By the previous argument, there will neces-
sarily be some execution of instructions 14, 15, 16 involving a word w′ of the form
w′ = w10ε10w20ε20 · · ·wn0εn0, where n ≥ k. In this case, the word u matches
one of the sub-words wi’s of w′, meaning that Algorithm 1 will either provide an
accepting or a rejecting answer, and therefore necessarily terminate.

Hence, the analysis of each instruction ensures that Algorithm 1 always termi-
nates and can indeed be simulated by some static rational RNN. This RNN repre-
sents the static rational-weighted part of NL.

The Ev2-RNN[Q] NL consists of the bi-valued evolving and the static rational
sub-networks described above. According to Algorithm 1, NL clearly decides the
language L. Moreover, for any input u of length n, the network has to wait for
O(2n) time steps before the binary word u occurs as a sub-word of w. Therefore,
the network NL decides the language L in exponential time.

Proposition 9. Let L ⊆ {0, 1}+ be some language.

(i) L is decidable in polynomial time by some Ev2-RNN[Q] if and only if L ∈ P/poly

(ii) L is decidable in polynomial time by some Ev-RNN[Q] if and only if L ∈ P/poly
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Algorithm 1 Neural procedure

Require: finite binary word u provided bit by bit

1: SUBROUTINE 1:
2: c← 0
3: for all time steps t ≥ 0 do
4: store xp(t) into neuron xw
5: store xp′(t) into neuron xz
6: if xp′(t) = 0 then
7: c← c + 1 mod 2 // c counts modulo 2 the number of 0’s occurring at neuron

xp′

8: end if
9: end for

10: SUBROUTINE 2:
11: for t = 0 to |u| do
12: store u(t) into neuron xu
13: end for // the activation value of xu represents an encoding of u

14: wait for c (of subroutine 1) to switch from 1 to 0
15: copy the current activation value of neuron xw (of subroutine 1) into neuron

xw′ // at time step t, the value of xw′ represents the encoding of the word w′ of

the form w′ = w10ε10w20ε20 · · ·wn(t)0εn(t)0, for some n(t) > 0

16: copy the current activation value of neuron xz (of subroutine 1) into neuron
xz′ // at time step t, the value of xz′ represents the encoding of the word z′ of the

form z′ = 1|w1 |0ε101|w2 |0ε20 · · · 1|wn(t) |0εn(t)0, for some n(t) > 0

17: if u = wi for some i = 1, . . . , n(t) and εi = 1 then
18: return ACCEPT // in this case, u ∈ L

19: else if u = wi for some i = 1, . . . , n(t) and εi = 0 then
20: return REJECT // in this case, u 6∈ L

21: else
22: goto instruction 14 // we still don’t know whether u belongs to L or not

23: end if

The proof is achieved by the two following Lemmas 10 and 11. Note that
Lemma 10 concerns Ev2-RNN[Q]s whereas Lemma 11 concerns Ev-RNN[Q]s.

Lemma 10. Let L ⊆ {0, 1}+ be some language. If L ∈ P/poly, then there exists a Ev2-
RNN[Q] that decides L in polynomial time.

Proof. The present proof resembles the proof of Proposition 8. The main idea of the
proof is illustrated in Figure 18.

Since L ∈ P/poly, there exists a TM/poly(A) M that decides L in polynomial
time. Let α : N∗ → {0, 1}+ be the polynomially bounded advice function of M.
Let w be the binary infinite word defined as the succession of all α(i)’s separated
by 0’s, i.e.

w = α(1)0α(2)0α(3)0α(4)0 · · · .

Moreover, let z be the binary infinite word which has the same structure as w except
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yv

yd output �L(u)

validation
Record the characteristic bit

"n = �L(u)

Find the word wn which
equals the input word u

ud

uv

input u

validation

xp0xp

w1 0 "1 0 w2 0 "2 0 w3 0 "3 0 w4 0 "4 0 · · ·
1 0 1 0 1 0 1 0 11 0 1 0 11 0 1 0 · · ·

Figure 17 – Illustration of the Ev2-RNN[Q] NL described in the proof of Proposition 8.

that every sub-word α(wi) is replaced by a block of 1’s of the same length, i.e.

z = 1|α(w1)|01|α(w2)|01|α(w3)|01|α(w4)|0 · · · .

Once again, the idea is that the infinite word z acts as a validation line for the infinite
word w, i.e. the active bits of z correspond in their positions to the data bits of w.
The superposition bit by bit of the words w and z is as illustrated below:

α(1) 0 α(2) 0 α(3) 0 α(4) 0 · · ·
1|α(1)| 0 1|α(2)| 0 1|α(3)| 0 1|α(4)| 0 · · ·

We now provide the description of a Ev2-RNN[Q] NL that decides L in poly-
nomial time. Once again, the network NL consists of one evolving and one static
rational sub-network connected together.

The evolving rational-weighted part ofNL is made up of two designated proces-
sors xp and xp′ . The neurons xp and xp′ receive as incoming synaptic connections
background activities of changing intensities cp(t) and cp′(t), each of which taking
as values the successive bits of the infinite words w and z, respectively. At each
time step, cp(t) and cp′(t) switch from one bit to the next. In this way, the synaptic
weights cp(t) and cp′(t) evolve among only two possible values, namely 0 or 1. In
words, the neurons xp and xp′ respectively receive as background activities the two
binary infinite words w and z in parallel.

The static rational-weighted part of NL is designed in order to perform the re-
cursive neural procedure described by Algorithm 2 below. Algorithm 2 receives
some finite binary input u bit by bit, uses the information provided by the evolving
neurons xp and xp′ , and eventually decides in polynomial time whether u belongs
to L or not.

Algorithm 2 consists of two subroutines performed in parallel until some final
answer is provided in instruction 16. It involves 8 designated neurons xu, xp, xp′ ,
xw, xw′ , xz, xz′ , xα. Concerning instructions 3, 4 and 8, the way to store successive
incoming bits into some designated neuron is described in detail in [155]. Instruc-
tion 10 uses a counter which implemented as a unary stack. For each letter of u,
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a 1 is pushed into the stack. The content of the stack is encoded in the activation
value of a neuron [155]. For instruction 11, the counting procedure is implemented
as follows: every time some 0 occurs as a background activity of neuron xp′ , a 1 is
popped from the neuron stack, until the stack becomes empty. In instructions 12
and 13, the two copies are achieved by simply triggering two synaptic connections
of intensities 1 from xw to xw′ , and from xz to xz′ , respectively. The block of in-
structions 14 and 15 is written in a high-level language, but it is clear that it can be
performed by some Turing machine, where the words w′ encoded in neurons xw′ is
written on the tape at the beginning of the computation. According to the real-time
computational equivalence between Turing machines and static rational-weighted
RNNs [155], this sub-procedure can also be simulated by some static rational RNNs
with the word w′ encoded as the rational activation value of a designated neurons
xw′ at the beginning of the computation. Concerning instruction 16, the behaviour
of a TM/poly(A)M working on u and with the advice string α(n) already written
on its advice tape is clearly recursive (only the call to the advice function is not
recursive), and therefore, can be simulated by some static rational-weighted RNN
[155].

Hence, the analysis of each instruction ensures that Algorithm 2 can indeed
be simulated by some static rational RNN, which represents the static rational-
weighted part of NL.

The Ev2-RNN[Q] NL consists of the bi-valued evolving and the static rational
sub-networks described above. According to Algorithm 2, the Ev2-RNN[Q] NL
outputs the same answer as M. Since M decides the language L, so does NL.
Besides, since the advice is polynomially bounded, it follows that for any input u,
the network has to wait for polynomially many time steps before the binary word
α(|u|) occurs as a sub-word of w. Moreover, sinceM decides L in polynomial time,
the simulating task ofM by NL is also done in polynomial time in the input size
[155]. Consequently, NL decides L in polynomial time.

yv

yd

validation
Simulate the behaviour
of the TM/poly(A) M

working with advice ↵(n)

Compute the length n of u
and record the word ↵(n)

ud

uv

input u

validation

xp0xp

↵(1) 0 ↵(2) 0 ↵(3) 0 ↵(4) 0 ↵(5) 0 · · ·
1|↵(1)| 0 1|↵(2)| 0 1|↵(3)| 0 1|↵(4)| 0 1|↵(5)| 0 · · ·

output M(u)

Figure 18 – Illustration of the Ev2-RNN[Q] NL described in the proof of Lemma 10.

Lemma 11. Let L ⊆ {0, 1}+ be some language. If there exists a Ev-RNN[Q] that decides
L in polynomial time, then L ∈ P/poly.



48 5. Classical Computation

Algorithm 2 Neural procedure

Input: finite binary word u provided bit by bit

1: SUBROUTINE 1:
2: for all time steps t ≥ 0 do
3: store xp(t) into neuron xw
4: store xp′(t) into neuron xz
5: end for

6: SUBROUTINE 2:
7: for t = 0 to |u| do
8: store u(t) into neuron xu
9: end for // the activation value of xu represents an encoding of u

10: compute and store the value |u| in a neuron
11: from the current time step, wait that |u| occurrences of 0 have appeared at neu-

ron xp′

12: copy the current activation value of neuron xw of subroutine 1 into neuron xw′

13: copy the current activation value of neuron xz of subroutine 1 into neuron
xz′ // at that point, the activation values

of xw′ and xz′ represent the encodings of two words w′ and z′ that are prefixes of w

and z respectively. Since one has waited that at least |u| 0’s have occurred as a

background activity of neuron xp′, we are sure that the finite word w′ contains the

value α(|u|) as subword.

14: decode α(|u|) from the activation value of xw′

15: store α(|u|) into neuron xα

16: simulate the behaviour of the TM/poly(A)M working on u with α(n) written
on its advice tape

Proof. The main idea of the proof is illustrated in Figure 19. Suppose that L is
decided by some Ev-RNN[Q]N in polynomial time p. SinceN is by definition also
a Ev-RNN[R], Lemma 7 applies and shows the existence of a p-truncated family of
Ev-RNN[Q]s over N . Hence, for every n, there exists a Ev-RNN[Q] Np(n) such
that: firstly, the network Np(n) has the same processors and connectivity pattern as
N ; secondly, for every t ≤ p(n), each rational synaptic weight of Np(n)(t) can be
represented by some sequence of bits of length at most C · p(n), for some constant C
independent of n; thirdly, on every input of length n, if one restricts the activation
values of Np(n) to be all truncated after C · p(n) bits at every time step, then the
output processors of N and Np(n) at respective time steps t and t + 1 have the
same activation values for all time steps t ≤ p(n).

We now prove that L can also be decided in polynomial time by some TM/poly(A)
M. First of all, consider the advice function α : N → {0, 1}+ given by α(i) =

Encoding(〈Np(i)(t) : 0 ≤ t ≤ p(i)〉), where Encoding(〈Np(i)(t) : 0 ≤ t ≤ p(i)〉) de-
notes some suitable recursive encoding of the sequence of successive descriptions
of the network Np(i) up to time step p(i). Note that α(i) consists of the encoding of
p(i)+ 1 successive descriptions of the networkNp(i), where each of this description
has the same fixed number of processors and synaptic weights, and each synaptic
weight being representable by at most C · p(i) bits. Therefore, the length of α(i)
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belongs to O(p(i)2), and thus is still polynomial in i.

Now, consider the TM/poly(A) M that uses α as advice function, and which,
on every input u of length n, first calls the advice word α(n), then decodes this
sequence in order to simulate the truncated network Np(n) on input u up to time
step p(n) and in such a way that all activation values ofNp(n) are only computed up
to C · p(n) bits at every time step. Note that each simulation step of Np(n) byM is
performed in polynomial time in n, since the decoding of the current configuration
of Np(n) from α(n) is polynomial in n, and the computation and representations of
the next activation values of Np(n) from its current activation values and synaptic
weights are also polynomial in n. Consequently, the p(n) simulation steps of Np(n)
byM are performed in polynomial time in n.

Now, since any u of length n is classified by N in time p(n), Lemma 7 ensures
that u is also classified by Np(n) in time p(n), and the behaviour ofM ensures that
u is also classified by M in p(n) simulation steps of Np(n), each of which being
polynomial in n. Hence, any word u of length n is classified by the TM/poly(A)
M in polynomial time in n, and the classification answers ofM, Np(n), and N are
the very same. Since N decides the language L, so doesM. Therefore L ∈ P/poly,
which concludes the proof.

simulates the behavior of the network
Np(n) written on its advice tape

TM/poly(A) M

…

…advice: phNp(n)(t) : 0  t  p(n)iq

input: u of length n

evolving neural network that
decides L in poly time p

N

p(n)-truncated evolving neural network
that computes like N up to time step p(n)

p(1)-truncated evolving neural network
that computes like N up to time step p(1)

p(2)-truncated evolving neural network
that computes like N up to time step p(2)

Np(1)

Np(2)

Np(n)

…
…

lemma

Figure 19 – Illustration of the proof idea of Lemma 11.

Proof of Proposition 9. Concerning Point (i), the backward implication is given by
Lemma 10. For the forward implication, suppose that L is decidable by some Ev2-
RNN[Q] N . Then, L is also decidable by some Ev-RNN[Q], namely N itself. By
Lemma 11, L ∈ P/poly.

Concerning Point (ii), the forward implication is given by Lemma 11. For the
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backward implication, suppose that L ∈ P/poly. By Lemma 10, L is decidable
by some Ev2-RNN[Q] N . Consequently, L is also decidable by some Ev-RNN[Q],
namely N itself. This concludes the proof.

We can now state the main results of the paper. First, we show that the bi-valued
evolving rational recurrent neural networks are super-Turing.

Theorem 12. Ev2-RNN[Q]s are super-Turing. More precisely:

(a) A language L is decidable in polynomial time by some Ev2-RNN[Q] if and only if L
is decidable in polynomial time by some TM/poly(A), i.e., iff L ∈ P/poly.

(b) Any language L can be decided in exponential time by some Ev2-RNN[Q].

Proof. Points (b) and (a) are given by Proposition 8(i) and Proposition 9(i), respec-
tively.

Moreover, we show that the consideration of more general patterns of evolv-
ability would not increase further the computational capabilities of the neural net-
works. In other words, the translation from the bi-valued evolving to the general
evolving rational context would not provide any additional power to the neural
model.

Theorem 13. Ev-RNN[Q]s are super-Turing equivalent to Ev2-RNN[Q]s in polynomial
as well as in exponential time of computation.

Proof. The exponential time and polynomial time equivalences are given by Propo-
sition 8(ii) and Proposition 9(ii), respectively.

Now, we prove that the evolving real neural networks are computationally
equivalent to the bi-valued evolving rational ones, irrespective of whether their
evolving synaptic weight are restricted to bi-valued patterns of evolvability or ex-
pressed by any other more general form of updating. Hence, once again, the trans-
lation from the evolving rational to the evolving real context would not provide
any additional power to the neural model.

Theorem 14. Both models of Ev2-RNN[R]s and Ev-RNN[R]s are super-Turing equiva-
lent to Ev2-RNN[Q]s in polynomial as well as in exponential time of computation.

Proof. We first consider the case of the exponential time of computation. Let L ⊆
{0, 1}∗ be some language. Then, by Proposition 8(i), L is decidable in exponential
time by some Ev2-RNN[Q] N . Hence, L is also decidable in exponential time by
some Ev2-RNN[R] as well as by some Ev-RNN[R], namely byN itself. This shows
that any language L can be decided in exponential time by some Ev2-RNN[R]s or
some Ev-RNN[R]s.

We now treat the case of the polynomial time of computation. Suppose that L
is decidable in polynomial time by some Ev2-RNN[R]N . Then, L is also decidable
in polynomial time by some Ev-RNN[R], namely by N itself. Furthermore, since
Lemma 7 is originally stated for the case of Ev-RNN[R]s, it follows that Lemma 11
– which appeals to Lemma 7 in its proof – can also be generalized in the context of
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Ev-RNN[R]s. Consequently, L ∈ P/poly. This provides the two implications from
Ev2-RNN[R]s and Ev-RNN[R]s to P/poly.

Conversely, suppose that L ∈ P/poly. By Theorem 12(a), L is decidable in poly-
nomial time by some Ev2-RNN[Q] N . Hence, L is also decidable in polynomial
time by some Ev2-RNN[R] as well as by some Ev-RNN[R], namely by N . This
provides the two implications from P/poly to Ev2-RNN[R]s and Ev-RNN[R]s.

Finally, Theorems 6, 12, 13, and 14 directly imply the super-Turing computa-
tional equivalence of the five models of Ev2-RNN[Q]s, Ev-RNN[Q]s, Ev2-RNN[R]s,
Ev-RNN[R]s, and St-RNN[R]s. This result shows that the super-Turing level of
computation is achieved by the model of Ev2-RNN[Q]s, and that the incorporation
of any more general patterns of evolvability or any possible real synaptic weights
in this model does actually not further increase its computational capabilities.

Corollary 15. The models of Ev2-RNN[Q]s, Ev-RNN[Q]s, Ev2-RNN[R]s, Ev-RNN[R]s,
and St-RNN[R]s are super-Turing equivalent to each other in polynomial time as well as
in exponential time of computation.

5.6 DISCUSSION

In this chapter, we provided a characterization of the computational capabilities of
several neural network models involved in a classical computational framework
[171]. The Boolean, the static rational, the static real, and the evolving recurrent
neural networks are computationally equivalent to finite state automata, Turing
machines, and Turing machines with advices, respectively. These results are sum-
marized in Table 2.

BOOLEAN STATIC BI-VALUED EVOLVING EVOLVING

B-RNN[Q]s St-RNN[Q]s Ev2-RNN[Q]s Ev-RNN[Q]s

Q
FSA TMs TM/poly(A)s TM/poly(A)s

REG P P/poly P/poly

[89, 119] [155] [24, 26] [24, 26]

B-RNN[R]s St-RNN[R]s Ev2-RNN[R]s Ev-RNN[R]s

R
FSA TM/poly(A)s TM/poly(A)s TM/poly(A)s

REG P/poly P/poly P/poly

[89, 119] [154] [24, 26] [24, 26]

Table 2 – Computational power of Boolean and sigmoidal recurrent neural networks ac-
cording to the nature of their synaptic weights and patterns of evolvability. “FSA”, “TMs”,
and “TM/poly(A)s” stand for “Finite State Automata”, “Turing Machines”, and “Turing Ma-
chines with Polynomially Bounded Advices”. The complexity classes REG, P, and P/poly
are those decided in polynomial time of computation by these respective models.

More precisely, the translation from the Boolean to the sigmoidal context dras-
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tically increases the computational power of the networks. Besides, in the con-
text of rational-weighted synaptic connections, the translation from the static to
the bi-valued evolving framework does provide additional computational capabil-
ities to the networks (cf. Theorem 5 and Corollary 15). By contrast, in the case of
real-weighted synaptic connections, the translation from the static to the evolving
framework does not bring any additional computational power to the networks
(cf. Theorem 6 and Corollary 15). Finally, the four models of bi-valued evolv-
ing/general evolving rational-weighted/real-weighted neural networks are com-
putationally equivalent.

Consequently, the evolving recurrent neural networks are computationally equiv-
alent to the static real-weighted ones, irrespective of whether their evolving synap-
tic weights are modelled by rational or real numbers, and irrespective of whether
their patterns of evolvability are restricted to bi-valued updates or expressed by any
other more general form of updating [26, 149, 154] (cf. Corollary 15). These max-
imal computational capabilities of first-order neural networks correspond to those
of the Turing machine with advice model. These considerations support the Thesis
of Analog Computation formulated by Siegelmann and Sontag, which claims that no
reasonable abstract analog device can be more powerful (in polynomial time) than
first-order static analog recurrent neural networks [149, 154].

In view of these results, the consideration of either static real synaptic weights,
on the one hand, or evolving synaptic weights, on the other hand, does equivalently
lead to the emergence of super-Turing computational capabilities for the underly-
ing neural networks (cf. Corollary 15). In the static real-weighted context, the extra-
recursive power arises from the deeper and deeper precisions of the real weights
which the networks can access throughout their computations (Theorem 6). In the
evolving case, the extra capabilities emerge from the potential non-recursive pat-
terns of evolvability to which the networks might be subjected (cf. proofs of Propo-
sition 8 and Lemma 10). But even if the concept of the power of the continuum and the
mechanism of architectural evolvability are mathematically equivalent in this sense,
they are nevertheless conceptually distinct: while the power of the continuum re-
mains a conceptualization of the mind, the evolving capabilities of the networks
are, by contrast, observable in nature.

The possible achievement of super-Turing potentialities by evolving neural net-
works depends on the possibility for “nature” to realize non-recursive patterns
of evolvability. Otherwise, the whole process could be simulated by some Tur-
ing machine. The question of the achievement of such non-recursive patterns of
evolvability by biological neural networks lies beyond the scope of this work, and
fits within the global issue of hypercomputation, with its proponents and oppo-
nents. For deeper philosophical considerations about hypercomputation, see for
instance [46, 47, 126, 160, 161]. Overall, the assumptions that nature would not
only follow preprogrammed patterns, that biological structures could involve non-
recursive processes, like purely random phenomena for instance, would suffice to
acknowledge the existence of hypercomputational capabilities, for these features
cannot be simulated by the Turing machine model. But even with these premises
accepted, the issue of the possibility to harness such hypercomputational capabili-
ties remains open, and of paramount importance.



5.6. Discussion 53

Overall, the presented results support the claim that the general mechanism of
evolvability should be critically involved in the computational and dynamical ca-
pabilities of biological neural networks, and more generally, in the processing and
coding of information in the brain. They provide a theoretical complement to the
numerous experimental studies emphasizing the importance of the phenomenon
of plasticity in the brain’s information processing [1, 48, 69].





6 INTERACTIVE COMPUTATION

6.1 INTRODUCTION

Since as long ago as the late 40’s, Wiener’s considerations about cybernetics have
suggested that system’s information processing, in its general form, should involve
as a key feature some “circular causal relationships” between the system and its
environment [188]. An action of the system would generate some change in its en-
vironment, and that change would be reflected in the system in return (feedback),
thus potentially affecting its future behavior. Such a machine that adapts its re-
sponses based on feedback would be a machine that learns. Along these lines, in
the context of modern computation, the classical computational approach from Tur-
ing [171] has been argued to “no longer fully corresponds to the current notion of
computing in modern systems” [97] – especially when it refers to bio-inspired com-
plex information processing systems. In the brain (or in organic life in general),
information is rather processed in an interactive way [61, 185]: previous experience
must affect the perception of future inputs, and older memories may themselves
change with response to new inputs.

Following these considerations, we initiated the study of the computational
power of recurrent neural networks from the perspective of interactive computa-
tion [28]. In this context, we introduced a model of interactive recurrent neural net-
works involved in a sequential and continuous exchange of information with their
environment. We showed that the rational-weighted interactive neural networks
are computationally equivalent to interactive Turing machines, and realize the class
of so-called recursive continuous ω-translations. The real-weighted and the evolv-
ing interactive recurrent neural networks are computationally equivalent to interac-
tive Turing machines with advices and realize the class of continuous ω-translations
[21, 25, 32, 35, 36]. Moreover, the interactive analog and evolving neural networks
are universal, in the sense of capturing the computational capabilities of any possi-
ble interactive system [32, 36].

This chapter provides an overview of these results. Section 6.2 presents the
general features of the interactive paradigm of computation. Section 6.3 introduces
the concept of an interactive Turing machine and an interactive Turing machine
with advice. Section 6.4 studies the computational power of interactive static and
evolving recurrent neural networks. Finally, Section 6.5 offers some concluding
remarks.

55
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6.2 INTERACTIVE COMPUTATION

HISTORICAL BACKGROUND

Interactive computation refers to the computational framework where systems may
react or interact with each other as well as with their environment during the com-
putation [61, 185]. This paradigm was theorized in contrast to classical compu-
tation [171] which rather proceeds in a function-based transformation of a given
input into some corresponding output (closed-box and amnesic fashion), and has
been argued to “no longer fully correspond to the current notions of computing in
modern systems” [97]. Interactive computation also provides a particularly appro-
priate framework for the consideration of natural and bio-inspired complex infor-
mation processing systems [35, 96, 97].

Wegner first proposed a foundational approach to interactive computation [185].
In his work, he claimed that “interaction is more powerful than algorithms”, in the
sense that computations performed in an interactive way are capable of handling a
wider range of problems than those performed in a classical way, namely, by stan-
dard algorithms and Turing machines [185, 186].

In this context, Goldin et al. introduced the concept of a persistent Turing machine
(PTM) as a possible extension of the classical Turing machine model to the frame-
work of interactive computation [60, 65]. A persistent Turing machine consists of a
multi-tape machine whose inputs and outputs are given as streams of tokens gen-
erated in a dynamical and sequential manner, and whose work tape and current
computational state are kept preserved during the transition from one interactive
step to the next, rather than being reinitialized. In this sense, a PTM computation
is sequentially interactive and history dependent. Goldin et al. further provided a
transfinite hierarchical classification of PTMs according to their expressive power,
and established that PTMs are more expressive (in a precise sense) than amnesic
PTMs (an extension of classical Turing machines in their context of interactive com-
putation), and hence also than classical Turing machines [60, 65].

All these consideration led Goldin and Wegner to formulate the so-called Se-
quential Interaction Thesis, a generalization of the Church-Turing Thesis in the realm
of interactive computation, claiming that “any sequential interactive computation
can be performed by a persistent Turing machine” [62, 63, 64, 65]. They argue that
this hypothesis, when combined with their result that PTMs are more expressive
than classical TMs, provides a formal proof of Wegner’s conjecture that “interac-
tion is more powerful than algorithms” [62, 63, 64, 65], and hence refutes what they
call the Strong Church-Turing Thesis – different from the original Church-Turing
Thesis –, stating that any possible computation can be captured by some Turing
machine, or in other words, that “models of computation more expressive than
TMs are impossible” [63, 64].

On the basis of similar motivations, Van Leeuwen and Wiedermann proposed
a slightly different interactive framework where a general system interacts with its
environment by translating an incoming input stream of bits into a correspond-
ing output stream of bit in a sequential manner [95, 98]. In their study, they re-
strict themselves to deterministic systems, and provide mathematical characteri-
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zations of interactively computable relations, interactively recognizable sets of in-
puts streams, interactively generated sets of output streams, and interactively com-
putable translations.

In this context, they introduced the concept of an interactive Turing machine (I-
TM), a transposition of the classical Turing machine model to their interactive frame-
work [96]. They further introduced the concept of interactive Turing machine with
advice (I-TM/A) as a non-uniform computational model in the context of interac-
tive computation [96, 100]. Interactive Turing machines with advice were proven
to be strictly more powerful than interactive Turing machines without advice [100,
Proposition 5] and [96, Lemma 1], and were shown to be computationally equiva-
lent to several other non-uniform models of interactive computation, like sequences
of interactive finite automata, site machines, web Turing machines [96, 100], and
more recently, to interactive analog neural networks and interactive evolving neu-
ral networks [21, 25, 35].

These considerations led van Leeuwen and Wiedermann to formulate an In-
teractive Extension of the Church-Turing Thesis which states that “any (non-uniform
interactive) computation can be described in terms of interactive Turing machines
with advice” [100].

As opposed to Goldin and Wegner, van Leeuwen and Wiedermann consider
that interactivity alone is not sufficient to break the Turing barrier. It rather consists
of a different instead of a more powerful paradigm than the classical computational
framework [96, 97, 99]. They write [97]:

“From the viewpoint of computability theory, interactive computing
e.g. with I-TMs does not lead to super-Turing computing power. In-
teractive computing merely extends our view of classically computable
functions over finite domains to computable functions (translations) de-
fined over infinite domains. Interactive computers simply compute some-
thing different from non-interactive ones because they follow a different
scenario.”

Here, we follow this point of view and adopt a similar approach to interactive
computation as presented in [95, 98].

THE INTERACTIVE PARADIGM

The general interactive computational paradigm consists of a step by step exchange
of information between a system and its environment [95, 98]. In order to capture
the unpredictability of next inputs at any time step, the dynamically generated in-
put streams need to be modeled by potentially infinite sequences of symbols (in-
deed, any interactive computation over a finite input stream can a posteriori be
replayed in a non-interactive way producing the same output) [62, 97, 185].

Here, we consider a basic interactive computational scenario similar to that de-
scribed in [95]. At every time step, the environment first sends a non-empty input
bit to the system (full environment activity condition), the system next updates its
current state accordingly, and then answers by either producing a corresponding
output bit or remaining silent. In other words, the system is not obliged to pro-
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vide corresponding output bits at every time step, but might instead stay silent for
a while (to express the need of some internal computational phase before produc-
ing a new output bit), or even staying silent forever (to express the case that it has
died). Consequently, after infinitely many time steps, the system will have received
an infinite sequence of consecutive input bits and translated it into a corresponding
finite or infinite sequence of not necessarily consecutive output bits. In the sequel,
we assume that every interactive system is deterministic.

Formally, given some interactive deterministic system S , for any infinite input
stream s ∈ {0, 1}ω, we define the corresponding output stream os ∈ {0, 1}≤ω of
S as the finite or infinite subsequence of (non-λ) output bits produced by S after
having processed input s. The deterministic nature of S ensures that the output
stream os is unique. In this way, any interactive system S realizes an ω-translation
ϕS : {0, 1}ω → {0, 1}≤ω defined by ϕS (s) = os, for each s ∈ {0, 1}ω.

An ω-translation ψ is then called interactively deterministically computable, or sim-
ply interactively computable iff there exists an interactive deterministic system S such
that ϕS = ψ. Note that in this definition, we do absolutely not require for the
system S to be driven by a Turing program nor to contain any computable com-
ponent of whatever kind. We simply require that S is deterministic and performs
ω-translations in conformity with our interactive paradigm, namely in a sequential
interactive manner, as precisely described above.

INTERACTIVE COMPUTABLE FUNCTIONS

The specific nature of the interactive computational scenario imposes strong condi-
tions on the ω-translations performed by interactive deterministic systems in gen-
eral. In fact, it can be proven that any interactively computable ω-translation is
necessarily continuous. This result will be used in the sequel.

Proposition 16. Let ψ be some ω-translation. If ψ is interactively computable, then it is
continuous.

Proof. Let ψ be an interactively computable ω-translation. Then by definition, there
exists a deterministic interactive system S such that ϕS = ψ. Now, consider the
function f : {0, 1}∗ → {0, 1}∗ which maps every finite word u to the unique cor-
responding finite word produced by S after exactly |u| steps of computation over
input stream u provided bit by bit. Note that the deterministic nature of S ensures
that the finite word f (u) is indeed unique, and thus that the function f is well-
defined.

We show that f is monotone. Suppose that u ⊆ v. It follow that v = u · (v −
u). Hence, according to our interactive scenario, the output strings produced by
S after |v| time steps of computation over input stream v, namely f (v), simply
consists of the output strings produced after |u| time steps of computation over
input u, namely f (u), followed by the output strings produced after |v − u| time
steps of computation over input v− u. Consequently, f (u) ⊆ f (v), and therefore f
is monotone.

We now prove that the ω-translation ϕS performed by the interactive system S
corresponds to the the “limit” (as described in Section 2) of the monotone function
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f , i.e., that ϕS = fω. Towards this purpose, given some infinite input stream s ∈
{0, 1}ω, we consider in turn the two possible cases where ϕS (s) is either an infinite
or a finite word.

First, suppose that ϕS (s) ∈ {0, 1}ω. By definition, the word ϕS (s) corresponds
to the output stream produced by S after having processed the whole infinite input
s, and, for any i ≥ 0, the word f (s[0:i]) corresponds to the output stream produced
by S after i + 1 time steps of computation over the input s[0:i]. According to our
interactive scenario, f (s[0:i]) is a prefix of ϕS (s), for all i ≥ 0 (indeed, once again,
what has been produced by S on s after infinitely many time steps, namely ϕS (s),
consists of what has been produced by S on s[0:i] after i + 1 time steps, namely
f (s[0:i]), followed by what has been produced by S on s − s[0:i] after infinitely
many time steps). Moreover, since ϕS (s) ∈ {0, 1}ω, it means that the sequence of
partial output strings produced by S on input s after i time steps of computation
is not eventually constant, i.e., limi→∞ | f (s[0:i])| = ∞. Hence, the two properties
f (s[0:i]) ⊆ ϕS (s) ∈ {0, 1}ω for all i ≥ 0 and limi→∞ | f (s[0:i])| = ∞ ensure that
ϕS (s) is the unique infinite word containing each word of { f (s[0:i]) : i ≥ 0} as a
finite prefix. This is to say by definition that ϕS (s) = limi≥0 f (s[0:i]) = fω(s).

Secondly, suppose that ϕS (s) ∈ {0, 1}∗. By the very same argument as in
the previous case, f (s[0:i]) is a prefix of ϕS (s), for all i ≥ 0. Moreover, since
ϕS (s) ∈ {0, 1}∗, the sequence of partial output strings produced by S on input
s after i time steps of computation must become stationary from some time step on-
wards, i.e. limi→∞ | f (s[0:i])| < ∞. Hence, the entire finite output stream ϕS (s) must
necessarily have been produced after a finite amount of time, and thus ϕS (s) ∈
{ f (s[0:i]) : i ≥ 0}. Consequently, the two properties f (s[0:i]) ⊆ ϕS (s) ∈ {0, 1}∗
for all i ≥ 0 and ϕS (s) ∈ { f (s[0:i]) : i ≥ 0} ensure that ϕS (s) is the smallest finite
word that contains each word of { f (s[0:i]) : i ≥ 0} as a finite prefix. This is to say
by definition that ϕS (s) = limi≥0 f (s[0:i]) = fω(s). Consequently, ϕS (s) = fω(s)
for any s ∈ {0, 1}ω, meaning that ϕS = fω.

We proved that f is a monotone function satisfying ϕS = fω. This means by
definition that ϕS is continuous. Since ϕS = ψ, it follows that ψ is also continuous.

6.3 INTERACTIVE TURING MACHINES

An interactive Turing machine consists of an interactive abstract device driven by a
standard Turing machine program. It receives an infinite stream of bits as input and
produces a corresponding stream of bits as output, step by step. The input and out-
put bits are processed via corresponding input and output ports rather than tapes.
Consequently, at every time step, the machine can no more operate on the output
bits that have already been processed.1 Furthermore, according to our interactive
scenario, it is assumed that, at every time step, the environment sends a non-silent
input bit to the machine, and the machine either answers by producing some corre-
sponding output bit, or rather chooses to remain silent. The formal definition reads
as follows.

1In fact, allowing the machine to erase its previous output bits would lead to the consideration of
much more complicated ω-translations.



60 6. Interactive Computation

Definition 17. A deterministic interactive Turing machine (I-TM)M is defined as a
tupleM = (Q, q0, Γ, δ), where:

• Q is a finite set of states;

• q0 ∈ Q is the initial state;

• Γ = {0, 1, ]} is the alphabet of the machine, where ] stands for the blank tape
symbol;

• δ : Q× Γ× {0, 1} → Q× Γ× {←,→,−}× {0, 1, λ} is the transition function
of the machine.

The relation δ(q, x, b) = (q′, x′, d, b′) means that if the machineM is in state q,
the cursor of the tape is scanning the letter x ∈ {0, 1, ]}, and the bit b ∈ {0, 1} is
currently received at its input port, thenM will go in next state q′, it will make the
cursor overwrite symbol x by x′ ∈ {0, 1, ]} and then move to direction d, and it
will finally output symbol b′ ∈ {0, 1, λ} at its output port, where λ represents the
fact the machine is not outputting any bit at that time step. An interactive Turing
machine is illustrated in Figure 20.

From this definition, any I-TM M induces an ω-translation ϕM : {0, 1}ω →
{0, 1}≤ω mapping every infinite input stream s to the corresponding finite or infi-
nite output stream os produced byM. An ω-translation ψ : {0, 1}ω → {0, 1}≤ω is
said to be realizable by some interactive Turing machine iff there exists an I-TMM
such that ϕM = ψ.

Van Leeuwen and Wiedermann also introduced the concept of interactive Turing
machine with advice as a relevant non-uniform computational model in the context
of interactive computation [96, 100].

Formally, a deterministic interactive Turing machine with advice (I-TM/A)M con-
sists of an interactive Turing machine provided with an advice mechanism, which
comes in the form of an advice function α : N → {0, 1}∗. In addition, the machine
M uses two auxiliary special tapes, an advice input tape and an advice output tape,
as well as a designated advice state. During its computation,M has the possibility
to write the binary representation of an integer m on its advice input tape, one bit
at a time. Yet at time step n, the number m is not allowed to exceed n. During the
computation, if the machine happens to enter its designated advice state at some
time step, then the string α(m) is written on the advice output tape in one time
step, replacing the previous content of the tape. The machine has the possibility
to repeat this process as many time as needed during its infinite computation. An
interactive Turing machine with a advice is illustrated in Figure 21.

Once again, according to our interactive scenario, any I-TM/A M induces an
ω-translation ϕM : {0, 1}ω → {0, 1}≤ω which maps every infinite input stream s
to the corresponding finite or infinite output stream os produced by M. Finally,
an ω-translation ψ : {0, 1}ω → {0, 1}≤ω is said to be realizable by some interactive
Turing machine with advice iff there exists an I-TM/AM such that ϕM = ψ.

For sake of completeness, we provide a proof that I-TM/A are strictly more
powerful than I-TM. Accordingly, we say that I-TM/A are super-Turing. The result
has already been mentioned in [100, Proposition 5] and [96, Lemma 1]
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Figure 20 – An interactive Turing machine. The input and output streams of bits are pro-
cessed via corresponding input and output ports rather than tapes.
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Figure 21 – An interactive Turing machine with advice. An advice input and output tapes
are added to the interactive Turing machine.

Proposition 18. I-TM/As are strictly more powerful than I-TMs.

Proof. We prove that there exists an ω-translation ψ which is realizable by some
I-TM/A, yet by no I-TM. Consider a non-Turing computable function α : N →
{0, 1}∗. Note that such a function obviously exists since there are 2ℵ0 (i.e. uncount-
ably many) distinct functions of that form whereas there are only ℵ0 (i.e. count-
ably many) possible Turing machines. Consider the ω-translation ψ : {0, 1}ω →
{0, 1}≤ω which maps every infinite input stream s, necessarily writable of the form

s = 0∗b00+b10+b20+b3 · · ·

where bi’s denote the blocks of 1’s occurring between the 0’s, to the corresponding
finite or infinite word given by

ψ(s) = α(|b0|)α(|b1|)α(|b2|)α(|b3|) · · ·

(if s has suffix 0ω, then ψ(s) is finite).
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The ω-translation ψ is clearly realizable by some I-TM/AM with advice func-
tion α. Indeed, on every input stream s ∈ {0, 1}ω, the machineM stores the suc-
cessive blocks b0, b1, b2, . . . of 1’s occurring in s, and, for every such block bi, first
computes the length |bi|, writes it in binary on its advice tape, then calls the advice
value α(|bi|) (or waits enough time steps in order to have the right to call it), and
finally outputs the value α(|bi|), before reiterating the procedure with respect to the
next block bi+1. In this way,M realizes ψ.

On the other hand, the ω-translation ψ is not realizable by any I-TM. Indeed,
towards a contradiction, suppose it is realizable by some I-TMM. Then, consider
the classical Turing machineM′ which, on every finite input r of the form r = 1k,
proceeds exactly like M would have on any infinite input beginning by r, thus
outputs α(k), and diverges on every other finite input. The existence of this classical
TMM′ shows that the function α is Turing computable, a contradiction.

Moreover, a precise characterization of the computational powers of I-TMs and
I-TM/As can be given. In fact, the I-TMs and I-TM/As realize precisely the classes
of recursive continuous and continuous ω-translations, respectively. The following
results are proven in [25].

Proposition 19. Let ψ be some ω-translation.

1. ψ is realizable by some I-TM iff ψ is recursive continuous.

2. ψ is realizable by some I-TM/A iff ψ is continuous.

Proof. Point (1). Let ψ be some ω-translation realized by some I-TMM. This means
that ψ = ϕM. Now, consider the function f : {0, 1}∗ → {0, 1}∗ which maps every
finite word u to the unique corresponding finite word produced byM after exactly
|u| steps of computation over input stream u provided bit by bit. SinceM is driven
by a classical TM program, f is recursive. Moreover, by the exact same argument
as in the proof of Proposition 16, f is monotone and fω = ϕM = ψ. Consequently,
ψ is recursive continuous.

Conversely, let ψ be a recursive continuous ω-translation. Then there exists
some recursive monotone function f : {0, 1}∗ → {0, 1}∗ such that fω = ψ. Now
consider the infinite Procedure 3 (given in the proof of Theorem 21) where the in-
struction “decode f (s[0:i]) from r f ” is replaced by the recursive one: “compute
f (s[0:i])”. Since f is recursive, this slightly modified version of Procedure 3 can
clearly be performed by an I-TM M. The machine M outputs the current word
v − u bit by bit every time it reaches up the instruction “output v − u bit by bit”,
and otherwise, keeps outputting λ symbols while simulating any other internal
computational steps.

It remains to prove that the machine M realizes ψ, i.e. that ϕM = ψ. Note
that, for any input stream s ∈ {0, 1}ω, the finite word that has been output at
the end of each instruction “output v − u bit by bit” corresponds precisely to the
finite word f (s[0:i]) currently stored in the variable v. Hence, after infinitely many
time steps, the finite or infinite word ϕM(s) output by M contains each word of
{ f (s[0:i]) : i ≥ 0} as a finite prefix. In other words, f (s[0:i]) ⊆ ϕM(s) for all i ≥ 0.

We now consider in turn the two possible cases where ϕM(s) is either infinite or
finite. First, if ϕM(s) is infinite, then it means that Procedure 3 has never stopped
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outputting new bits from some time step onwards, i.e., limi→∞ | f (s[0:i])| = ∞.
Consequently, the two properties f (s[0:i]) ⊆ ϕM(s) ∈ {0, 1}ω for all i ≥ 0 and
limi→∞ | f (s[0:i])| = ∞ ensure that ϕM(s) is the unique infinite word containing
each word of { f (s[0:i]) : i ≥ 0} as a finite prefix. This is to say by definition
that ϕM(s) = limi≥0 f (s[0:i]) = fω(s). Second, if ϕN (s) is finite, it means that
Procedure 3 has stopped outputting new bits from some time step onwards, and
hence ϕM(s) = f (s[0:j]) for some j ≥ 0. In this case, the two properties f (s[0:i]) ⊆
ϕM(s) ∈ {0, 1}∗ for all i ≥ 0 and ϕM(s) ∈ { f (s[0:i]) : i ≥ 0} ensure that ϕM(s)
is the smallest finite word that contains each word of { f (s[0:i]) : i ≥ 0} as a finite
prefix. Once again, this is to say by definition that ϕM(s) = limi≥0 f (s[0:i]) =

fω(s).

Therefore, ϕM = fω, and since fω = ψ, it follows that ϕM = ψ, meaning that ψ

is realized byM.

Point (2). Let ψ be some ω-translation realized by some I-TM/AM. By defini-
tion, ψ is interactively computable. By Proposition 16, ψ is continuous.

Conversely, let ψ be a continuous ω-translation. Then there exists some mono-
tone function f : {0, 1}∗ → {0, 1}∗ such that fω = ψ. First of all, we consider
the function α : N → {0, 1}∗ which maps every integer n to the finite binary
word wn ∈ {0, 1, 2}∗ given by wn = 2 · f (wn,1) · 2 · f (wn,2) · 2 · · · 2 · f (wn,2n) · 2,
where wn,1, . . . , wn,2n denotes the lexicographical enumeration of all binary words
of length n. Now consider the infinite Procedure 4 (given in the proof of Theo-
rem 22) where the two instructions “access to the value qi+1” and “decode f (s[0:i])
from qi+1” are replaced by the two following ones: “query α(i + 1) = wi+1” and
“extract the subword f (s[0:i]) from wi+1”. This slightly modified version of Proce-
dure 4 can clearly be performed by an I-TM/A M with advice function α (based
on the extended alphabet Γ = {0, 1, 2, ]}). Every time M encounters the instruc-
tion “query α(i + 1) = wi+1”, it makes an extra-recursive call to its advice value
α(i + 1); otherwise,M simulates every other recursive step by means of its classi-
cal Turing program. Moreover,M outputs the current word v− u bit by bit every
time it reaches up the instruction “output v− u bit by bit”, and otherwise keeps out-
putting λ symbols while simulating any other internal computational steps. By the
same argument as that presented in the end of Point (1), one has that ϕM = fω = ψ,
meaning that ψ is realized byM.

6.4 INTERACTIVE RECURRENT NEURAL NETWORKS

6.4.1 THE MODEL

We consider a classical model of a first-order recurrent neural network, as described
in Chapter 4, and transpose it in the context of interactive computation. In order
to stay consistent with the interactive scenario presented in Section 6.2, our model
of an interactive recurrent neural network (I-RNN) adheres to a rigid encoding of the
way inputs and outputs are interactively processed between the environment and
the network.

Formally, an interactive recurrent neural network (I-RNN) is a recurrent neural
net that contains a finite number of internal neurons (xi)

N
i=1, one Boolean input
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neurons u, and two designated Boolean output neurons yd and yv. The role of the
Boolean input cell u is to transmit to the network the infinite input stream of bits
sent by the environment (the full environment activity condition forces that u(t)
never equals λ). The role of the Boolean data cell yd is to carry the output stream
of the network to the environment, while the role of the Boolean validation cell yv
is to describe when the data cell is active and when it is silent. Accordingly, the
output stream transmitted by the network to the environment will be defined as
the finite or infinite subsequence of successive data bits that occur simultaneously
with positive validation bits.

The dynamics of the network is computed in the usual way: given the activa-
tion values of the input u and internal neurons and (xj)

N
j=1 at time t, the activation

values of each internal and output neuron xi and yi at time t + 1 are updated by the
following equations, respectively:

xi(t + 1) = σ

(
N

∑
j=1

aij(t) · xj(t) + bi(t) · u(t) + ci(t)

)
for i = 1, . . . , N (6.1)

yi(t + 1) = θ

(
N

∑
j=1

aij(t) · xj(t) + bi(t) · u(t) + ci(t)

)
for i = d, v (6.2)

where aij(t), bi(t), and ci(t) are the weights of the synaptic connections and the
bias of the network at time t, and σ and θ are the sigmoid-linear and Heaviside step
activation functions, respectively. An I-RNN is illustrated in Figure 22.

Let N be some I-RNN with its initial state set to zero, i.e. x(0) = 0. Then any
infinite input stream

s = s(0)s(1)s(2) · · · ∈ {0, 1}ω

transmitted to input cell u induces via Equations (6.1) or (6.2) a corresponding pair
of infinite streams transmitted by cells yd and yv

(yd(0)yd(1)yd(2) · · · , yv(0)yv(1)yv(2) · · · ) ∈ {0, 1}ω × {0, 1}ω.

The output stream of N associated to input s is then given by the finite or infi-
nite subsequence os of successive data bits that occur simultaneously with positive
validation bits, namely

os = 〈yd(i) : i ∈N and yv(i) = 1〉 ∈ {0, 1}≤ω.

Hence, any I-RNNN naturally induces an ω-translation ϕN : {0, 1}ω → {0, 1}≤ω

defined by ϕN (s) = os, for each s ∈ {0, 1}ω. Finally, an ω-translation ψ : {0, 1}ω →
{0, 1}≤ω is said to be realizable by some I-RNN iff there exists some I-RNN N such
that ϕN = ψ.

In this work, four models of I-RNNs will be considered according to whether
their underlying synaptic weights are either rational or real numbers of either static
or evolving nature.

1. the interactive static rational RNNs (I-St-RNN[Q]s) refer to the class of all I-
RNNs whose every weights are static and modelled by rational values.
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2. the interactive static real (or analog) RNNs (I-St-RNN[R]s) refer to the class of
all I-RNNs whose every weights are static and modelled by real values.

3. the interactive evolving rational RNNs (I-Ev-RNN[Q]s) refer to the class of all
I-RNNs whose every evolving and static weights are rational.

4. the interactive evolving real RNNs (I-Ev-RNN[R]s) refer to the class of all I-
RNNs whose every evolving and static weights are real.

Since rational numbers are included in real numbers and since static weights
are particular cases of evolving ones, the following inclusions hold by definition:

I-St-RNN[Q]s ( I-Ev-RNN[Q]s( (

I-St-RNN[R]s ( I-Ev-RNN[R]s

internal
cells

input cell

output
data cell

output
validation cell

Figure 22 – Schematic representation of an interactive recurrent neural network.

6.4.2 COMPUTATIONAL POWER: THE STATIC CASE

In this section, we show that I-St-RNN[Q]s and I-St-RNN[R]s are computationally
equivalent to I-TMs and I-TM/As and recognize the classes of recursive continuous
and continuous ω-translations, respectively. Consequently, as for the classical case,
the incorporation of the power of the continuum in the model does bring additional
capabilities to the networks. In this sense, I-St-RNN[R]s are super-Turing.

First, we consider the case if I-St-RNN[Q]s.

Theorem 20. I-St-RNN[Q] are Turing-equivalent. More precisely, for any ω-translation
ψ : {0, 1}ω → {0, 1}≤ω, the following conditions are equivalent:

1. ψ is realizable by some I-St-RNN[Q];

2. ψ is realizable by some I-TM;

3. ψ is recursive continuous.

Proof. The classical equivalence between rational-weighted neural networks and
Turing machines [155] can naturally be transposed in this interactive framework.
This proves the equivalence “1 ↔ 2”. The equivalence “2 ↔ 3” is provided by
Proposition 19(1).
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Secondly, we consider the case if I-St-RNN[R]s.

Theorem 21. I-St-RNN[R] are super-Turing. More precisely, for any ω-translation ψ :
{0, 1}ω → {0, 1}≤ω, the following conditions are equivalent:

1. ψ is realizable by some I-St-RNN[R];

2. ψ is realizable by some I-TM/A;

3. ψ is continuous.

Proof. The equivalence “2 ↔ 3” is provided by Proposition 19(2). The implication
“1 → 3” is given by Proposition 16. We prove the remaining converse implication
“3→ 1”.

Let ψ : {0, 1}ω → {0, 1}≤ω be some continuous ω-translation. Then there exists
some monotone function f : {0, 1}∗ → {0, 1}∗ such such that fω = ψ. We begin
by recursively encoding all successive values of f into some real number r f . Let
(wn)n∈N be the lexicographical enumeration of all binary words, i.e., w0 = λ, w1 =

0, w2 = 1, w3 = 00, w4 = 01, etc., and consider the infinite word w f ∈ {0, 1, 2}ω

given by w f = 2 · f (w0) · 2 · f (w1) · 2 · f (w2) · 2 · · · . Then, we consider the real
encoding r f of the word w f given by

r f =
∞

∑
i=1

2 · w f (i) + 1
6i .

One has r f ∈]0, 1[, and for any n ∈ N, it can be shown that the finite word f (wn)

can be decoded from the value r f by some Turing machine, or equivalently, by some
rational recurrent neural network [154, 155].

Now, we consider the infinite Procedure 3 described below. This procedure re-
ceives as input an infinite stream s = s(0)s(1)s(2) · · · ∈ {0, 1}ω provided bit by
bit, and eventually produces as output a corresponding finite or infinite stream of
bits. The procedure consists of two infinite subroutines running in parallel. The
first subroutine stores each input bit s(t) occurring at every time step t. The sec-
ond subroutine performs an infinite loop. More precisely, at stage i + 1, the proce-
dure considers the value f (s[0:i+1]). By monotonicity of f , the word f (s[0:i+1])
extends f (s[0:i]). If this extension is strict, the procedure output the difference
word f (s[0:i+1]) − f (s[0:i]) bit by bit. Otherwise, the procedure simply outputs
the empty word λ. Note that every instruction of Procedure 3 is recursive provided
that the real number r f is given in advance.

We show that there indeed exists some I-St-RNN[R]N which can simulate Pro-
cedure 3. The network N consists a rational-weighed neural net connected to only
one other neuron x f with background activity of real intensity r f . The neuron x f
provides the possibility to access to the real number r f at any time, via its back-
ground activity, and the remaining rational-weighted net is designed in order to
perform all the recursive steps of Procedure 3. The equivalence between rational-
weighted RNNs and TMs ensures that such a static rational-weighted net can al-
ways be constructed [154]. In addition, the network N is designed in such a way
that it outputs via its data and validation cells yd and yv the finite word v− u every
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Procedure 3 : uses the designated real number r f

input: infinite input stream s = s(0)s(1)s(2) · · · ∈ {0, 1}ω provided bit by bit
initialization: i← 0, x ← λ, u← λ, v← λ

SUBROUTINE 1:
for all t ≥ 0 do

x ← x · s(t) // concatenation of the current bit s(t) to x

end for

SUBROUTINE 2:
loop

decode s[0:i] from x
decode f (s[0:i]) from r f // recursive instruction if r f is given in advance

v← f (s[0:i])
if u ( v then

output v− u bit by bit
else

output λ

end if
i← i + 1
u← v

end loop

time it simulates the instruction “output v− u bit by bit” of Procedure 3. The net-
work keeps outputting λ symbols while simulating any other internal instruction
of Procedure 3.

Finally, a direct transposition of the argument presented in the proof of Propo-
sition 19(1) shows thatN realizes ψ, i.e. that ϕN = ψ. This concludes the proof.

6.4.3 COMPUTATIONAL POWER: THE EVOLVING CASE

In this section, we prove that interactive evolving RNNs are super-Turing, irrespec-
tive of whether their synaptic weights are modeled by rational or real numbers.
More precisely, both models of interactive rational and interactive real RNNs are
computationally equivalent to interactive Turing machines with advice, and thus
realize the class of continuous ω-translations. Consequently, in both classical and
interactive frameworks, the translation from static rational to the evolving rational
context does bring additional computational power to the networks; by contrast,
the translation from the evolving rational to the evolving real does not increase
their capabilities.

Theorem 22. I-Ev-RNN[Q]s and I-Ev-RNN[R]s are super-Turing. More precisely, for
any ω-translation ψ : {0, 1}ω → {0, 1}≤ω, the following conditions are equivalent:

1. ψ is realizable by some I-Ev-RNN[Q];

2. ψ is realizable by some I-Ev-RNN[R];

3. ψ is realizable by some I-TM/A;



68 6. Interactive Computation

4. ψ is continuous.

Proof. The implication “1 → 2” holds by definition. The three implications “1 →
4”, “2→ 4”, and “3→ 4” are given by Proposition 16. The equivalence “4↔ 3” is

provided by Proposition 19(2).

We now prove the last remaining implication “4 → 1”. The argument closely
resembles that of Theorem 21. For sake of completeness, we chose provide it. Let ψ

be a continuous function. Then there exists some monotone function f : {0, 1}∗ →
{0, 1}∗ such such that fω = ψ. In this case, all possible values of f into suc-
cessive distinct rational numbers. Towards this purpose, for any n > 0, we let
wn,1, . . . , wn,2n be the lexicographical enumeration of all binary words of length n,
and we let wn ∈ {0, 1, 2}∗ be the finite word given by wn = 2 · f (wn,1) · 2 · f (wn,2) ·
2 · · · 2 · f (wn,2n) · 2. Then, we consider the following rational encoding of the word
wn

qn =
|wn |
∑
i=1

2 · wn(i) + 1
6i .

Note that qn ∈]0, 1[ for all n > 0. Also, the encoding procedure ensures that qn 6=
qn+1, since wn 6= wn+1, for all n > 0. Moreover, it can be shown that the finite word
wn can be decoded from the value qn by some Turing machine, or equivalently, by
some rational recurrent neural network [154, 155]. In this way, for any n > 0, the
number qn provides a rational encoding of the images by f of all words of length n.

Now, we consider the infinite Procedure 4 described below. Note that the only
non-recursive instruction of Procedure 4 is “access to the value qi+1”.

Procedure 4 : involves a non-recursive instruction

input: infinite input stream s = s(0)s(1)s(2) · · · ∈ {0, 1}ω provided bit by bit
initialization: i← 0, x ← λ, u← λ, v← λ

SUBROUTINE 1:
for all t ≥ 0 do

x ← x · s(t) // concatenation of the current bit s(t) to x

end for

SUBROUTINE 2:
loop

decode s[0:i] from x
access to the value qi+1 // non-recursive instruction

decode f (s[0:i]) from qi+1
v← f (s[0:i])
if u ( v then

output v− u bit by bit
else

output λ

end if
i← i + 1
u← v

end loop
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We show that there exists some I-Ev-RNN[Q] N which performs Procedure 4.
The network N consists of one evolving and one static rational sub-network con-
nected together. The evolving sub-network will be in charge of the execution of
the only non-recursive instruction “access to the value qi+1”, and the static sub-
network will be in charge of the execution of all other recursive instructions of
Procedure 4.

More precisely, the evolving rational-weighted part of N is made up of a single
designated processor xe. The neuron xe receives as sole incoming synaptic connec-
tion a background activity of evolving intensity ce(t). The synaptic weight ce(t) suc-
cessively takes the rational bounded values q1, q2, q3, . . ., by switching from value qk
to qk+1 after every Nk time steps, for some large enough Nk > 0 to be described. In
this way, every time some new value qi+1 appears as a background activity of neu-
ron xe, the network stores it in a designated neuron in order to be able to perform
the instruction “access to the value qi+1” when required.

The static rational-weighted part of N is designed in order to perform the suc-
cessive recursive steps of Procedure 4, every time some new value qi+1 has ap-
peared by means of the activation value of neuron xe. The equivalence result be-
tween rational-weighted RNNs and TMs ensures that such a static rational-weighted
sub-network of N performing these recursive step can be constructed [154]. More-
over, for each k > 0, the time interval Nk between the apparition of the synaptic
weights qk and qk+1 is chosen large enough in order to be able to perform all the
aforementioned recursive steps.

In addition, the network N is designed in such a way that it outputs via its
data and validation cells yd and yv the finite word v− u every time it simulates the
instruction “output v− u bit by bit” of Procedure 4. The network keeps outputting
λ symbols while simulating any other internal instruction of Procedure 4.

Finally, a direct transposition of the argument provided in the proof of Proposi-
tion 19(1) shows that N realizes ψ, i.e. that ϕN = ψ. This concludes the proof.

6.4.4 UNIVERSALITY

Theorems 21 and 22 together with Proposition 16 show that the four models of I-
St-RNN[R]s, I-Ev-RNN[Q]s, I-Ev-RNN[R]s, and I-TM/As are capable to capture
all possible computations performable by some deterministic interactive system.
More precisely, for any possible interactive deterministic systems S , there exists
an I-St-RNN[R] N1, an I-Ev-RNN[Q] N2, an I-Ev-RNN[R] N3, and an I-TM/AM
such that ϕN1 = ϕN2 = ϕN3 = ϕM = ϕS . In this sense, those four models of
interactive computation are called universal.

Theorem 23. The four models of computations that are I-St-RNN[R]s, I-Ev-RNN[Q]s,
I-Ev-RNN[R]s, and I-TM/As, are super-Turing universal.

Proof. Let S be some deterministic interactive system. By Proposition 16, ϕS is
continuous. By Theorems 21 and 22, ϕS is realizable by some I-St-RNN[R], by
some I-Ev-RNN[Q], by some I-Ev-RNN[R], and by some I-TM/A.

These results are summarized in Table 3. They can be understood as follows:
similarly to the classical framework, where every possible partial function from
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integers to integers can be computed by some Turing machine with oracle [171],
in the interactive framework, every possible ω-translation performed in an inter-
active way can be computed by some interactive Turing machine with advice, or
equivalently, by some interactive analog or evolving recurrent neural network.

6.5 DISCUSSION

We showed that interactive rational- and real-weighted RNNs are Turing-equivalent
and super-Turing, respectively (Theorems 20, 21). Furthermore, interactive evolv-
ing RNNs are also super-Turing, irrespective of whether their synaptic weights are
modeled by rational or real numbers (Theorem 22). These results are summarized
in Table 3.

STATIC EVOLVING

I-St-RNN[Q]s I-Ev-RNN[Q]s

Q I-TMs I-TM/As

recursive continuous continuous

I-St-RNN[R]s I-Ev-RNN[R]s

R I-TM/As I-TM/As

continuous continuous

Table 3 – Computational power of the four models of I-RNNs.

These results provide a direct generalization of those presented in previous
Chapter 5. They show that in both classical and interactive computational frame-
works, the translations from the static rational to the static real context, as well as
from the static rational to the evolving rational context, do bring additional power
to the underlying neural networks. By contrast, the two other translations from the
evolving rational to the evolving real context, as well as from the static real to the
evolving real context, do not increase further the capabilities of the networks.

Furthermore, according to Corollary 15 and Theorems 20, 21 and 22, the com-
putational capabilities of all neural models studied so far are shown to be upper
bounded by those of the Turing machine with advice model. In the classical com-
putational context, these considerations support the Thesis of Analog Computation,
which states that every natural computational phenomenon can be captured by the
Turing machine with polynomially bounded advice model [149, 154]. In the inter-
active framework, they support the Church-Turing Thesis of Interactive Computation,
which claims that “any (non-uniform interactive) computation can be described in
terms of interactive Turing machines with advice” [100].

These considerations, together with those of Sections 5.4 and 5.5, support fur-
ther the claim that the Turing machine with advice model could encompass the
potentialities of brain computation, or even of natural computation in general [19,
97, 149], for it is able to capture crucial features, like analogue considerations [155],
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evolvability [21, 24, 35], chaotic behaviors [168], that are impossible to be achieved
via the simple Turing machine model.

The results also show once again that the incorporation of either evolving capabil-
ities or of the power of the continuum in a basic neural model provides alternative and
equivalent ways towards the achievement of maximal super-Turing computational
capabilities. They support further the claim that the biological mechanism of plas-
ticity should be crucially involved in the computational and dynamical capabilities
of biological neural networks.





7 ATTRACTOR-BASED COMPUTATION

7.1 INTRODUCTION

In the central nervous system, one neuron may receive and send projections from
and to thousands of other neurons. The huge number of connections established by
a single neuron and the slow integration time of neurons, operating in the millisec-
onds range (billion times slower than presently available supercomputers), suggest
that information in the nervous system might be transmitted by simultaneous dis-
charges of large sets of neurons. In particular, the activation of functional cell as-
semblies in distributed networks might be induced by transmissions of complex
patterns of activity [2, 3]. In this context, the temporal coding approach to neural
information processing states that precise spike timing is a significant element in
neural coding [20, 165]. Apart from the firing rate of the neural spikes, the spatiotem-
poral pattern of discharges – i.e., ordered and precise interspike interval relationships
– should be significantly involved in the processing and coding of information in
the brain, see [2, 3, 4, 5, 80, 116, 137, 174, 175, 178, 180] as well as the survey by Villa
[176] and the references therein. Besides, attractor dynamics or quasi-attractor dynam-
ics have been associated to perceptions, thoughts and memories, and the chaotic
intinerancy between those with sequences in thinking, speaking and writing [79, 84,
166, 167, 168]. Specific chaotic attractor dynamics associated to spike series have
been experimentally observed [39, 40, 177]. Furthermore, the correlation between
attractor dynamics and repeating spatiotemporal firing patterns has been observed
in simulations of nonlinear dynamical systems [14, 15] as well as in simulations of
large scale neuronal networks [77, 78]. Consequently, the spatiotemporal patterns
could be the witnesses of an underlying attractor dynamics.

These experimental considerations suggest that some aspect of the computa-
tional capabilities of neural networks are likely to be correlated to their attractor
dynamics and spatiotemporal patterns of discharges. Accordingly, we initiated the
study of the expressive power of recurrent neural networks from the perspective of
their attractor dynamics. First of all, we focused on the case of Boolean recurrent
neural networks, i.e., composed with Boolean input, output, and internal units. The
Boolean input and output cells carry out the exchange of discrete information be-
tween the networks and their environment. When subjected to some infinite binary
input stream, the Boolean output cells would necessarily enter into some attractor
dynamics, and accordingly, elicit some corresponding spatiotemporal pattern of
discharge. We generally assumed that the attractors can be of two possible types:
meaningful or spurious. The neural ω-language of a network corresponds to the

73
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set of all those input streams that induce a meaningful attractor dynamics. The ex-
pressive power of the networks is then measured via the topological complexity of
their underlying neural ω-languages [27, 28, 29].

As a first step, we considered some output-related condition for the type specifi-
cation of the networks’ attractors: an attractor is defined as meaningful if it involves
spiking cells from the output layer; it is spurious otherwise. In this case, the Boo-
lean networks disclose the same expressive power as Büchi automata. As a second
step, we assumed that the attractors’ type specification is determined by external
neurobiological criteria, instead of being associated to the output layers of the net-
works. Under this relaxed condition, the networks increase their computational
capabilities from Büchi to Muller automata. Consequently, these Boolean networks
recognize the class of all ω-regular neural languages. The most refined topological
classification of ω-regular languages [182] can therefore be transposed from the au-
tomaton to the neural network context, and in turn, yield to some transfinite hierar-
chical classifications of Boolean neural networks based on their attractor dynamics.
This hierarchical classification naturally induces some novel attractor-based mea-
sure of complexity for Boolean neural networks. This complexity measure is linked
to the intricacy of the attractors’ structure of the networks, or more precisely, to the
maximal number of times that a network might alternate between meaningful and
spurious attractors along some computation. This feature notably refers to the abil-
ity of the networks to perform more or less complicated classification tasks of their
input streams via the manifestation of meaningful or spurious attractor dynamics.
As an illustration, we computed the attractor-based complexity of a Boolean model
of the basal-ganglia thalamocortical network.

As a next step, we extended the whole approach the context of sigmoidal (rather
than Boolean) recurrent neural networks. In this case, we considered classical first-
order recurrent neural network composed with Boolean input and output cells as
well as sigmoidal internal units, along the lines of [24, 26, 154, 155]. The sigmoidal
internal neurons introduce the source of nonlinearity which is so important to neu-
ral computation. They provide the possibility to surpass the capabilities of finite
state automata, or even of Turing machines. Here again, the expressive power of
the networks is measured via the topological complexity of the underlying neural
ω-languages. This expressive power also refers to the ability of the networks to
perform more or less complicated classification tasks of their input streams via the
manifestation of meaningful or spurious attractor dynamics [22, 23, 30, 31, 34].

We first focused on the deterministic context. We showed that the static rational-
weighted neural networks are computationally equivalent to the deterministic Mul-
ler Turing machines, and hence, recognize a class of neural ω-languages strictly
inside the BC(Π0

2)-sets (the finite Boolean combinations of Π0
2-sets). We further

proved that the static real-weighted neural networks and the general/bi-valued ra-
tional/real evolving neural networks are computationally equivalent. These mod-
els of static real and evolving neural networks are strictly more powerful than the
deterministic Muller Turing machines and recognize the class of all BC(Π0

2) neural
ω-languages. Therefore, in this context again, analog and evolving neural networks
are super-Turing.

We then investigated the nondeterministic context, and two specific forms of
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nondeterminism are considered [22, 23]. In the first case, nondeterminism is ex-
pressed as an external binary guess stream processed by means of an additional
Boolean guess cell, along the very lines of [154, 155]. In the second case, non-
determinism is expressed as a set of possible evolving patterns that the synaptic
connections of the network might follow over the successive time steps [22]. At the
beginning of a computation, the network selects one such possible evolving pattern
– in a nondeterministic manner – and then sticks to it throughout its whole com-
putational process. Six neural models of type 1 and four of type 2 are considered,
according to the nature of their synaptic weights: static or evolving and rational
or real. Overall, we proved that the static rational-weighted neural networks of
type 1 are computationally equivalent to the nondeterministic Muller Turing ma-
chines. They recognize the class of all effectively analytic (i.e., Σ1

1 lightface) sets.
The nine other models of analog and evolving neural networks of types 1 and 2 are
all computationally equivalent to each other, and strictly more powerful than the
nondeterministic Muller Turing machines. They recognize the class of all analytic
(i.e., Σ1

1 boldface) sets.

In both deterministic and nondeterministic cases, the complexity of the net-
works also refers to their ability to perform more or less complicated classification
tasks of their input streams via the manifestation of meaningful or spurious attrac-
tor dynamics. The higher the topological complexity of the neural ω-language, the
more complex the classification task.

In this chapter, we review this whole study of the expressive capabilities of
recurrent neural networks in relation to their attractor dynamics. In Section 7.2,
we recall the concepts of automata and Turing machines working on infinite in-
put streams. In Section 7.3, we present the capabilities of Boolean recurrent neural
networks. In Sections 7.4 and 7.5, we review the expressive powers of determinis-
tic and nondeterministic sigmoidal recurrent neural networks. Finally, Section 7.6
provides some concluding remarks.

7.2 ω-AUTOMATA AND ω-TURING MACHINES

The study of the behavior of reactive systems has led to the emergence of a the-
ory of automata working on infinite objects [134, 164]. In this section, we recall
the concepts of automata and Turing machines provided with Büchi and Muller
acceptance conditions.

ω-AUTOMATA

A finite deterministic Büchi automaton [134] is a 5-tuple A = (Q, A, i, δ,F ) where Q
is a finite set of states, A is a finite alphabet, i ∈ Q is the initial state, δ : Q× A→ Q
is a partial transition function, F ⊆ Q is a set of final states.

An infinite initial path ρ ofA is called successful if it visits at least one of the final
states infinitely often, i.e. if inf(ρ) ∩F 6= ∅. An infinite word is recognized by A if it
is the label of a successful infinite path in A. The language recognized by A, denoted
by L(A), is the set of all infinite words recognized by A.

A cycle in A consists of a finite set of states c such that there exists a finite path
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in A with same initial and final state and visiting precisely all states of c. A cycle
cj is accessible from cycle ci if there exists a path from some state of ci to some state
of cj. Furthermore, a cycle is successful if it contains a state belonging to F , and
non-successful otherwise.

An alternating chain of length n ∈ N (respectively co-alternating chain of length
n ∈N) in A is a finite sequence of n + 1 distinct cycles (c0, . . . , cn) such that:

• c0 is successful (resp. c0 is non-successful);

• ci is successful iff ci+1 is non-successful;

• ci+1 is accessible from ci, and ci is not accessible from ci+1, for all i < n.

An alternating chain of length ω in A is a sequence of two cycles (c0, c1) such that1:

• c0 is successful;

• c1 is non-successful;

• c0 is accessible from c1, and c1 is also accessible from c0;

In this case, cycles c0 and c1 are said to communicate. For any α ≤ ω, an alternating
chain of length α is said to be maximal in A if there is no alternating chain and no
co-alternating chain in A of strictly larger length. A co-alternating chain of length
α is said to be maximal in A if exactly the same condition holds.

These concepts are illustrated in Figure 23.

Figure 23 – A deterministic Büchi automaton A. The double-circled red nodes correspond
to the final states of A. The language L(A) recognized by A can be described by the fol-
lowing ω-regular expression L(A) = a(bω + b∗ab∗a(a + b)ω) + bb∗abω . Besides, note that
every singleton {qi} is a cycle in A. Cycles {q1}, {q3} and {q5} are successful, since they
all contain final states. Cycles {q2}, {q4} and {q6} are by contrast non-successful. The
automaton A contains maximal alternating and co-alternating chains of length 2 given by
({q1}, {q2}, {q3}) and ({q4}, {q5}, {q6}), respectively.

A finite deterministic Muller automaton is a 5-tuple A = (Q, A, i, δ, T ), where Q is
a finite set of states, A is a finite alphabet, i ∈ Q is the initial state, δ : Q× A → Q
is a partial transition function, T ⊆ P(Q) is a collection of set of states called the
table of the automaton.

1We recall that ω denotes the least infinite ordinal.
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In this case, infinite initial path ρ of A is now called successful if inf(ρ) ∈ T .
Given a finite deterministic Muller automaton A = (Q, A, i, δ, T ), a cycle in A
is successful if it belongs to T , and non-succesful otherwise. An infinite word is
recognized byA if it is the label of a successful infinite path inA, and the ω-language
recognized by A, denoted by L(A), is the set of all infinite words recognized by A.

It can be shown that deterministic Muller automata are strictly more power-
ful than deterministic Büchi automata, but have an equivalent expressive power
as nondeterministic Büchi automata, Rabin automata, Street automata, parity au-
tomata, and nondeterministic Muller automata. They recognize precisely the class
of ω-rational languages [134].

For each ordinal α such that 0 < α < ωω, we introduce the concept of an al-
ternating tree of length α in a deterministic Muller automaton A, which consists of
a tree-like disposition of the successful and non-successful cycles of A induced by
the ordinal α, as illustrated in Figure 24. In order to describe this tree-like dispo-
sition, we first recall that any ordinal 0 < α < ωω can uniquely be written of the
form α = ωnp · mp + ωnp−1 · mp−1 + . . . + ωn0 · m0, for some p ≥ 0, np > np−1 >

. . . > n0 ≥ 0, and mi > 0. Then, given some deterministic Muller automata A and
some strictly positive ordinal α = ωnp · mp + ωnp−1 · mp−1 + . . . + ωn0 · m0 < ωω,
an alternating tree (respectively co-alternating tree) of length α is a sequence of cycles
of A (Ci,j

k,l)i≤p,j<2i ,k<mi ,l≤ni
such that:

• C0,0
0,0 is successful (respectively non-successful);

• Ci,j
k,l ( Ci,j

k,l+1, and Ci,j
k,l+1 is successful iff Ci,j

k,l is non-successful;

• Ci,j
k+1,0 is accessible from Ci,j

k,0, and Ci,j
k+1,0 is successful iff Ci,j

k,0 is non-successful;

• Ci+1,2j
0,0 and Ci+1,2j+1

0,0 are both accessible from Ci,j
mi−1,0, and each Ci+1,2j

0,0 is suc-

cessful whereas each Ci+1,2j+1
0,0 is non-successful.

An alternating tree of length α is said to be maximal inA if there is no alternating or
co-altenrating tree in A of length β > α. A co-alternating tree of length α is said to
be maximal in A if exactly the same condition holds. An alternating tree of length
α is illustrated in Figure 24.

These concepts are illustrated in Figure 25.

ω-TURING MACHINES

A Büchi Turing machine and a Muller Turing machine can be defined as a pair (M,F )
and (M, T ), respectively, where:

• M is a classical multitape Turing machine whose input tape is associated with
a one way read-only head;

• F is a collection of states ofM;

• T is a collection of sets of states ofM, i.e., T = {T1, . . . , Tk} and each Ti is a
set of states ofM.
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Figure 24 – Inclusion and accessibility relations between cycles of an alternating tree of
length α, with 0 < α < ωω .

T = {{q0}, {q2, q3}, {q4}, {q6, q7}, {q8}, {q10, q11}, {q12}}
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Figure 25 – A Muller automaton A. The underlying alphabet of A is {a, b, c, d, e}. The suc-
cessful and non-successful cycles are denoted in blue and red, respectively. Let us consider
the following cycles: C0,0

0,0 = {q0}, C0,0
1,0 = {q1}, C1,0

0,0 = {q2}, C1,0
0,1 = {q2, q3}, C1,0

1,0 = {q4},
C1,0

1,1 = {q4, q5}, C1,0
2,0 = {q6}, C1,0

2,1 = {q6, q7}, C1,1
0,0 = {q8}, C1,1

0,1 = {q8, q9}, C1,1
1,0 = {q10},

C1,1
1,1 = {q10, q11}, C1,1

2,0 = {q12}, C1,1
2,1 = {q12, q13}. Then the Muller automaton A contains a

maximal alternating tree of length ω1 · 3 + ω0 · 2 given by the sequence (Ci,j
k,l)i≤1,j<2,k<3,l≤1.



7.3. Boolean Neural Networks 79

At the beginning of the computation, an infinite input s (usually binary) is writ-
ten on the input tape. In both cases, a computation ofM on s is defined in the usual
way. An infinite sequence of successive states visited byM during the processing
of s is called an infinite run ofM on s, denoted by ρs. The set of states appearing
infinitely often in ρs is denoted by inf(ρs)

IfM is a deterministic Turing machine, an infinite input stream s is said to be
accepted by (M,F ) or by (M, T ) if the unique infinite run ρs satisfies inf(ρs)∩F 6=
∅ or inf(ρs) ∈ T , respectively; the infinite input s is said to be rejected otherwise. If
M is nondeterministic, s is said to be accepted by (M,F ) or (M, T ) if there exists
an infinite run ρs such that inf(ρs)∩F 6= ∅ or inf(ρs) ∈ T , respectively; s is rejected
otherwise. The set of all words accepted by (M,F ) or (M, T ) is the ω-language
recognized by (M,F ) or (M, T ), respectively.

Every ω-language recognized by some deterministic Büchi or Muller Turing
machine belongs to the topological class Π0

2 or BC(Π0
2), respectively [159, Corol-

laries 3.3 and 3.4].2 However, a simple cardinality argument shows that not all
Π0

2-set and not all BC(Π0
2)-sets can be recognized by some deterministic Büchi or

Muller Turing machine, respectively: indeed, there are ℵ0 Muller Turing machines
and 2ℵ0 sets in Π0

2 or in BC(Π0
2). Besides, the nondeterministic Büchi and Muller

Turing machines are equivalent and strictly more powerful than their deterministic
counterparts. They recognize precisely the class of effectively analytic ω-languages,
denoted by Σ1

1 (lightface) [159, Theorem 3.5]. The relation Σ1
1 ( Σ1

1 holds [87].

Finally, we recall that the Muller acceptance condition is the most powerful
one amongst those usually investigated in ω-automata theory (i.e., Büchi, Rabin,
Streett, parity) [159, Corollaries 3.4, 3.5 and Theorem 3.5].

7.3 BOOLEAN NEURAL NETWORKS

7.3.1 THE MODEL

We focus on Boolean recurrent neural networks as presented in Chapter 4, yet
working on infinite input streams.

Formally, a Boolean recurrent neural network (denoted as BRNN) contains M Boo-
lean input cells (ui)

M
i=1, N Boolean internal neurons (xi)

N
i=1, and P Boolean output

cells (xj)
iP
j=i1

chosen among the N internal ones. The dynamics of the network is
computed as usual: given the activation values of the input and internal neurons
(uj)

M
j=1 and (xj)

N
j=1 at time t, the activation values of each internal neuron xi is up-

dated by the following equation:

xi(t + 1) = θ

(
N

∑
j=1

aij(t) · xj(t) +
M

∑
j=1

bij(t) · uj(t) + ci(t)

)
for i = 1, . . . , N (7.1)

where aij(t), bij(t), and ci(t) are rational values corresponding to the weights of the
synaptic connections and the bias of the network at time t, and θ is the Heaviside
step function.

2BC(Π0
2) is the finite Boolean combinations of Π0

2-sets, i.e., the collection of sets obtained by finite
unions, intersections and complementations of Π0

2-sets.
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In the sequel, such a network will sometimes be denoted as a tuple

N = (X, U, V, a, b, c)

where X = {xi : 1 ≤ i ≤ N}, U = {ui : 1 ≤ i ≤ M}, and V ⊆ U are the sets
of activation, input, and output cells, respectively, and a ∈ QN×N , b ∈ QN×M,
and c ∈ QN×1 are rational matrices corresponding to the weights and bias of the
network.3

The dynamics of any BRNN N is therefore given by the function fN : BM ×
BN → BN defined by

fN (u(t), x(t)) = x(t + 1)

where the components of x(t + 1) are given by Equation (7.1).

In Section 5.2, we have recalled that Boolean neural networks disclose same
computational capabilities as finite state automata [89, 118, 119]. Besides, it can be
observed that rational-weighted and real-weighted Boolean neural networks are
actually computationally equivalent.4

Consider some BRNNN provided with M Boolean input cells and N sigmoidal
internal cells. Assuming the initial state of the network to be x(0) = 0, any infinite
input stream

s = (u(t))t∈N = u(0)u(1)u(2) · · · ∈ (BM)ω

induces via Equation (7.1) an infinite sequence of consecutive states

cs = (x(t))t∈N = x(0)x(1) · · · ∈ (BN)ω

called the (Boolean) computation of N induced by s. A computation of a BRNN is
illustrated in Figure 26.

Note that any BRNN N with N internal cells can only have 2P – i.e., finitely
many – possible distinct states. Consequently, for any infinite computation cs, there
necessarily exists at least one state that recurs infinitely often in cs. In fact, any
computation cs necessarily consists of a finite prefix of output states followed by an
infinite suffix of output states that repeat infinitely often – yet not necessarily in a
periodic manner. The non-empty set of all the output states that repeat infinitely
often in cs will be denoted by inf(cs). A set of states of the form inf(cs) will be called
an attractor for N . A precise definition can be given as follows:

Definition 24. Let N be some BRNN. A set A = {y0, . . . , yk} ⊆ BN is an attrac-
tor for N if there exists some infinite input stream s such that the corresponding
computation cs satisfies inf(cs) = A.

In words, an attractor of N is a set of states into which the computation of the
network could become forever trapped – yet not necessarily in a periodic manner –
for some infinite input stream s. An attractor of some BRNN is illustrated in Figure
26.

3The consideration of real synaptic weights would not change the results of this section.
4Indeed, in both rational- and real-weighted cases, the number of Boolean states of the network is

finite, and hence, the network can be simulated by some finite state automaton.
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In bio-inspired complex systems, the concept of an attractor has been shown to
carry strong computational implications, by being associated with different func-
tions, such as memory, motor behavior, and classification. According to Kauff-
man: “Because many complex systems harbour attractors to which the system settle
down, the attractors literally are most of what the systems do” [86, p.191]. Alter-
native attractors are commonly interpreted as alternative memories [12, 13, 45, 49,
72, 101, 102, 146]. In addition, attractor dynamics or quasi-attractor dynamics have
been associated to perceptions, thoughts and memories, and the chaotic intinerancy
between those with sequences in thinking, speaking and writing [79, 84, 166, 167,
168].

The central hypothesis for brain attractors is that, once activated by appropriate
activity, the neural network behaviour shall be maintained by continuous reentry
of activity [12]. Attractors must be stable at short time scales. Besides, whenever
the same information is repeatedly presented in a network, the same pattern of
activity is evoked in a circuit of functionally interconnected neurons called “cell as-
sembly” [57, 68]. The cell assemblies would thus elicit some repeated ordered and
precise interspike interval relationships, referred to as preferred firing sequences, or
spatiotemporal patterns of discharges, which recur above chance levels [2, 3, 4, 5, 80,
116, 137, 174, 175, 178, 180] (see also the survey by Villa [176] and the references
therein). These considerations point out the strong correlation existing between
attractor dynamics of neural networks and spatiotemporal patterns of discharges: the
spatiotemporal patterns would be witnesses of an underlying attractor dynamics.
Associations between attractor dynamics and repeating spatiotemporal firing pat-
terns have been experimentally observed in simulations of nonlinear dynamical
systems [14, 15] as well as in simulations of large scale neuronal networks [77, 78].
In our context, the attractor dynamics of the Boolean networks are, whenever peri-
odic, the precise phenomena that underly the arising of spatiotemporal patterns of
discharges. This feature is illustrated in Figure 26.

Spatiotemporal patterns have been detected without a specific association to a
stimulus in large networks of spiking neural networks or during spontaneous ac-
tivity in electrophysiological recordings[78, 180]. These may be viewed as spurious
patterns generated by spurious attractors. On the other hand, several examples ex-
ist of spatiotemporal firing patterns in behaving animals, from rats to primates,
where preferred firing sequences can be associated to specific types of stimuli or
behaviours [5, 137, 148, 178]. These can be viewed as meaningful patterns associated
with meaningful attractors. But the attractors’ meaningfulness cannot be reduced to
the detection of a behavioural correlate. It could for instance be correlated to the
build-up of higher order dynamics, like chaotic itinerancy [79, 84, 157, 166, 167,
168].

In this work, we suppose that the attractors are of two distinct types: either
meaningful or spurious. The type of each attractor could be determined by its neuro-
physiological significance with respect to measurable observations, e.g. associated
with certain behaviors or sensory discriminations. The classification of these at-
tractors into meaningful or spurious types is not the subject of this work. Hence,
from now on, we assume that any BRNN is a priori equipped with a correspond-
ing classification of all of its attractors into meaningful and spurious types. Further
discussions about the type specification of the attractors will be addressed in the
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forthcoming sections.
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Figure 26 – Illustration of the computational process performed by some BRNN. The in-
finite Boolean input stream s = u(0)u(1)u(2) · · · ∈ (BM)ω , represented by the blue
pattern, induces a corresponding infinite stream of network’s states – or computation –
cs = x(0)x(1)x(2) · · · ∈ (BN)ω , represented by the red pattern. The filled and empty cir-
cles represent active and quiet Boolean cells, respectively. From some time step onwards, a
certain set states begins to repeat infinitely often: this corresponds the attractor associated
to the input stream s. If the attractor occurs in a periodic manner, it corresponds to some
spatiotemporal pattern, illustrated by the the raster plot.

According to these considerations, an infinite input stream s ofN is called mean-
ingful if inf(cs) is a meaningful attractor, and it is called spurious if inf(cs) is a spu-
rious attractor. In other words, an input stream is called meaningful (respectively
spurious) if the network dynamics induced by this input stream will eventually be-
come confined into some meaningful (respectively spurious) attractor. Then, the set
of all meaningful input streams of N is called the neural language of N , denoted by
L(N ). Finally, an arbitrary set of input streams L ⊆ (BM)ω is said to be recognizable
by some Boolean neural network if there exists a network N such that L(N ) = L.

Besides, if N denotes some Boolean neural network provided with an addi-
tional specification of the type of each of its attractors, then the complementary net-
work N { is defined to be the same network as N yet with a completely opposite
type specification of its attractors. Then, an attractor A is meaningful for N { iff
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A is a spurious attractor for N and one has L(N {) = L(N ){. All the preceding
definitions are illustrated in the following Example 25.

Example 25. Consider the network N illustrated in Figure 8. Let us assume that
the meaningful attractors of N are precisely those containing the state (1, 1, 1)T ,
i.e., those involving the network’s state where the three cells x1, x2, x3 do simulta-
neously fire. All other attractors are assumed to be spurious.

Consider the periodic input stream s =
[(

0
0
) (

1
0
) (

0
1
)]ω and its corresponding

computation

cs =
( 0

0
0

) [( 0
0
0

) ( 1
0
0

) ( 0
1
1

)]ω

From time step t = 1, the computation cs of N remains confined in a cyclic visit
of the states inf(cs) = {(0, 0, 0)T , (1, 0, 0)T , (0, 1, 1)T}. Hence, this set is an attrac-
tor of N . Since the state (1, 1, 1)T does not belong to this attractor, it is spurious.
Therefore, the input stream s is also spurious, i.e. s 6∈ L(N ).

Consider the other periodic input stream s′ =
[(

1
1

)]ω and its corresponding
computation

cs′ =
[( 0

0
0

) ( 1
0
0

) ( 1
1
1

) ( 0
1
1

)]ω

The set of states inf(cs′) = {(0, 0, 0)T , (1, 0, 0)T , (1, 1, 1)T , (0, 1, 1)T} is an attractor,
and the computation cs′ ofN is confined in inf(cs′) already from the very first time
step t = 0. In this case, the attractor is meaningful, since (1, 1, 1)T ∈ inf(cs′), . It
follows that the input stream s′ is also meaningful, i.e., s′ ∈ L(N ).

7.3.2 EXPRESSIVE POWER: PART 1

We provide a generalization to this precise attractor-based computational paradigm
of the classical equivalence result between Boolean neural networks and finite state
automata [89, 118, 119]. More precisely, we show that, under some natural spe-
cific conditions on the specification of the type of their attractors, Boolean recurrent
neural networks disclose the very same expressive power as deterministic Büchi
automata. Accordingly, the Wagner hierarchy of ω-regular languages [182] can
be transposed from the Büchi automaton to the neural network context, and a hi-
erarchical classification of Boolean neural networks can be deduced. The obtained
classification is intimately related to the attractor properties of the neural networks,
and hence provides a new refined measure of the computational power of Boolean
neural networks in terms of their attractor dynamics.

BOOLEAN RECURRENT NEURAL NETWORKS AND BÜCHI AUTOMATA

We now prove that, under some natural conditions on the type specification of
their attractors, Boolean recurrent neural networks are computationally equivalent
to deterministic Büchi automata.

More precisely, we assume that the type specification of the attractors of a net-
workN is naturally related to its output layer as follows: an attractor A = {y0, . . . , yk}
ofN is considered meaningful if it contains at least one state where some output cell
is spiking, i.e. if there exist i ≤ k and j ≤ N such that xj ∈ V and (yi)j = 1;



84 7. Attractor-Based Computation

the attractor A is considered spurious otherwise. According to these assumptions,
meaningful attractors refer to the cyclic behaviours of the network that induce some
response activity of the system via its output layer, whereas spurious attractors re-
fer to the cyclic behaviours of the system that do not evoke any response at all of
the output layer.

It can be stated that the expressive powers of Boolean recurrent neural networks
and deterministic Büchi automaton are equivalent. As a first step towards this
result, the following proposition shows that any Boolean recurrent neural network
can be simulated by some deterministic Büchi automaton.

Proposition 26. LetN be some Boolean recurrent neural network provided with an output
layer. Then there exists a deterministic Büchi automaton AN such that L(N ) = L(AN ).

Proof. Let N be some neural network given by the tuple (X, U, V, a, b, c), with
|X| = N, |U| = M, and V = {xi1 , . . . , xiM′ } ⊆ X. Consider the deterministic Büchi
automaton AN = (Q, A, i, δ,F ), where Q = BN , A = BM, i is the N-dimensional
zero vector, F = {x ∈ Q : (x)ik = 1 for some 1 ≤ k ≤ M′}, and δ : Q× A → Q
is the function defined by δ(x, u) = x′ iff x′ = θ (a · x + b · u + c). Note that the
complexity of the transformation is exponential, since |Q| = 2N and |A| = 2M.

According to this construction, any infinite computation cs of N naturally in-
duces a corresponding infinite initial path ρ(cs) inAN . Moreover, by the definitions
of meaningful and spurious attractors of N , an infinite input stream s is meaning-
ful for N iff s is recognized by AN . In other words, s ∈ L(N ) iff s ∈ L(AN ), and
therefore L(N ) = L(AN ).

According to the construction given in the proof of Proposition 26, any infinite
computation of the network N is naturally associated with a corresponding infi-
nite initial path in the automaton AN , and conversely, any infinite initial path in
AN corresponds to some possible infinite computation of N . Consequently, there
is a biunivocal correspondence between the attractors of the network N and the
cycles in the graph of the corresponding Büchi automaton AN . As a result, a proce-
dure to compute all possible attractors of a given network N is obtained by firstly
constructing the corresponding deterministic Büchi automaton AN and secondly
listing all cycles in the graph of AN .

Conversely, we prove now that any deterministic Büchi automaton can be sim-
ulated by some Boolean recurrent neural network.

Proposition 27. LetA be some deterministic Büchi automaton over the alphabet BM, with
M ≥ 1. Then there exists a Boolean recurrent neural networkNA provided with an output
layer such that L(A) = L(NA).

Proof. Let A = (Q, BM, q1, δ,F ) be some deterministic Büchi automaton over al-
phabet BM, with Q = {q1, . . . , qN}, and F = {qi1 , . . . , qiK} ⊆ Q. Consider the net-
work NA = (X, U, V, a, b, c) with 2M + N + 1 + M cells given as follows: firstly,
X = {xi : 0 ≤ i ≤ 2M + N}, where X is decomposed into a set of 2M “let-
ter cells” XL = {xi : 0 ≤ i < 2M}, a “delay-cell” x2M , and a set of N “state
cells” XS = {xi : 2M < i ≤ 2M + N}; secondly, the set of |M| “input units”
U = {u0, . . . , uM−1}, and thirdly, the outptut layer V = {x2M+j : qj ∈ F}. The
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idea of the simulation is that the “letter cells” and “state cells” of the network NA
simulate the letters and states currently read and entered by the automaton A, re-
spectively.

Towards this purpose, the weight matrices a, b, and c are described as follows.
Concerning the matrix b: for any xk ∈ XL, we consider the binary decomposition
of k, namely k = ∑M−1

j=0 βkj · 2j, with βkj ∈ {0, 1}, and for any 0 ≤ j < M, we

set the weight bk,j = βkj · 2j + (βkj − 1); for all other k, we set bk,j = 0, for any
0 ≤ j < M. Concerning the matrix c: for any xk ∈ XL, we set ck = 1 − k; we
also set c2M = c2M+1 = 1; for all other k, we set ck = 0. Concerning the matrix
a: we set a2M+1,2M = −1, and for any xk ∈ XL and any x2M+i, x2M+j ∈ XS, we set
a2M+j,k = a2M+j,2M+i = 1/2 iff (qi, βk, qj) is a transition of A; otherwise, for any pair
of indices i1, i2 ∈ {0, . . . , 2M + N} such that ai1,i2 has not been set to −1 or 1/2, we
set ai1,i2 = 0. This construction is illustrated in Figure 27.

According to this construction, if we let βk denote the boolean vector whose
components are the βkj’s (for 0 ≤ j < M), one has that the “letter cell” xk will
spike at time t + 1 iff the input vector βk ∈ BM is received at time t. Moreover, at
every time step t > 0, a unique “letter cell” xk ∈ XL and “state cell” x2M+i ∈ XS
are spiking, and, if A performs the transition (qi, βk, qj) at time t, then network
NA evokes the spiking pattern xk(t) = x2M+i(t) = x2M+j(t + 1) = 1. The relation
between the final states F of A and the output layer V of NA ensures that any
infinite input stream s ∈ (BM)ω is recognized by A if and only if s is meaningful
for NA. Therefore, L(A) = L(NA).

Propositions 26 and 27 yield to the following equivalence between recurrent
neural networks and deterministic Büchi automata.

Theorem 28. Let L ⊆ (Bk)ω for some k ≥ 1. Then L is recognizable by some Boo-
lean recurrent neural network provided with an output layer iff L is recognizable by some
deterministic Büchi automaton.

Proof. Proposition 26 shows that every language recognizable by some Boolean re-
current neural network is also recognizable by some deterministic Büchi automa-
ton. Conversely, Proposition 27 shows that every language recognizable by some
deterministic Büchi automaton is also recognizable by some Boolean recurrent neu-
ral network.

The two procedures given in the proofs of Propositions 26 and 27 are illustrated
in the following Example 29.

Example 29. Consider the network N described in Example 3, and suppose that
the output layer of N consists of the unique cell x3, i.e. V = {x3}. The transla-
tion from this network N to its corresponding deterministic Büchi automaton AN
is illustrated in Figure 28, panels a and b. Proposition 26 ensures that L(N ) =

L(AN ). Conversely, the translation from a simple deterministic Büchi automaton
A to its corresponding neural networkNA is illustrated in Figures 28, panels c and
d. Proposition 27 ensures that L(A) = L(NA).



86 7. Attractor-Based Computation

} } }

input
cells

letter
cells

delay
cell

state cells

Figure 27 – The network NA described in the proof of Proposition 27. NA is characterized
by a set of M input cells U = {u0, . . . , uM−1} reading the alphabet BM, 2M “letter cells”
XL = {xi : 0 ≤ i < 2M}, a “delay-cell” x2M , and a set of N “state cells” XS = {xi : 2M <

i ≤ 2M + N}. The idea of the simulation is that the “letter cells” and “state cells” of the
network NA simulate the letters and states currently read and entered by the automaton A,
respectively. In this illustration, we assume that the binary decomposition of k is given by
k = 2m + 2n, so that the “letter cell” xk receives synaptic connections of intensities 2m and 2n

from input cells um and un, respectively, and it receives synaptic connections of intensities−1
from any other input cells. Consequently, the “letter cell” xk becomes active at time t + 1 iff
the sole input cells um and un are active at time t. The synaptic connections to other “letter
cells” are not illustrated. Moreover, the synaptic connections a2M+j,k = a2M+j,2M+i = 1/2

model the transition (qi, βk, qj) of automaton A. The synaptic connections modelling other
transitions are not illustrated.

THE BRNN HIERARCHY

In the theory of infinite word reading machines, abstract devices are commonly
classified according to the topological complexity of their underlying ω-language
(i.e., the languages of infinite words that they recognize). Such classifications pro-
vide an interesting measure of the expressive power of various kinds of infinite
word reading machines. In this context, the most refined hierarchical classification
of ω-automata – or equivalently, of ω-rational languages – is the so-called Wagner
hierarchy [182].

According to Theorem 28, the Wagner hierarchy can naturally be transposed
from Büchi automata to Boolean neural networks. As a result, a hierarchical clas-
sification of first-order Boolean recurrent neural networks is obtained. The hierar-
chical classification naturally induces a measure of complexity for Boolean neural
networks based on their attractor dynamics. Notably, this complexity refers to the
ability of the networks to perform more or less complicated classification tasks of
their inputs via the manifestation of meaningful or spurious attractor dynamics.
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a b

c d

Figure 28 – Panels a, b. Translation from a neural network to its corresponding determin-
istic Büchi automaton. a. The neural network N of Figure 8 provided with an additional
specification of an output layer V = {x3}, denoted in red. b. The deterministic Büchi au-
tomaton AN corresponding to the neural networkN . According to the proof of Proposition
26, the nodes ofAN are the states (i.e., the spiking configurations) ofN , and there is an edge
labelled by a from q to q′ in AN iff N switches from state q to q′ when it receives input a.
The final states of AN are denoted in red.
Panels c, d. Translation from a deterministic Büchi automaton to its corresponding neural
network. c. A deterministic Büchi automaton A with three states. The initial state q1 is de-
noted with an incoming edge, and the final state q3 is emphasized in red. d. The network
NA corresponding to the Büchi automaton A. According to the proof of Proposition 27, the
network NA contains one (M = 1) input neuron u0, two (2M = 2) “letter cells” x0 and x1,
one “delay cell” x2, and three (N = 3) “state cells” x3, x4, x5 each one being associated with a
corresponding state of the automaton. The output layer is represented by the cell x5, denoted
in red and double-circled. The background activities are labeled in blue.

Before the result is stated, the following definitions need to be introduced. Given
two Boolean recurrent neural networksN1 andN2 with M1 and M2 input units re-
spectively, we say that N1 reduces (or Wadge reduces or continuously reduces) to N2,
denoted byN1 ≤W N2, iff there exists a continuous function f : (BM1)ω → (BM2)ω

such that, for any input stream s ∈ (BM1)ω, one has s ∈ L(N1) ⇔ f (s) ∈ L(N2),
or equivalently, such that L(N1) = f−1(L(N2)) [181]. Intuitively, N1 ≤W N2 iff
the problem of determining whether some input stream s belongs to the neural
language ofN1 (i.e. whether s is meaningful forN1) reduces via some simple func-
tion f to the problem of knowing whether f (s) belongs to the neural language
of N2 (i.e. whether s is meaningful for N2). The corresponding strict reduction,
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equivalence relation, and incomparability relation are then naturally defined by
N1 <W N2 iff N1 ≤W N2 6≤W N1, as well as N1 ≡W N2 iff N1 ≤W N2 ≤W N1,
and N1 ⊥W N2 iff N1 6≤W N2 6≤W N1. Moreover, a network N is called self-dual if
N ≡W N {; it is called non-self-dual if N 6≡W N {, which can be proved to be equiv-
alent to saying that N ⊥W N { [181]. We recall that the network N { corresponds to
the network N whose type specification of its attractors has been inverted. Conse-
quently, N { does not correspond a priori to some neural network provided with an
output layer. By extension, an ≡W-equivalence class of networks is called self-dual
if all its elements are self-dual, and non-self-dual if all its elements are non-self-dual.

The continuous reduction relation over the class of Boolean recurrent neural net-
works naturally induces a hierarchical classification of networks formally defined
as follows:

Definition 30. The collection of all Boolean recurrent neural networks ordered by
the reduction “≤W" is called the BRNN hierarchy.

We now turn to the characterization of the BRNN hierarchy. For this purpose, let
us define the DBA hierarchy to be the collection of all deterministic Büchi automata
over multidimensional Boolean alphabets Bk ordered by the continuous reduction
relation “≤W". More precisely, given two deterministic Büchi automataA1 andA2,
we set A1 ≤W A2 iff there exists a continuous function f such that, for any input
stream s, one has s ∈ L(A1) ⇔ f (s) ∈ L(A2). The following result shows that
the BRNN hierarchy and the DBA hierarchy are actually isomorphic. Moreover, a
possible isomorphism is given by the mapping described in Proposition 26 which
associates to every networkN a corresponding deterministic Büchi automatonAN .

Proposition 31. The BRNN hierarchy and the DBA hierarchy are isomorphic.

Proof. Consider the mapping described in Proposition 26 which associates to ev-
ery network N a corresponding deterministic automaton AN . We prove that this
mapping is an embedding from the BRNN hierarchy into the DBA hierarchy. Let
N1 and N2 be any two networks, and let AN1 and AN2 be their corresponding
deterministic Büchi automata. Proposition 26 ensures that L(N1) = L(AN1) and
L(N2) = L(AN2). Hence, one hasN1 ≤W N2 iffAN1 ≤W AN2 , and thusN1 <W N2
iff AN1 <W AN2 , which shows that the considered mapping is an embedding. We
now show that, up to the continuous equivalence “≡W”, this mapping is also onto.
Let A be some deterministic Büchi automaton. By Proposition 27, there exists a
network M = NA such that L(A) = L(M). By Proposition 26, there exists an
automatonAM such that L(AM) = L(M) = L(A). Hence,AM ≡W A. Therefore,
for any deterministic Büchi automaton A, there exists a neural network M such
thatAM ≡W A, showing that up to the continuous equivalence relation “≡W”, the
mapping N 7→ AN is onto.

By Proposition 31 and the usual results concerning the DBA hierarchy, a pre-
cise description of the BRNN hierarchy can be given. In fact, the BRNN hierarchy
is well-founded, i.e. there is no infinite strictly descending sequence of networks



7.3. Boolean Neural Networks 89

N0 >W N1 >W N2 >W . . . . The maximal strict chains5 and antichains6 of the
BRNN hierarchy have length ω + 1 and 2, respectively, meaning that the BRNN
hierarchy has a height of ω + 1 and a width of 2. It can also be shown that incom-
parable networks are equivalent (for the relation ≡W) up to complementation, i.e.,
for any two networks N1 and N2, one has N1 ⊥W N2 iff N1 and N2 are non-self-
dual and N1 ≡W N {

2 . Consequently, up to equivalence and complementation, the
BRNN hierarchy is actually a well-ordering. In fact, the BRNN hierarchy consists
of an infinite alternating succession of pairs of non-self-dual and single self-dual
classes, overhung by an additional single non-self-dual class at the first limit level
ω, as illustrated in Figure 29.

degree
1

degree
2

degree
3

height
� + 1

degree
�

degree
n

Figure 29 – The BRNN hierarchy: an infinite alternating succession of pairs of non-self-dual
classes of networks followed by single self-dual classes of networks, all of them overhung
by an additional single non-self-dual class at the first limit level. Circles represent the equiv-
alence classes of networks (with respect to the relation “≡W”) and arrows between circles
represent the strict reduction “<W” between all elements of the corresponding classes.

For convenience reasons, the degree of a network N in the BRNN hierarchy
is defined such that the same degree is shared by both non-self-dual networks at
some level and self-dual networks located just one level higher, as illustrated in
Figure 29:

d(N ) =


1 if L(N ) = ∅ or ∅{,

sup {d(M) + 1 :M non-self-dual andM <W N} if N is non-self-dual,

sup {d(M) :M non-self-dual andM <W N} if N is self-dual.

Furthermore, the equivalence between the DBA and BRNN hierarchies implies
that the BRNN hierarchy is decidable, i.e., that there exists an algorithmic procedure
to compute the degree of any network. All the above properties of the BRNN hier-
archy are summarized in the following result.

Theorem 32. The BRNN hierarchy is a decidable pre-well-ordering of width 2 and height
ω + 1.

Proof. The DBA hierarchy consists of a decidable pre-well-ordering of width 2 and
height ω + 1 [134]. By Proposition 31, the BRNN hierarchy and the DBA hierarchy
are isomorphic.

5A strict chain of length α in the BRNN hierarchy is a sequence of neural networks (Nk)k∈α such that
Ni <W Nj iff i < j; a strict chain is said to be maximal if its length is at least as large as the length of
every other strict chain.

6An antichain of length α in the BRNN hierarchy is a sequence of neural networks (Nk)k∈α such that
Ni ⊥W Nj for all i, j ∈ α with i 6= j; an antichain is said to be maximal if its length is at least as large as
the length of every other antichain.
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The following result provides a detailed description of the decidability proce-
dure of the BRNN hierarchy. It is shown that the degree of a network N in the
BRNN hierarchy is linked to the intricacy of its set of attractors, and more precisely,
corresponds to the maximal number of times that this network could alternate be-
tween meaningful and spurious attractors along some computation.

Theorem 33. Let N be some network provided with an additional specification of an out-
put layer, AN be the corresponding deterministic Büchi automaton of N , and n > 0.

• If there exists in AN a maximal alternating chain of length n and no maximal co-
alternating chain of length n, then d(N ) = n and N is non-self-dual.

• Symmetrically, if there exists in AN a maximal co-alternating chain of length n but
no maximal alternating chain of length n, then also d(N ) = n and N is non-self-
dual.

• If there exist in AN a maximal alternating chain of length n as well as a maximal
co-alternating chain of length n, then d(N ) = n and N is self-dual.

• If there exist in AN a maximal alternating chain of length ω, then d(N ) = ω and
N is non-self-dual.

Proof. By Proposition 31, the degree of a network N in the BRNN hierarchy is
equal to the degree of its corresponding deterministic Büchi automaton AN in the
DBA hierarchy. Moreover, the degree of a deterministic Büchi automaton in the
DBA hierarchy corresponds precisely to the length of a maximal alternating or co-
alternating chain contained in this automaton [134].

By Theorem 33, the decidability procedure of the degree of a neural networkN
in the BRNN hierarchy consists firstly in translating the network N into its corre-
sponding deterministic Büchi automaton AN , as described in Proposition 26, and
secondly in returning the ordinal α < ω + 1 corresponding to the length of a max-
imal alternating chain or co-alternating chain contained in AN . Note that this pro-
cedure can clearly be achieved by some graph analysis of the automatonAN , since
the latter is always finite. Furthermore, since alternating and co-alternating chains
are defined in terms of cycles in the graph of the automaton, and since cycles ofAN
do biunivocally correspond to attractors of N , it can be deduced that the complex-
ity of a network in the BRNN hierarchy is in fact directly related to the attractor
dynamics of this network.

More precisely, the novel complexity measure induced by the BRNN hierar-
chy corresponds to the maximal number of times that the Boolean networks might
alternate between meaningful and spurious attractors along their possible compu-
tations. Indeed, suppose that d(N ) = n. By Theorem 33, there necessarily exists
some maximal alternating or co-alternating chain (c0, . . . , cn) of length n in AN .
This means that every infinite initial path in AN might alternate at most n times
between successful and non-successful cycles. Hence equivalently, every compu-
tation of N can only alternate at most n times between meaningful and spurious
attractors before becoming eventually forever trapped by a last attractor. Now,
suppose that d(N ) = ω. By Theorem 33, there necessarily exists some maximal
alternating chain (c1, c2) of length ω in AN . Yet this corresponds to the existence



7.3. Boolean Neural Networks 91

of an infinite initial path in AN that might alternate infinitely many times between
cycles c1 and c2. Consequently, there also exists some computation ofN that might
alternate infinitely many times between some meaningful and spurious attractors.

Finally, the decidability procedure of the BRNN hierarchy is illustrated in Ex-
ample 34 below.

Example 34. Let N be the neural network illustrated in Figure 28(a). Then N has
degree ω in the BRNN hierarchy. Indeed, the corresponding deterministic Büchi
automaton AN depicted in Figure 28(b) contains the two cycles

c1 = {(0, 0, 0)T , (1, 0, 0)T , (0, 1, 1)T} and c2 = {(0, 0, 0)T , (1, 0, 0)T , (0, 1, 0)T}.

Cycle c1 is successful, since it contains the final state (0, 1, 1)T ; cycle c2 is not suc-
cessful, since it contains no final state; and both cycles c1 and c2 are accessible from
each other. Hence, the pair (c1, c2) is an alternating sequence of length ω contained
in AN . By Theorem 33, d(N ) = ω and N is non-self-dual. Observe that the input
stream

s =
[(

1
1

) (
0
1
) (

1
1

) (
1
1

) (
0
0
) (

1
1

)]ω

induces a corresponding computation cs of N that alternates ω times between at-
tractors c1 and c2.

7.3.3 EXPRESSIVE POWER: PART 2

We now show that by totally relaxing the restrictions on the type specification of
their attractors, the networks significantly increase their expressive power from de-
terministic Büchi up to Muller automata. Hence, by transposing once again the
Wagner classification theory from the Muller automaton to the neural network con-
text, another refined hierarchical classification of Boolean neural networks is ob-
tained. The classification induces a novel refined measure of complexity of Boolean
recurrent neural networks based on their attractor dynamics.

BOOLEAN RECURRENT NEURAL NETWORKS AND MULLER AUTOMATA

The assumption that the networks are provided with an additional description of
an output layer, which would subsequently influence the type specification (mean-
ingful/spurious) of their attractors, is now totally relaxed. Instead, we assume any
network to be a priori provided with a precise classification of its attractors into
meaningful and spurious types. The issue of the precise assignment of these attrac-
tors’ types not considered here. The attractors’ types could for instance be deter-
mined by their neurophysiological significance with respect to measurable obser-
vations associated to certain behaviours or sensory discriminations. Formally, we
now assume that a recurrent neural network consists of a tuple N = (X, U, a, b, c)
(the output layer V is not anymore specified) such that N is provided with an ad-
ditional specification of each of its attractors into meaningful and spurious type.

In this context, we prove that the Boolean neural networks significantly increase
their expressive powers from deterministic Büchi to Muller automata. The follow-
ing straightforward generalization of Proposition 26 states that any such Boolean
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recurrent neural network can be simulated by some deterministic Muller automa-
ton.

Proposition 35. Let N be some Boolean recurrent neural network provided with a type
specification of each of its attractors. Then there exists a deterministic Muller automaton
AN such that L(N ) = L(AN ).

Proof. Let N be given by the tuple (X, U, a, b, c), with |X| = N, |U| = M, and let
the meaningful attractors of N be given by A1, . . . , AK, all others being spurious.
Now, consider the deterministic Muller automaton AN = (Q, A, i, δ, T ), where
Q = BN , A = BM, i is the N-dimensional zero vector, δ : Q× A→ Q is defined by
δ(x, u) = x′ iff x′ = θ (a · x + b · u + c), and T = {A1, . . . , AK}. According to this
construction, any input stream s is meaningful for N iff s is recognized by AN . In
other words, s ∈ L(N ) iff s ∈ L(AN ), and therefore L(N ) = L(AN ).

Conversely, as a generalization of Proposition 27, we show that any determinis-
tic Muller automaton can be simulated by some Boolean recurrent neural network
provided with a suitable type specification of its attractors.

Proposition 36. Let M > 0 and let A be some deterministic Muller automaton over the
alphabet BM. Then there exists a Boolean recurrent neural network NA provided with a
type specification of each of its attractors such that L(A) = L(NA).

Proof. Let A be given by the tuple (Q, A, q1, δ, T ), with A = BM, Q = {q1, . . . , qN}
and T ⊆ P(Q). Now, consider the network NA = (X, U, a, b, c) described in the
proof of Proposition 27. The meaningful and spurious attractors ofNA remain to be
defined. As mentioned in the proof of Proposition 27, at every time step t > 0, only
one among the “state cells” {x2M+1, . . . , x2M+N} is spiking. Hence, for any state y of
NA that might occur at some time step t > 0, let i(y) ∈ {1, . . . , N} be the index such
that x2M+i(y) is the unique “state cell” which is spiking during state y. An attractor
{y0, . . . , yk} of NA is then said to be meaningful iff {qi(y0), . . . , qi(yk)

} ∈ T .

Consequently, for any infinite infinite sequence s ∈ (BM)ω, the infinite path
ρs in A satisfies inf(ρs) ∈ T iff the computation cs in NA is such that inf(cs) is a
meaningful attractor. Therefore, s is recognized by A iff s is meaningful for NA,
showing that L(A) = L(NA).

Propositions 35 and 36 yield the following equivalence between Boolean recur-
rent neural networks and deterministic Muller automata.

Theorem 37. Let L ⊆ (Bk)ω for some k > 0. Then the following conditions are equiva-
lent:

1. L is recognizable by some Boolean recurrent neural network provided with a type
specification of its attractors;

2. L is recognizable by some deterministic Muller automaton;

3. L is ω-rational.
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Proof. The equivalence between conditions 1 and 2 is given by Propositions 35 and
36. The equivalence between conditions 2 and 3 is a well-known result of automata
theory [134].

The two procedures described in the proofs of Propositions 35 and 36 are illus-
trated in the following Example 38.

Example 38. Consider the network N described in Example 3 and assume the
set of meaningful and spurious attractors of N has been established by some cri-
terion. More precisely, assume that the sole meaningful attractor of N is A =

{(0, 0, 0)T , (1, 0, 0)T , (0, 1, 1)T}, all other ones being considered as spurious. The
translation from the network N to its corresponding deterministic Muller automa-
ton AN is illustrated in Figure 30, panels a and b. Proposition 35 ensures that
L(N ) = L(AN ). Conversely, the translation from a simple deterministic Muller
automaton A over the alphabet B1 to its corresponding network NA is illustrated
in Figure 30, panels c and d. Proposition 36 ensures that L(A) = L(NA).

THE COMPLETE BRNN HIERARCHY

We show that the collection of Boolean recurrent neural networks ordered by the
continuous reduction corresponds to a refined hierarchical classification of height
ωω. This classification induces a new refined measure of complexity for Boolean
neural networks according based on their attractor dynamics. This hierarchical
classification is formally defined as follows.

Definition 39. The collection of all Boolean recurrent neural networks provided
with a type specification of their attractors ordered by the continuous reduction
“≤W" is called the complete BRNN hierarchy.

We now turn to the characterization of the complete BRNN hierarchy. Towards
this purpose, we recall that the collection of all deterministic Muller automata
(over multidimensional Boolean alphabets Bk) ordered by the continuous reduc-
tion “≤W” is commonly referred to as the Wagner hierarchy [182]. A generaliza-
tion of Proposition 31 shows that the complete BRNN hierarchy and the Wagner
hierarchy are isomorphic. A possible isomorphism is also given by the mapping
described in Proposition 35 which associates to every network N a corresponding
deterministic Muller automaton AN .

Proposition 40. The complete BRNN hierarchy and the Wagner hierarchy are isomorphic.

Proof. Consider the mapping described in Proposition 35 which associates to ev-
ery network N a corresponding deterministic Muller automaton AN . A similar
reasoning as the one presented in the proof of Proposition 31 shows that this map-
ping is an isomorphism between the complete BRNN hierarchy and the Wagner
hierarchy.

By Proposition 40 and the usual results on the Wagner hierarchy [182], the fol-
lowing description of the complete BRNN hierarchy can be given. The complete
BRNN hierarchy also consists of a pre-well ordering of width 2, and any two net-
works N1 and N2 satisfy the incomparability relation N1 ⊥W N2 iff N1 and N2 are
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a b

c d

Figure 30 – Panels a, b. Translation from a Boolean neural network provided with a type
specification of its attractors to its corresponding deterministic Muller automaton. a. A neu-
ral network N provided with an additional type specification of each of its attractors. In
this case,N contains only one meaningful attractor determined by the following set of states
{(0, 0, 0)T , (1, 0, 0)T , (0, 1, 1)T}; all other ones are considered as spurious. b. The determinis-
tic Muller automaton AN corresponding to the neural network N of panel a. According to
the proof of Proposition 35,AN works over alphabet B2, contains six states, and possesses in
its table T the sole cycle {(0, 0, 0)T , (1, 0, 0)T , (0, 1, 1)T}, which corresponds to the sole mean-
ingful attractor of N .
Panels c, d. Translation from a deterministic Muller automaton to its corresponding Boolean
neural network provided with a type specification of its attractors. c. A deterministic Mul-
ler automaton A. The automaton works over alphabet B1, has three states, and possesses
the two successful cycles {q2} and {q3}, as mentioned by its table T = {{q2}, {q3}}. d.
The neural network NA corresponding to the Muller automaton A of panel c. According
to the proof of Proposition 36, NA contains two letter cells, one delay cell, and three state
cells to simulate the two possible inputs and three states of automaton A. It has only two
meaningful attractors corresponding to the two successful cycles of automaton A.
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non-self-dual networks such thatN1 ≡W N {
2 . However, while the BRNN hierarchy

has only height ω + 1, the complete BRNN hierarchy shows a height of ωω levels.
In fact, the complete BRNN hierarchy consists of an infinite alternating succession
of pairs of non-self-dual and single self-dual classes, with non-self-dual classes at
each limit level, as illustrated in Figure 31.

height
��

degree
1

degree
2

degree
3

degree
�

degree
� + 1

degree
� · 2 + 1

degree
� · 2

Figure 31 – The complete BRNN hierarchy: a transfinite alternating succession of pairs of
non-self-dual classes of networks followed by single self-dual classes of networks, with non-
self-dual classes at each limit level.

For convenience reasons, the degree d(N ) of a network N in the complete
BRNN hierarchy is also defined such that the same degree is shared by both non-
self-dual networks at some level and self-dual networks located just one level higher,
namely:

d(N ) =


1 if L(N ) = ∅ or ∅{,

sup {d(M) + 1 :M non-self-dual andM <W N} if N is non-self-dual,

sup {d(M) :M non-self-dual andM <W N} if N is self-dual.

The isomorphism between the Wagner hierarchy and the complete BRNN hier-
archy ensures that the complete BRNN hierarchy is also decidable, i.e., that there
exists an algorithmic procedure which computes the degree of any network. The
following theorem summarizes the properties of the complete BRNN hierarchy.

Theorem 41. The complete BRNN hierarchy is a decidable pre-well-ordering of width 2
and height ωω.

Proof. The Wagner hierarchy consists of a decidable pre-well-ordering of width 2
and height ωω [182]. Proposition 40 ensures that the complete BRNN hierarchy
and the Wagner hierarchy are isomorphic.

A detailed description of the decidability procedure of the complete BRNN hi-
erarchy can be given. In fact, the degree of a network N in the BRNN hierarchy
corresponds precisely to the largest ordinal α such that there exists an alternating
tree or a co-alternating tree of length α in the deterministic Muller automaton AN .

Theorem 42. LetN be some Boolean recurrent network provided with a type specification
of its attractors, AN be the corresponding deterministic Muller automaton of N , and α be
an ordinal such that 0 < α < ωω.

• If there exists in AN a maximal alternating tree of length α and no maximal co-
alternating tree of length α, then d(N ) = α and N is non-self-dual.
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• If there exists in AN a maximal co-alternating tree of length α and no maximal
alternating tree of length α, then d(N ) = α and N is non-self-dual.

• If there exist inAN both a maximal alternating tree as well as a maximal co-alternating
tree of length α, then d(N ) = α and N is self-dual.

Proof. By Proposition 40, the degree of a network N in the complete BRNN hierar-
chy is equal to the degree of its corresponding deterministic Muller automatonAN
in the Wagner hierarchy. Moreover, this latter corresponds precisely to the length
of a maximal alternating or co-alternating tree contained in this automaton [145,
182].

By Theorem 42, the decidability procedure of the degree of a neural networkN
in the complete BRNN hierarchy consists in firstly translating the network N into
its corresponding deterministic Muller automaton AN , as described in Proposition
35, and secondly computing the ordinal α < ωω corresponding to the length of a
maximal alternating tree, or co-alternating tree, contained in AN . Note that this
procedure can be achieved by some graph analysis of the automatonAN , since this
latter is always finite.

Accordingly, the induced refined measure of complexity for Boolean neural net-
works, by being related to the notion of (co-)alternating trees, and hence of cycles,
of the underlying Muller automata, is also in turn directly associated to the intri-
cacy of the sets of attractors of the networks.

More precisely, the ω first levels of the complete BRNN hierarchy provide a
classification of the networks that might alternate at most finitely many times be-
tween different types of attractors along their possible computations.7 The levels
of transfinite degrees correspond to some refined classification of the collection of
networks that are able to alternate infinitely many times between different types of
attractors.8 The more intricate the structure of their attractors – in terms of inclusion
and accessibility relation –, the more complex the networks.

The decidability procedure of the complete BRNN hierarchy is illustrated in the
following Example 43.

Example 43. Let N be the network described in Figure 30(a). Then, by Theorem
decidabilityM, d(N ) = ω2 and N is non-self-dual. Indeed, the following sequence
of cycles {( 0

0
0

)}
(
{( 0

0
0

)
,
( 1

0
0

)
,
( 0

1
1

)}
(
{( 0

0
0

)
,
( 1

0
0

)
,
( 1

1
1

)
,
( 0

1
1

)}
is a maximal co-alternating tree of length ω2 in the graph of the deterministic Mul-
ler automaton AN depicted in Figure 30(b).

Finally, it can be remarked that if some given Muller automaton contains either
an alternating or a co-alternating tree of length α, then it also necessarily contain

7These are indeed the attractor dynamics associated to the (co)-alternating trees if lengths n, for
n ∈N∗.

8Indeed, for any ordinal α such that ω ≤ α < ωω , a maximal alternating or co-alternating tree of
length α necessarily contains at least two cycles c1 and c2 such that c1 ( c2 and c1 is successful iff c2 is
non-successful. Hence, there necessarily exists a path that can alternate infinitely many times between
c1 and c2.
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both an alternating and a co-alternating tree of length β, for all β < α.9 Therefore,
any network of the complete BRNN hierarchy does contain in its dynamical struc-
ture all the possible attractor dynamics of every other networks of strictly smaller
degrees. It would be able to mimic, in terms of attractor dynamics, the computa-
tions of every less complicated network. Besides, this concept of alternation be-
tween different types of attractors appears to be linked to the transient trajectories
between attractor basins, a concept referred to as “itinerancy” in the literature [79,
84, 166, 167, 168].

COMPARISON BETWEEN THE BRNN AND THE COMPLETE BRNN HIERARCHIES

We defined the BRNN hierarchy as a classification of Boolean networks whose at-
tractors’ types are induced by the existence of an output layer. The complete BRNN
hierarchy consists of a similar classification of Boolean networks whose attractors’
type specification has been totally relaxed. In fact, the BRNN hierarchy can be seen
as a proper initial segment of the complete BRNN hierarchy: the networks of BRNN
hierarchy and those of the initial segment of length ω + 1 of the complete BRNN
hierarchy recognize the same languages.

Proposition 44. Let L ⊆ (Bk)ω. Then L is recognizable by some networkN of the BRNN
hierarchy iff L is also recognizable by some network N ′ of the complete BRNN hierarchy
such that either d(N ′) < ω or d(N ′) = ω andN ′ contains a maximal co-alternating tree
of length ω but no maximal alternating tree of length ω.

Proof. Given any deterministic Muller automatonA, let the degree ofA in the Wag-
ner hierarchy be denoted by dW(A). Then, the relationship between the DBA and
the Wagner hierarchies ensures that L is recognizable by some deterministic Bü-
chi automaton iff L is also recognizable by some deterministic Muller automaton
A such that either dW(A) < ω or dW(A) = ω and A contains a maximal co-
alternating tree of length ω but no maximal alternating tree of length ω [134]. The-
orems 28 and 37 together with Proposition 40 allow to transpose these results to the
neural network context, and therefore lead to the conclusion.

The discrepancy between the RNN the complete BRNN hierarchies is explained
by the type specification of the attractors of the networks. Indeed, the networks
whose attractors’ types are determined by some output layer will never contain
any maximal alternating or co-alternating chain of length strictly larger than ω in
their underlying automata.10 By contrast, the networks whose attractors’ types are
freely determined can contain maximal alternating or co-alternating trees of length
up to ωω. Moreover, it can be observed that for any ordinal α ≤ ω, the two notions
of alternating chain and alternating tree of length α coincide. Therefore, according
to Theorems 33 and 42, the decidability procedures of the the BRNN hierarchy and
of the initial segment of length ω + 1 of the complete BRNN hierarchy reduce to

9This observation follows from the definition of an alternating tree.
10Indeed, suppose that A1 and A2 are two attractors of N whose type specifications have been deter-

mined by some output layer. Suppose that A1 is meaningful and that A1 ⊆ A2. It necessarilly follows
that A2 is also meaningful. By transposing the reasoning on the cycles of the underlying automaton, it
follows that this latter can never involve alternating or co-alternating trees of length strictly larger than
ω (ω1 for one alternation).
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the very same. The comparison between the two hierarchies is illustrated in Figure
32.
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Figure 32 – Comparison between the RNN and the complete BRNN hierarchies. The BRNN
hierarchy, depicted by the sequence of blacks classes, consists of an initial segment of length
ω + 1 of the complete BRNN hierarchy, which has height ωω .

7.3.4 APPLICATION

THE BASAL GANGLIA-THALAMOCORTICAL NETWORK

We provide an application of our attractor-based complexity measure to a case
study. For this purpose, we consider one of the main systems of the brain which
is involved in information processing: the basal ganglia-thalamocortical network.
This network has been investigated for many years, in particular in relation to dis-
orders of the motor system and of the sleep-waking cycle, see for instance [6, 7, 8,
9, 83, 93, 94, 121, 162].

More generally, we assume that the encoding of a large amount of the informa-
tion treated by the brain is performed by recurrent patterns of activity circulating in
the information transmitting system of this network. For this reason, we focus our
attention on the complexity of the dynamics that may emerge from that system. We
consider a Boolean recurrent neural network model of the information transmitting
system of the basal ganglia-thalamocortical network, and study the attractor-based
complexity of this network.

The basal ganglia-thalamocortical network is formed by several parallel and
segregated circuits involving different areas of the cerebral cortex: striatum, pal-
lidum, thalamus, subthalamic nucleus and midbrain. A characteristic of all the
circuits of the basal ganglia-thalamocortical network is a combination of “open”
and “closed” loops with ascending sensory afferences reaching the thalamus and
the midbrain, and with descending motor efferences from the midbrain (the tec-
tospinal tract) and the cortex (the corticospinal tract). The pattern of connectivity
corresponds to the wealth of data reported in the literature [8, 9, 70, 158].

We assume that each brain area is formed by a neural network and that the
network of brain areas corresponding to the basal ganglia-thalamocortical network
can be modeled by a Boolean neural network formed by 9 nodes: superior col-
liculus (SC), Thalamus, thalamic reticular nucleus (NRT), Cerebral Cortex, the two
functional parts (striatopallidal and the striatonigral components) of the striatum
(Str), the subthalamic nucleus (STN), the external part of the pallidum (GPe), and
the output nuclei of the basal ganglia formed by the GABAergic projection neurons
of the intermediate part of the pallidum and of the substantia nigra pars reticulata



7.3. Boolean Neural Networks 99

(GPi/SNR).

We consider the ascending sensory pathway (IN), that reaches SC and the Tha-
lamus. SC sends a projection outside of the system (OUT), to the motor system. The
thalamus sends excitatory connections within the system via the thalamo-pallidal,
thalamo-striatal and thalamo-cortical projections. Notice that STN receives also an
excitatory projection from the Thalamus. NRT receives excitatory collateral pro-
jections from both the thalamo-cortical and cortico-thalamic projections. In turn,
NRT sends an inhibitory projection to the Thalamus. The Cerebral Cortex receives
also an excitatory input from STN and sends corticofugal projections to the basal
ganglia (striatum and STN), to the thalamus, to the midbrain and to the motor
system (OUT). The only excitatory nucleus of the basal ganglia is STN, that sends
projections to the Cerebral Cortex, to GPe and to GPi/SNR. In the striatum (Str)
the striatopallidal neurons send inhibitory projections to GPe and the striatonigral
neurons send inhibitory projections to GPi/SNR, via the so-called “direct” path-
way. The pallidum (GPe) plays a paramount role because it is an inhibitory nucleus,
with reciprocal connections back to the striatum and to STN and a downstream in-
hibitory projection to GPi/SNR via the so-called “indirect” pathway. It is interest-
ing to notice the presence of inhibitory projections that inhibit the inhibitory nuclei
within the basal ganglia, thus leading to a kind of “facilitation”, but also inhibitory
projections that inhibit RTN, that is a major nucleus in regulating the activity of
the thalamus. Our Boolean model of the basal ganglia-thalamocortical network is
illustrated in Figure 33 and its connectivity patterns given in Table 4.

For sake of simplicity, we assume that all the nodes of the network are Boo-
lean and that the two inputs are merged into one Boolean input node. Hence, one
obtains a Boolean model of the basal-ganglia thalamocortical network with 9 acti-
vation nodes and 1 input node. 11

Table 4 – The adjancency matrix of the Boolean model of the basal ganglia-thalamocortical
network.

Source Target

Node # Name IN SC Thal. RTN GPi/SNr STN GPe Str-D2 Str-D1 CCortex

0 IN · 1 1 · · · · · · ·
1 SC int1 · 1 · · · · · · ·
2 Thal. · · · 1 · 1 1 1 1 1
3 RTN · · -1 · · · · · · ·
4 GPi/SNr · -1 -1 -1 · · · · · ·
5 STN · · · · 2 · 2 · · 2
6 GPe · · · -1/2 -1/2 -1/2 · -1/2 -1/2 ·
7 Str-D2 · · · · · · -1 · · ·
8 Str-D1 · · · · -1/2 · -1/2 · · ·
9 CCortex int2 1/2 1/2 1/2 · 1/2 · 1/2 1/2 ·

11Each of the 9 activation nodes of the network can be either active or quiet. Hence, there are 29 = 512
possible network states, each one being represented by a 9-dimensional Boolean vector describing the
sequence of active and quiet activation nodes. For example, the network state (0, 1, 0, 0, 1, 1, 1, 1) means
that the nodes #1 (SC), #3 (RTN) and #4 (GPi/SNR) are quiet, whereas every other activation node is
active.
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Figure 33 – Boolean model of the basal ganglia-thalamocortical network. The network is
constituted of 9 different interconnected brain areas, each one represented by a single node
in the Boolean neural network model: superior colliculus (SC), Thalamus, thalamic reticular
nucleus (NRT), Cerebral Cortex, the striatopallidal and the striatonigral components of the
striatum (Str), the subthalamic nucleus (STN), the external part of the pallidum (GPe), and
the output nuclei of the basal ganglia formed by the GABAergic projection neurons of the
intermediate part of the pallidum and of the substantia nigra pars reticulata (GPi/SNR). We
consider also the inputs (IN) from the ascending sensory pathway and the motor outputs
(OUT). The excitatory pathways are labeled in blue and the inhibitory ones in orange.

ATTRACTOR-BASED COMPLEXITY

We now compute the attractor-based complexity measure of our Boolean model of
the basal ganglia-thalamocortical networkN . Since the behaviour of networkN is
not determined by any designated output layer, the attractor-based complexity of
N will be measured with respect to the complete BRNN hierarchy rather than with
respect to the BRNN hierarchy. According to these considerations, as mentioned in
Theorem 42, the attractor-based complexity of network N relies on the graphical
structure of its corresponding deterministic Muller automaton AN .

The deterministic Muller automaton AN associated to the network N contains
29 = 512 states (numbered from 0 to 511) and 512× 2 = 1024 transitions (512 la-
belled by 0 and 512 labelled by 1).12 The automaton is illustrated in Figure 34(a).
It contains only one strongly connected component C, which corresponds to the
subgraph induced by all states reachable from the initial state 0.13 By Theorem
42, the attractor-based complexity of N is precisely determined by the cyclic struc-

12cf. Proposition 35 for the construction of AN .
13We recall that a directed graph is called strongly connected if there is a path from every vertex of

the graph to every other vertex.
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ture (aternating-trees) of C. The strictly connected component is illustrated in Fig-
ure 34(b).

This strongly connected component C corresponds to the subgraph of AN con-
stituted by all states reachable from the initial state 0. In other words, any state of
AN outside the strongly connected component C cannot be reached from the initial
state 0, meaning that it can never occur in the dynamics of networkN starting from
initial state 0, and hence plays no role in the attractor-based complexity of network
N . In fact, the attractor-based complexity of network N will be precisely deter-
mined by the cyclic structure of the strongly connected component C of automaton
AN .

Figure 34 – Deterministic Muller automaton based on the “basal ganglia-thalamocortical”
network of Figure 33. a. The graph of the automaton AN associated to network N contains
512 states and 1024 directed transitions. The colours of the transitions represent their labels:
green for label 0 and red for label 1. For sake of readability, the directions of the transitions
have been removed. The states and transitions of the strongly connected component C of
AN have been pulled out of the central graph and drawn in larger font. b. The graph of the
strongly connected component C of AN .

In order to complete the description of the Muller automaton AN , we further
need to specify its table, i.e., to determine among all possible cycles which ones
are successful and which ones are non-successful.14 According to the biunivocal
correspondence between cycles of AN and attractors of N , this amounts to as-
signing among all possible attractors of N which ones are meaningful and which
ones are spurious. For this purpose, we have computed the list of all cycles of the
strictly connected component C, and for each cycle, we have further computed its
decomposition into constitutive cycles (cycles which do not visit the same vertex
two times). The results are summarized in Table 5. Then, we have assigned a type
specification to each cycle of C according to the following neurobiological criteria:
First, a constitutive cycle is considered to be spurious if it is characterized either by
active SC and quiet Thalamus at the same time step or by a quiet GPi/SNR during
the majority of the duration of the constitutive cycle. A constitutive cycle is mean-
ingful otherwise. Secondly, a non-constitutive cycle is considered to be meaningful

14Note that since every cycle ofAN is by definition contained in a strongly connected component and
since C is the only strongly connected component of AN , all cycles of AN are necessarily contained in
C.
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if it contains a majority of meaningful constitutive cycles, and spurious if it con-
tains a majority of spurious constitutive cycles – and in the case of it containing as
much meaningful as spurious constitutive cycles, its type specification was chosen
to be meaningful. In order to illustrate this procedure, let us consider for example
the cycles starting from state 0. Table 5 shows that there are overall 68 cycles and 24
constitutive cycles starting from state 0. An example of this assignment procedure
is illustrated in Figure 35.

Table 5 – Number of cycles and constitutive cycles starting from each state of the strongly
connected component C.

State # cycles # constitutive cycles

0 68 24
31 47 20
33 87 24
63 93 21
95 39 21
127 21 17
128 63 24
159 77 22
161 72 20
191 52 19
223 43 21
255 53 17
384 67 24
417 35 20
479 48 16
511 84 21

After the type specification to every cycle has been assigned, the attractor-based
complexity of the network N can be explicitly computed. Theorem 42 ensures that
the degree of N is given by the length of a maximal (co-)alternating tree contained
in AN , or more precisely, contained in C.15 After an exhaustive analysis of the
strongly connected component C, we found no maximal alternating trees with a
length above ω5. However, we found 3 maximal co-alternating trees of length ω6.
One such maximal co-alternating tree is illustrated in Figure 36. According to these
considerations, it follows from Theorem 42 that the attractor-based complexity of
network N is ω6 and that N is non-self-dual.

As already mentioned, the attractor-based complexity measure is linked to the
intricacy of the set of attractors of the network, and more precisely, to the maximal
number of times that a network might alternate between meaningful and spurious
attractors along some computation. This feature refers to the ability of the networks
to perform more or less complicated classification tasks of their input streams via

15Indeed, since AN contains only one strongly connected component C, the maximal (co-)alternating
tree of AN is necessarily contained in C. The reason is that every cycle of AN is, by being a cycle, nec-
essarily contained in a strongly connected component of AN . And since C is the only such component,
every cycle is contained in C. Hence, the whole maximal (co-)alternating tree, by being composed of
several cycles, is also necessarily contained in C.
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Figure 35 – A cycle and its constitutive cycles. a. A cycle starting from state 0 given by the
states (0, 0, 384, 223, 511, 191, 63, 33, 128, 95, 33, 0). b. This cycle contains three constitutive
cycles (0, 0), (0, 384, 223, 511, 191, 63, 33, 0) and (33, 128, 95, 33) that were assigned with
type specification spurious (dotted line), meaningful (solid line), and spurious (dotted line),
respectively. c. Sequence of states (with graphical representation of the corresponding ac-
tivated nodes) of the basal ganglia-thalamocortical network corresponding to the spurious
constitutive cycle (0, 0). d. Sequence of states of the network corresponding to the meaning-
ful constitutive cycle (0, 384, 223, 511, 191, 63, 33, 0). e. Sequence of states of the activated
network corresponding to the spurious constitutive cycle (33, 128, 95, 33).

the manifestation of meaningful or spurious attractor dynamics. In this case, a
degree of ω6 signifies the existence of a sequence 7 attractors, one included into
the other, that the network might alternatively visit along its computations. This
disposition of attractors provides the possibility to discriminate (in a binary way)
between input streams of an ω-regular language of degree ω6 in the Wagner hi-
erarchy. It can also reproduce the discrimination task associated to any ω-regular
language of any strictly smaller degree.



104 7. Attractor-Based Computation

Figure 36 – A maximal co-alternating tree of the deterministic Muller automatonAN . Panels
0 to 7 illustrate the sequence of eight cycles (C0, C1, C2, C3, C4, C5, C6, C7) one included into
the next. Cycles C0, C1, C3, C5, and C7 are spurious whereas cycles C2, C4, and C6 are mean-
ingful. The sequence of cycles (C1, C2, C3, C4, C5, C6, C7) compose a maximal co-alternating
tree of AN . This maximal co-alternating tree contains 6 alternations between spurious and
meaningful cycles, and thus has a length of ω6. Therefore, the attractor-based degree of N
equals ω6.

7.4 DETERMINISTIC SIGMOIDAL NEURAL NETWORKS

7.4.1 THE MODEL

We now generalize the study to the case of sigmoidal neural networks. More pre-
cisely, we consider a general model of first-order recurrent neural networks, as
described in Chapter 4, provided of three groups of neurons: a layer of Boolean
“input” cells, which is connected to a set of recurrently interconnected sigmoidal
“internal” neurons, itself connected to a layer of Boolean “output” cells. At each
time step, the activation value of each neuron is given by an affine combination of
the other cells’ activation values and inputs.

The sigmoidal internal neurons introduce the biological source of nonlinear-
ity which is so important to neural computation. They provide the possibility to
surpass the capabilities of finite state automata, or even of Turing machines. The
sigmoidal activation functions are particularly appropriate for the implementation
of various learning algorithms. In neurobiology, they are usually considered as a
representation of the rate of action potential firing in the cell. The Boolean input
and output cells carry out the exchange of discrete information between the net-
work and the environment. It will be noticed that, if some infinite input stream
is supplied, the output cells necessarily enter into some attractor dynamics. The
Boolean nature of the input and output cells provides the possibility to consider
recurrent neural networks as computing systems working on discrete inputs and
outputs streams, and consequently, to compare their computational capabilities to
those of classical abstract machines, along the lines of [24, 26, 154, 155]. The ex-
pressive power of the networks will be related to the attractor dynamics of their
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Boolean output cells.

Formally, a sigmoidal deterministic (first-order) recurrent neural network (simply de-
noted by D-RNN) contains M Boolean input cells (ui)

M
i=1, N sigmoidal internal

neurons (xi)
N
i=1, and P Boolean output cells (yi)

P
i=1. The dynamics of the network

is computed as usual: given the activation values of the input and internal neu-
rons (uj)

M
j=1 and (xj)

N
j=1 at time t, the activation values of each sigmoidal internal

and Boolean output neuron xi and yi at time t + 1 are updated by the following
equations, respectively:

xi(t + 1) = σ

(
N

∑
j=1

aij(t) · xj(t) +
M

∑
j=1

bij(t) · uj(t) + ci(t)

)
for i = 1, . . . , N (7.2)

yi(t + 1) = θ

(
N

∑
j=1

aij(t) · xj(t) +
M

∑
j=1

bij(t) · uj(t) + ci(t)

)
for i = 1, . . . , P (7.3)

where aij(t), bij(t), and ci(t) are the weights of the synaptic connections and the
bias of the network at time t, and σ and θ are the linear-sigmoid16 and Heaviside
step activation functions. Such a D-RNN is illustrated in Figure 37.

The dynamics of any D-RNN N is therefore given by the function fN : BM ×
BN → BN ×BP defined by

fN (u(t), x(t)) = (x(t + 1), y(t + 1))

where the components of x(t + 1) and y(t + 1) are given by Equations (7.2) and
(7.3), respectively.

Consider some D-RNN N provided with M Boolean input cells, N sigmoidal
internal cells, and P Boolean output cells. For each time step t ≥ 0, the state ofN at
time t consists if a pair of the form

〈x(t), y(t)〉 ∈ [0, 1]N ×BP.

The second element of this pair, namely y(t), is called the output state of N at time
t.

Assuming the initial state of the network to be 〈x(0), y(0)〉 = 〈0, 0〉, any infinite
input stream

s = (u(t))t∈N = u(0)u(1)u(2) · · · ∈ (BM)ω

induces via Equations (7.2) and (7.3) an infinite sequence of consecutive states

cs = (〈x(t), y(t)〉)t∈N = 〈x(0), y(0)〉〈x(1), y(1)〉 · · · ∈ ([0, 1]N ×BP)ω

called the computation of N induced by s. The corresponding infinite sequence of
output states

c′s = (y(t))t∈N = y(0)y(1)y(2) · · · ∈ (BP)ω

is the Boolean computation of N induced by s. The computation of such a D-RNN is
illustrated in Figure 37.

16The linear-sigmoid activation function is a simple piecewise linear approximation of a sigmoidal
activation function. However, the results of this section remain valid for any other kind of sigmoidal
activation function satisfying the properties mentioned in [88, Section 4].
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Note that any D-RNN N (with P Boolean output cells) can only have 2P – i.e.,
finitely many – possible distinct output states. Hence, by a similar argument as
in Section 7.3.1, for any infinite Boolean computation c′s, there necessarily exists at
least one output state that recurs infinitely often in c′s. In fact, any Boolean com-
putation c′s necessarily consists of a finite prefix of output states followed by an
infinite suffix of output states that repeat infinitely often – yet not necessarily in a
periodic manner. The non-empty set of all the output states that repeat infinitely
often in c′s is denoted by inf(c′s). Following Definition 24, a set of states of the form
inf(c′s) ⊆ BP will be called an attractor for N . In words, an attractor of N is a set
of output states into which the Boolean computation of the network could become
forever trapped – yet not necessarily in a periodic manner. An attractor of some
D-RNN is illustrated in Figure 37.

Once again, we suppose that the attractors are of two distinct types, either mean-
ingful or spurious, and from this point onwards, we assume that any D-RNN is
equipped with a corresponding classification of all of its attractors into meaningful
and spurious types.

· · ·

· · ·

Attractor (periodic)

Infinite Boolean
output stream

Infinite Boolean
input stream

· · · · · ·

Boolean
input
cells

Boolean
output
cells

Sigmoid
internal

cells

Figure 37 – Illustration of the computational process performed by some D-RNN. The in-
finite Boolean input stream s = u(0)u(1)u(2) · · · ∈ (BM)ω , represented by the blue pat-
tern, induces a corresponding Boolean output stream – or Boolean computation – c′s =

y(0)y(1)y(2) · · · ∈ (BP)ω , represented by the red pattern. The filled and empty circles rep-
resent active and quiet Boolean cells, respectively. From some time step onwards, a certain
set of output states begins to repeat infinitely often: this corresponds the attractor associated
to the input stream s. If the attractor occurs in a periodic manner, it corresponds to some
spatiotemporal pattern.

Given some D-RNNN , an infinite input stream s ∈ (BM)ω ofN is called mean-
ingful if inf(c′s) is a meaningful attractor, and it is called spurious if inf(c′s) is a spu-
rious attractor. The set of all meaningful input streams of N is called the neural
ω-language recognized by N and is denoted by L(N ). A set L ⊆ (BM)ω is said to be
recognizable by some D-RNN if there exists a network N such that L(N ) = L.
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Now, six different models of D-RNNs can be considered according to the nature
of their synaptic weights:

1. the static rational D-RNNs (D-St-RNN[Q]s) refer to the class of all D-RNNs
whose every weights are static and modelled by rational values.

2. the static real (or analog) D-RNNs (D-St-RNN[R]s) refer to the class of all D-
RNNs whose every weights are static and modelled by real values.

3. the bi-valued evolving rational D-RNNs (D-Ev2-RNN[Q]s) refer to the class of
all D-RNNs whose every evolving weights are bi-valued and every static
weights are rational.

4. the bi-valued evolving real D-RNNs (D-Ev2-RNN[R]s) refer to the class of all D-
RNNs whose every evolving weights are bi-valued and every static weights
are real.

5. the (general) evolving rational D-RNNs (D-Ev-RNN[Q]s) refer to the class of all
D-RNNs whose every evolving and static weights are rational.

6. the (general) evolving real D-RNNs (D-Ev-RNN[R]s) refer to the class of all D-
RNNs whose every evolving and static weights are real.

The following strict inclusions, illustrated in Figure 38, hold by definition:

D-St-RNN[Q]s ( D-Ev2-RNN[Q]s ( D-Ev-RNN[Q]s( ( (

D-St-RNN[R]s ( D-Ev2-RNN[R]s ( D-Ev-RNN[R]s

7.4.2 EXPRESSIVE POWER

We now provide a complete characterization of the expressive powers of determin-
istic sigmoidal recurrent neural networks [30]. We show that D-St-RNN[Q]s are
computationally equivalent to Muller Turing machines, and hence, possess an ex-
pressive power strictly inside the class of BC(Π0

2) neural ω-languages (Theorem
45). The five other models of D-Ev2-RNN[Q]s, D-Ev-RNN[Q]s, D-St-RNN[R]s, D-
Ev2-RNN[R]s, D-Ev-RNN[R]s are equivalent to each other and strictly more pow-
erful than deterministic Muller Turing machines, with an expressive power equal
to the class of BC(Π0

2) neural ω-languages (Theorem 46). In this sense, these five
neural models of computation are super-Turing. These results are summarized in
Table 6 and Figure 38.

We first characterize the computational power of D-St-RNN[Q]s.

Theorem 45. Let L ⊆ (BM)ω be some ω-language. Then L is recognizable by some D-St-
RNN[Q] if and only if L is recognizable by some deterministic Muller TM. In particular, if
L is recognizable by some D-St-RNN[Q], then L ∈ BC(Π0

2).

Proof. LetN be some D-St-RNN[Q] recognizing the neural ω-language L(N ). Since
the synaptic weights of N are rational and remain constant over time, Equations
(7.2) and (7.3) are recursive, and hence, the function fN defined by fN (u(t), x(t)) =
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STATIC BI-VALUED EVOLVING EVOLVING

D-St-RNN[Q]s D-Ev2-RNN[Q]s D-Ev-RNN[Q]s

Q Turing (Muller) super-Turing super-Turing

∈ BC(Π0
2) = BC(Π0

2) = BC(Π0
2)

D-St-RNN[R]s D-Ev2-RNN[R]s D-Ev-RNN[R]s

R super-Turing super-Turing super-Turing

= BC(Π0
2) = BC(Π0

2) = BC(Π0
2)

Table 6 – Expressive power of the six models of D-RNNs.

Strictly above
det. Muller TMs
All BC(⇧0

2)-sets

Equivalent to
det. Muller TMs

Inside BC(⇧0
2)-sets

D-Ev-RNN[R]s

D-Ev2-RNN[R]s

D-St-RNN[R]s

D-St-RNN[Q]s

D-Ev2-RNN[Q]s

D-Ev-RNN[Q]s

=

=

=

=

<

=

<

Figure 38 – Relationships between the expressive powers of the six models of first-order D-
RNNs. The directed arrow correspond to the strict inclusions between the different classes of
D-RNNs: there is an arrow from one model to the other if the former is less powerful than or
equally powerful to the latter. The relation represented by these arrows is clearly transitive.
In the sequel, we show that D-St-RNN[Q]s are computationally equivalent to deterministic
Muller Turing machines (Theorem 45), and that the five other models of D-Ev2-RNN[Q]s,
D-Ev-RNN[Q]s, D-St-RNN[R]s, D-Ev2-RNN[R]s, D-Ev-RNN[R]s are all equivalent to each
other, and strictly more powerful than deterministic Muller Turing machines (Theorem 46).
To illustrate these results, the arrows are labeled by a “<” or an “=” to designate if there is a
strict inequality or an equivalence between the expressive powers of the respective models.
The border between the Turing and super-Turing level is represented by the dashed line.

(x(t + 1), y(t + 1)) is also clearly recursive. Consequently, there exists some TMM
with N + P work tapes which can simulate the behavior of N by writing on its
tapes the successive rational and Boolean activations values of the N and P internal
and output cells of N , respectively. We next provideM with 2P additional desig-
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nated states q1, . . . , q2P , and we modify its program in such a way that, after each
simulation step,M enters state qi iff N is in the i-th output state bi ∈ BP, accord-
ing to the lexicographic order. In this way, each infinite input stream s ∈ (BM)ω

induces on the one side, in the network N , a Boolean computation c′s with an asso-
ciated attractor inf(c′s) ⊆ BP, and, on the other side, in the machineM, an infinite
run ρs with an associated set of sates that are visited infinitely often inf(ρs) of the
form inf(ρs) = Q ∪ Q′, with Q′ ⊆ {q1, . . . , q2P} and Q′ 6= ∅. By construction, for
any infinite input streams s, s′ ∈ (BM)ω, the relation inf(c′s) 6= inf(c′s′)⇒ inf(ρs) 6=
inf(ρs′) holds. We can thus define the following Muller table of M, namely T =

{inf(ρs) : inf(c′s) is a meaningful attractor for N , for any s ∈ (BM)ω}.17 Accord-
ing to this construction, one has s ∈ L(N ) iff inf(c′s) is a meaningful attractor iff
inf(ρs) ∈ T iff s ∈ L(M). Therefore, L(N ) = L(M), showing that L(N ) is recog-
nized by the deterministic Muller TMM.

Conversely, letM be some deterministic Muller TM with table T = {T1, . . . , Tk}
and associated ω-language L(M). By the construction given in [155], there exists
some (static) rational-weighted RNN N which can simulate the behavior of M.
Now, if M contains n states q1, . . . , qn, we provide N with P additional Boolean
output cells y1, . . . , yP, with P satisfying 2P ≥ n, and we update the simulation
process such that, during the processing of the input stream, the machineM visits
the state qk iff the network N activates the k-th output state bk, according to the
lexicographic order, for k = 1, . . . , n. Next, for each element Ti = {qi1 , . . . , qik(i)} of
the Muller table T of M, we set the meaningful attractor Ai = {bi1 , . . . , bik(i)} in
the networkN . All other possible attractors ofN are considered to be spurious. In
this way, for any infinite input stream s ∈ (BM)ω, the infinite run ρs ofM satisfies
inf(ρs) ∈ T iff the Boolean computation c′s ofN satisfies that inf(c′s) is a meaningful
attractor. In other words, s ∈ L(M) iff s ∈ L(N ). Therefore, L(M) = L(N ),
showing that L(M) is recognized by the D-St-RNN[Q] N .

The second part of the Theorem comes from the previous equivalence and the
fact that any ω-language recognized by some deterministic Muller TM is in BC(Π0

2)

[134].

We now characterize the computational powers of the five remaining models of
D-RNNs.

Theorem 46. The five models of D-Ev2-RNN[Q]s, D-Ev-RNN[Q]s, D-St-RNN[R]s, D-
Ev2-RNN[R]s, and D-Ev-RNN[R]s are all super-Turing equivalent to each other, and
recognize the class of BC(Π0

2) neural ω-languages. In other words, for any ω-language
L ⊆ (BM)ω, the following conditions are equivalent:

1. L ∈ BC(Π0
2)

2. L is recognizable by some D-Ev2-RNN[Q]

3. L is recognizable by some D-Ev-RNN[Q]

4. L is recognizable by some D-St-RNN[R]

17Note that the relation inf(c′s) 6= inf(c′s′ )⇒ inf(ρs) 6= inf(ρs′ ) ensures that the table T is well defined,
since it is impossible to have a situation where inf(c′s) is meaningful, inf(c′s′ ) is spurious, and inf(ρs) =

inf(ρs′ ), which would mean that inf(ρs) ∈ T , inf(ρs′ ) 6∈ T .
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5. L is recognizable by some D-Ev2-RNN[R]

6. L is recognizable by some D-Ev-RNN[R]

Proof. The proof is achieved via the two forthcoming Propositions 47 and 48.

First, let L ⊆ (BM)ω such that L ∈ BC(Π0
2). By Proposition 47, L is recognized

by some D-Ev2-RNN[Q] and by some D-St-RNN[R]. By definition, L is also recog-
nizable by some D-Ev-RNN[Q], D-Ev2-RNN[R], and D-Ev-RNN[R] (cf. arrows in
Figure 38). This proves the five implications from Point (1) to Points (2), (3), (4), (5),
and (6).

Conversely, assume that L is recognizable by some D-Ev2-RNN[Q], some D-
Ev-RNN[Q], some D-St-RNN[R], or some D-Ev2-RNN[R]. By definition, L is also
recognizable by some D-Ev-RNN[R] (cf. arrows in Figure 38). By Proposition 48,
L ∈ BC(Π0

2). This proves the five other implications from Points (2), (3), (4), (5),
and (6) to Point (1).

We now proceed to the proofs of Propositions 47 and 48.

Proposition 47. Let L ⊆ (BM)ω. If L ∈ BC(Π0
2), then L is recognizable by some D-St-

RNN[R] and by some D-Ev2-RNN[Q].

Proof. First of all, let L ⊆ (BM)ω such that L ∈ Π0
2. We will consider the case of

L ∈ BC(Π0
2) afterwards. Then L can be written as

L =
⋂
i≥0

⋃
j≥0

pi,j · (BM)ω

where each pi,j ∈ (BM)∗. Hence, a given infinite input s ∈ (BM)ω belongs to
L iff for all index i ≥ 0 there exists an index j ≥ 0 such that s ∈ pi,j · (BM)ω,
or equivalently, iff for all i ≥ 0 there exists j ≥ 0 such that pi,j ( s. Besides,
as described in details in [34], one can show that the infinite sequence (pi,j)i,j∈N

can be encoded into some single real number rL such that, for any pair of indices
(i, j) ∈N×N, the decoding procedure of (rL, i, j) 7→ pi,j is actually recursive.

According to these considerations, the problem of determining whether some
input s ∈ (BM)ω supplied step by step belongs to L or not can be decided in infinite
time by the Algorithm 5 given below. This algorithm consists of two subroutines
performed in parallel. It uses the designated real number rL (on line 12), and it is
designed in such a precise way that, on every input s ∈ (BM)ω, it returns infinitely
many 1’s iff s ∈ ⋂i≥0

⋃
j≥0 pi,j · (BM)ω = L. Moreover, note that if the designated

real number rL is provided in advance, then every step of Algorithm 5 is actually
recursive.

Consequently, according to the real time computational equivalence between
rational-weighted RNNs and TMs [155], there exists some RNN[Q]N1 such that, if
the real number rL is given in advance as the activation value of one of its neuron
x, then N1 is actually capable of simulating the behavior of Algorithm 5. In par-
ticular, to perform line 4, one uses M distinct cells in order to store the M Boolean
components of u(t) (see [155] for further details). Consequently, if one adds to x
a background synaptic connection of real intensity rL, one obtains a RNN[R] N2
capable of simulating Algorithm 5. Hence, if one further adds to N2 an additional
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Boolean output cell y which is designed to take value 1 iff Algorithm 5 returns a 1,
one obtains a D-St-RNN[R] N such that, on every input s ∈ (BM)ω, the Boolean
output cell y will produce infinitely many 1’s iff Algorithm 5 will return infinitely
many 1’s, namely iff s ∈ ⋂i≥0

⋃
j≥0 pi,j · (BM)ω = L. Consequently, by taking {(1)}

and {(0), (1)} as the two meaningful attractors of N , one has L(N ) = L, meaning
that L is recognized by some D-St-RNN[R].

We now modify the proof in order to capture the case of a D-Ev2-RNN[Q]. In
this context, one can show that the infinite sequence (pi,j)i,j∈N can be encoded into
some infinite word wL ∈ {0, 1}ω such that, for any pair of indices (i, j) ∈ N×N,
the decoding procedure of (wL, i, j) 7→ pi,j is actually recursive. According to these
considerations, we modify Algorithm 5 by assuming that it receives the designated
infinite word wL bit by bit instead of having the designated real number rL be pro-
vided in advance. One then replaces lines 11 and 12 by the following two ones:

11: wait until pi,j has been encoded in wL and until c ≥ |pi,j|
12: decode pi,j from wL

Algorithm 5 can be performed by some D-Ev2-RNN[Q]. Indeed, in the D-St-
RNN[R] N described above, one replaces the static background activity of neu-
ron x of real intensity rL by an evolving background activity of intensities wL =

wL(0)wL(1)wL(2) · · · ∈ {0, 1}ω. In this way, one obtains a network N ′1 whose all

Algorithm 5 Procedure which uses the designated real number rL

Require: Input s = u(0)u(1)u(2) · · · ∈ (BM)ω supplied step by step at successive
time steps t = 0, 1, 2, . . .

1: SUBROUTINE 1
2: c← 0 // c counts the number of letters of s

3: for all time step t ≥ 0 do
4: store each incoming Boolean vector u(t) ∈ BM

5: c← c + 1
6: end for
7: END SUBROUTINE 1

8: SUBROUTINE 2
9: i← 0, j← 0

10: loop
11: wait until c ≥ |pi,j| // wait until length(s) ≥ length(pi,j)

12: decode pi,j from rL // recursive procedure if rL is given in advance

13: if pi,j ⊆ s[0:c] then // s ∈ pi,j · (BM)ω

14: return 1 // ∃ j s.t. s ∈ pi,j · (BM)ω

15: i← i + 1, j← 0 // test if s ∈ pi+1,0 · (BM)ω

16: else // s 6∈ pi,j · (BM)ω

17: return 0 // ¬∃ j′ ≤ j s.t. s ∈ pi,j · (BM)ω

18: i← i, j← j + 1 // test if s ∈ pi,j+1 · (BM)ω

19: end if
20: end loop
21: END SUBROUTINE 2
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static synaptic weights are rational and whose only evolving synaptic weight is bi-
valued. We next slightly modify this networks in order to perform correctly the
recursive updated lines 11 and 12 of Algorithm 5. One obtains a D-Ev2-RNN[Q]
N ′ such that, on every input s ∈ (BM)ω, the Boolean output cell y of N ′ will pro-
duce infinitely many 1’s iff the updated Algorithm 5 will return infinitely many 1’s,
namely iff s ∈ ⋂i≥0

⋃
j≥0 pi,j · (BM)ω = L. Therefore, by taking {(1)} and {(0), (1)}

as the two sole meaningful attractors of N ′, one obtains L(N ′) = L, meaning that
L is recognized by some D-Ev2-RNN[Q].

This concludes the proof for the case of L ∈ Π0
2. We finally extend the proof

for the case of L ∈ BC(Π0
2). We thus show that any finite union and any comple-

mentation of a Π0
2-set can also be recognized by some D-St-RNN[R] and by some

D-Ev2-RNN[Q].

First, let L = L1 ∪ L2 such that Li ∈ Π0
2, for i = 1, 2. By the previous argu-

ments, there exist two D-St-RNN[R]s (or two D-Ev2-RNN[Q]s) N1 and N2 which
recognize L1 and L2, respectively. By suitably merging N1 and N2 into some new
networkN , and by setting as meaningful attractors ofN all those involving at least
one output state for which at least one of the two Boolean output cells is spiking,
one obtains a D-St-RNN[R] (or a D-Ev2-RNN[Q]) N that recognizes L1 ∪ L2. In
other words, one has L(N ) = L1 ∪ L2 = L.

Secondly, let L ∈ Σ0
2. Then by definition, L{ ∈ Π0

2. By the previous arguments,
there exists a D-St-RNN[R] (or a D-Ev2-RNN[Q]) N which recognizes L{ via some
relevant simulation of Algorithm 5. We now slightly update N in a way that its
only Boolean output cell y takes value 1 iff Algorithm 5 returns a 0 (instead of
1). One thus obtains a D-St-RNN[R] (or a D-Ev2-RNN[Q]) N ′ such that, on every
input s ∈ (BM)ω, the Boolean output cell y of N ′ will produce infinitely many 1’s
as well as only finitely many 0’s iff Algorithm 5 will return infinitely many 0’s and
finitely many 1’s, i.e. iff s 6∈ L{, i.e. iff s ∈ L. Consequently, by taking {(1)} as the
sole meaningful attractor of N ′, one obtains a D-St-RNN[R] (or a D-Ev2-RNN[Q])
N ′ that recognizes L. In other terms, L(N ′) = L.

According to these considerations, if L ∈ BC(Π0
2), then L is recognizable by

some D-St-RNN[R] and by some D-Ev2-RNN[Q].

Proposition 48. Let L ⊆ (BM)ω. If L is recognizable by some D-Ev-RNN[R], then
L ∈ BC(Π0

2).

Proof. Let L ⊆ (BM)ω be recognizable by some D-Ev-RNN[R] N . Suppose that N
contains the K meaningful attractors Ai = {bi1 , . . . , bik(i)}, for i = 1, . . . , K, where

1 ≤ i1 < . . . < ik(i) ≤ 2P, and where bn denotes the n-th Boolean vector of BP

according to the lexicographic order.

Note that the dynamics of N can naturally be associated with the function
gN : (BM)ω → (BP)ω defined by gN (s) = c′s, where c′s = y(0)y(1)y(2) · · ·
is the Boolean computation generated by N when the infinite input stream s =

u(0)u(1)u(2) · · · is received. The nature of our dynamics ensures that this function
is sequential, i.e., for any time step t ≥ 0, the Boolean vectors u(t) and y(t) are gen-
erated simultaneously. Hence, gN is Lipschitz and thus continuous, cf. [34, Lemma
1].
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Consequently, the neural ω-language L(N ) can be expressed as follows:

L(N ) =
{

s ∈ (BM)ω : inf(c′s) is a meaningful attractor
}

=
{

s ∈ (BM)ω : inf(c′s) = Ai for some i = 1, . . . , K
}

=
K⋃

i=1

{
s ∈ (BM)ω : inf(c′s) = Ai

}
=

K⋃
i=1

{
s ∈ (BM)ω : for all j ∈ {i1, . . . , ik(i)},

gN (s) contains infinitely many bj’s, and

for all j ∈ {1, . . . , 2P} \ {i1, . . . , ik(i)},

gN (s) contains finitely many bj’s
}

=
K⋃

i=1

[ ⋂
j∈{i1,...,ik(i)}

{
s ∈ (BM)ω : gN (s) has infinitely many bj’s

}
∩

⋂
j∈
{1,...,2P}\
{i1,...,ik(i)}

{
s ∈ (BM)ω : gN (s) has finitely many bj’s

}]

=
K⋃

i=1

[ ⋂
j∈{i1,...,ik(i)}

{
s ∈ (BM)ω : gN (s) ∈

⋂
n≥0

⋃
m≥0

(BP)n+m · bj · (BP)ω

︸ ︷︷ ︸
c′s contains infinitely many bj ’s, i.e.

∀n ≥ 0 ∃m ≥ n c′s (n + m) = bj
thus in Π0

2

}
∩

⋂
j∈
{1,...,2P}\
{i1,...,ik(i)}

{
s ∈ (BM)ω : gN (s) ∈

( ⋂
n≥0

⋃
m≥0

(BP)n+m · bj · (BP)ω
){

︸ ︷︷ ︸
c′s contains only finitely many bj ’s

complement of a Π0
2 -set, thus in Σ0

2

}]

=
K⋃

i=1

[ ⋂
j∈{i1,...,ik(i)}

g−1
N
( ⋂

n≥0

⋃
m≥0

(BP)n+m · bj · (BP)ω
)

︸ ︷︷ ︸
preimage by a continuous function of a Π0

2-set, thus in Π0
2

∩

⋂
j∈
{1,...,2P}\
{i1,...,ik(i)}

g−1
N
(( ⋂

n≥0

⋃
m≥0

(BP)n+m · bj · (BP)ω
){)

︸ ︷︷ ︸
preimage by a continuous function of a Σ0

2-set, thus in Σ0
2

]

It follows that L(N ) ∈ BC(Π0
2), since it consists of finite unions and finite intersec-

tions of Π0
2 and Σ0

2 sets.

7.5 NONDETERMINISTIC SIGMOIDAL NEURAL NETWORKS

In this section, we extend the previous considerations to the nondeterministic con-
text.
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7.5.1 THE MODEL: NEURAL NETWORKS OF TYPE 1

First, we consider the notion of a nondeterministic recurrent neural network intro-
duced by Siegelmann and Sontag [154, 155]. In their framework, the nondetermin-
ism is expressed via the consideration of an external binary guess stream processed
by means of an additional Boolean guess cell.

Formally, a sigmoidal nondeterministic (first-order) recurrent neural network of type 1
(denoted by N-RNN) consists of a recurrent neural networkN as described in Sec-
tion 7.4.1, except that it contains M + 1 rather than M Boolean input cells (ui)

M+1
i=1 .

The Boolean cell uM+1, called the guess cell, carries the Boolean source of nondeter-
minism to be considered [34, 155].

Given some N-RNN N , every element g = g(0)g(1)g(2) · · · ∈ Bω is called a
guess stream for N . Assuming the initial state of the network to be 〈x(0), y(0)〉 =
〈0, 0〉, any infinite input stream s = (u(t))t∈N ∈ (BM)ω and guess stream g =

(g(t))t∈N ∈ Bω induce via Equations (7.2) and (7.3) two infinite sequences of states
and output states

c(s,g) = (〈x(t), y(t)〉)t∈N ∈ ([0, 1]N ×BP)ω

c′(s,g) = (y(t))t∈N ∈ (BP)ω

called the computation and Boolean computation of N induced by (s, g), respectively.
Furthermore, the Definition of an attractor remains unchanged in this case (cf. Sec-
tion 7.4.1), and we assume that any N-RNN is equipped with a corresponding clas-
sification of all of its attractors into meaningful and spurious types. A computation
of a N-RNN of type 1 is illustrated in Figure 39.

An infinite input stream s ∈ (BM)ω is then called meaningful if there exists some
guess stream g ∈ Bω such that inf(c′(s,g)) is a meaningful attractor, and is called spu-
rious otherwise, i.e., if for all guess streams g ∈ Bω, the set inf(c′(s,g)) is a spurious
attractor. The set of all meaningful input streams is called the neural ω-language rec-
ognized byN and is denoted by L(N ). A set L ⊆ (BM)ω is said to be recognizable by
some nondeterministic recurrent neural network of type 1 if there exists a N-RNN
N such that L(N ) = L.

Six different models of N-RNNs can be considered according to the nature of
their synaptic weights:

1. the static rational N-RNNs (N-St-RNN[Q]s) refer to the class of all N-RNNs
whose every weights are static and modelled by rational values.

2. the static real (or analog) N-RNNs (N-St-RNN[R]s) refer to the class of all N-
RNNs whose every weights are static and modelled by real values.

3. the bi-valued evolving rational N-RNNs (N-Ev2-RNN[Q]s) refer to the class of
all N-RNNs whose every evolving weights are bi-valued and every static
weights are rational.

4. the bi-valued evolving real N-RNNs (N-Ev2-RNN[R]s) refer to the class of all N-
RNNs whose every evolving weights are bi-valued and every static weights
are real.
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Figure 39 – Illustration of the computational process performed by some N-RNN of type
1. The infinite Boolean input stream s = u(0)u(1)u(2) · · · ∈ (BM)ω , represented by the
blue pattern, together with the guess stream g = g(0)g(1)g(2) · · · ∈ Bω , represented by the
dark-blue pattern, induce a correspond Boolean output stream – or Boolean computation –
c′s = y(0)y(1)y(2) · · · ∈ (BP)ω , represented by the red pattern. As in Figure 37, the network
necessarily enters into some attractor dynamics.

5. the (general) evolving rational N-RNNs (N-Ev-RNN[Q]s) refer to the class of all
N-RNNs whose every evolving and static weights are rational.

6. the (general) evolving real N-RNNs (N-Ev-RNN[R]s) refer to the class of all N-
RNNs whose every evolving and static weights are real.

The following strict inclusions, illustrated in Figure 41, hold by definition:

N-St-RNN[Q]s ( N-Ev2-RNN[Q]s ( N-Ev-RNN[Q]s( ( (

N-St-RNN[R]s ( N-Ev2-RNN[R]s ( N-Ev-RNN[R]s

7.5.2 THE MODEL: NEURAL NETWORKS OF TYPE 2

We now introduce another notion of nondeterministic recurrent neural network, which
is, in our sense, closer to the biological framework. The nondeterminism is ex-
pressed as a set of possible evolving patterns that the synaptic connections of the
network might follow over the successive time steps. At the beginning of a compu-
tation, the network selects one such possible evolving pattern – in a nondetermin-
istic manner – and then sticks to it throughout its whole computational process.

Formally, a sigmoidal nondeterministic (first-order) recurrent neural network of type
2 (denoted by Ñ-RNN) consists of a pair (Ñ , E), where Ñ is a recurrent neural net-
work with a dynamics governed by Equations (7.2) and (7.3), and E ⊆ ([S, S′]K)ω
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is a set of infinite sequences of K-dimensional vectors describing the set of all pos-
sible evolutions18 for the K evolving synaptic connections of Ñ (K is assumed to be
smaller than the total number of synaptic connections of Ñ ). According to this def-
inition, any D-RNN N is a particular case of a Ñ-RNN (Ñ , E) where the evolution
set E is reduced to a singleton.

Given some Ñ-RNN (Ñ , E), every element e = e(0)e(1)e(2) · · · ∈ E is called a
possible evolution for (Ñ , E), where each vector e(t) describes the values of the K
evolving synaptic weights of Ñ at time step t. Assuming the initial state of the net-
work to be 〈x(0), y(0)〉 = 〈0, 0〉, any infinite input stream s = (u(t))t∈N ∈ (BM)ω

and evolution e ∈ E induce via Equations (7.2) and (7.3) two infinite sequences of
states and output states

c(s,e) = (〈x(t), y(t)〉)t∈N ∈ ([0, 1]N ×BP)ω

c′(s,e) = (y(t))t∈N ∈ (BP)ω

called the computation and Boolean computation of (Ñ , E) induced by (s, e), respec-
tively. Furthermore, the definition of an attractor is once again unchanged and we
assume that any Ñ-RNN is equipped with a corresponding classification of all of
its attractors into meaningful and spurious types. A computation of a Ñ-RNN of
type 2 is illustrated in Figure 40.

An infinite input stream s ∈ (BM)ω is called meaningful if there exists some evo-
lution e ∈ E such that inf(c′(s,e)) is a meaningful attractor, and it is called spurious
otherwise, i.e., if for all evolutions e ∈ E, the set inf(c′(s,e)) is a spurious attractor.
The set of all meaningful input streams is called the neural ω-language recognized by
(Ñ , E) and is denoted by L((Ñ , E)). A set L ⊆ (BM)ω is said to be recognizable by
some nondeterministic recurrent neural network of type 2 if there exists a Ñ-RNN
(Ñ , E) such that L((Ñ , E)) = L.

Four different models of Ñ-RNNs are considered according to the nature of their
synaptic weights.

1. the bi-valued rational Ñ-RNNs (Ñ-Ev2-RNN[Q]s) is the class of all Ñ-RNNs
whose every evolving weights are bi-valued and every static weights are ra-
tional.

2. the (general) rational Ñ-RNNs (Ñ-Ev-RNN[Q]s) is the class of all Ñ-RNNs whose
every evolving and static weights are rational.

3. the bi-valued real Ñ-RNNs (Ñ-Ev2-RNN[R]s) is the class of all Ñ-RNNs whose
every evolving weights are bi-valued and every static weights are real.

4. the (general) real Ñ-RNNs (Ñ-Ev-RNN[R]s) is the class of all Ñ-RNNs whose
every evolving and static weights are real.

The following strict inclusions, illustrated in Figure 41, hold by definition:

Ñ-Ev2-RNN[Q]s ( Ñ-Ev-RNN[Q]s( (

Ñ-Ev2-RNN[R]s ( Ñ-Ev-RNN[R]s

18In this Chapter, an “evolution” is to be understood as a specific pattern of evolvability of the neural
architecture, along the lines of Section 5.5.
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Figure 40 – Illustration of the computational process performed by some Ñ-RNN of type
2. The infinite Boolean input stream s = u(0)u(1)u(2) · · · ∈ (BM)ω , represented by the
blue pattern, together with the evolution e = e(0)e(1)e(2) · · · ∈ Bω , represented by the or-
ange branch of the grey evolution tree over ([S, S′]K)ω , induce a correspond Boolean output
stream – or Boolean computation – c′s = y(0)y(1)y(2) · · · ∈ (BP)ω , represented by the red
pattern. As in Figure 37, the network necessarily enters into some attractor dynamics.

Depending on whether (Ñ , E) is either a Ñ-Ev2-RNN[Q], or a Ñ-Ev2-RNN[R],
or a Ñ-Ev-RNN[Q], or a Ñ-Ev-RNN[R], one has either E ⊆ (BK)ω, or E ⊆ ((Q ∩
[S, S′])K)ω, or E ⊆ ((R ∩ [S, S′])K)ω = ([S, S′]K)ω, respectively. Accordingly, we
assume from now on that (Q ∩ [S, S′])K and (R ∩ [S, S′])K = [S, S′]K are equipped
with the subspace topologies19 of QK and RK, and that ((Q∩ [S, S′])K)ω and ((R∩
[S, S′])K)ω are equipped with the product topologies of these subspace topolo-
gies, respectively. Consequently, the three spaces (BK)ω, ((Q ∩ [S, S′])K)ω and
((R ∩ [S, S′])K)ω = ([S, S′]K)ω are countable products of Polish spaces, and thus
are Polish. From this point onwards, we assume that the evolution set E is a closed
subset of these Polish subspaces, and hence is also Polish [87].20 From a biological
perspective, this assumption is indeed sensible, since every closed subset of such
a product space admits a representation in terms of infinite branches of a given
tree [87]; consequently, our evolution sets are naturally identified with ‘trees of
evolution’.

19Given a topological space (S, T ) and a subset X of S, the subspace topology on X is defined as
TX = {X ∩U : U ∈ T }.

20The forthcoming results hold equally true even with E taken as Π0
2.
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7.5.3 RELATIONSHIP BETWEEN THE TWO MODELS

It is worth mentioning that the nondeterminism of type 1 is only a special case of
that of type 2. More precisely, for every N-RNN N , there exists a Ñ-RNN (Ñ , E)
such that L(N ) = L((Ñ , E)).

Indeed, let N be some N-St-RNN[Q] (or some N-St-RNN[R], resp.) with M
input cells, 1 guess cell, N internal cell, and M output cells. Now, consider the Ñ-
Ev2-RNN[Q] (or the Ñ-Ev2-RNN[R], resp.) (Ñ , E), where Ñ is the same network
as N , but with the guess cell uM+1 being considered as a internal cell x′ with an
associated evolving bias c′(t), and where the (closed) evolution set associated to
this sole evolving weight c′(t) is given by E = Bω. The accepting conditions of N
and (Ñ , E) ensure that L(N ) = L((Ñ , E)).

Similarly, let N be some N-Ev2-RNN[Q] (or some N-Ev2-RNN[R], or N-Ev-
RNN[Q], or N-Ev-RNN[R], resp.) with M input cells, 1 guess cell, N internal cell,
M output cells, and K evolving synaptic weights whose evolutions are given by
the infinite sequence e = e(0)e(1)e(2) · · · ∈ (BK)ω (or e ∈ ((Q ∩ [S, S′])K)ω, or
e ∈ ((R ∩ [S, S′])K)ω, resp.). Now, consider the Ñ-Ev2-RNN[Q] (or the Ñ-Ev2-
RNN[R], or the Ñ-Ev-RNN[Q], or the Ñ-Ev-RNN[R], resp.) (Ñ , E), where Ñ is
the same network asN , but with the guess cell uM+1 being considered as a internal
cell x′ with an associated evolving bias c′(t), and where the (closed) evolution set
associated with its K+ 1 evolving weights (the K same ones asN plus c′(t)) is given
by E = ∏t∈N ({e(t)} × {0, 1}). The accepting conditions of N and (Ñ , E) ensure
that L(N ) = L((Ñ , E)).

According to these considerations as well as to the inclusion relations men-
tioned in Sections 7.5.1 and 7.5.2, the relationship between the expressive capa-
bilities of the ten models of nondeterministic neural networks described in Figure
41 obtains.

7.5.4 EXPRESSIVE POWER

We provide a characterization of the expressive powers of the ten models of non-
deterministic neural networks. First, we show that N-St-RNN[Q]s are computa-
tionally equivalent to nondeterministic Muller Turing machines, and hence, recog-
nize the class of Σ1

1 (lightface) neural ω-languages. Next, we prove that the nine
other models of nondeterministic neural networks are computationally equivalent
to each other; they recognize the class of Σ1

1 (boldface) neural ω-languages, and
hence, are strictly more powerful than nondeterministic Muller Turing machines.
These results are summarized in Table 7 and Figure 41.

The following result states that N-St-RNN[Q]s are computationally equivalent
to nondeterministic Muller Turing machines.

Theorem 49. Let L ⊆ (BM)ω. The following conditions are equivalent:

1. L is recognizable by some N-St-RNN[Q];

2. L is recognizable by some nondeterministic Muller TM;

3. L ∈ Σ1
1 (lightface).



7.5. Nondeterministic Sigmoidal Neural Networks 119

N-Ev-RNN[R]s

N-Ev2-RNN[R]s

N-RNN[R]s

N-RNN[Q]s

N-Ev2-RNN[Q]s

N-Ev-RNN[Q]s
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Figure 41 – Relationship between the expressive powers of the ten models of nondeterminis-
tic RNNs. There is a directed arrow from one model to the other if the former is less power-
ful than or equally powerful to the latter. The relation represented by these arrows is clearly
transitive. The solid and dashed arrows are given by the inclusion relations established in
Sections 7.5.1 and 7.5.2, respectively. The dotted arrows are given by the considerations of
Section 7.5.3. In this work, we show that N-St-RNN[Q]s are computationally equivalent to
nondeterministic Muller Turing machines (Theorem 49), and that the nine other neural mod-
els are all equivalent to each other, and strictly more powerful than nondeterministic Muller
Turing machines (Theorem 53). The border between the Turing and super-Turing levels is
represented by the thin dotted line.

STATIC BI-VALUED EVOLVING GENERAL EVOLVING

N-St-RNN[Q]s N-Ev2-RNN[Q]s N-Ev-RNN[Q]s

Q
– Ñ-Ev2-RNN[Q]s Ñ-Ev-RNN[Q]s

= Σ1
1 (lightface) = Σ1

1 (boldface) = Σ1
1 (boldface)

Turing (Muller) super-Turing super-Turing

N-St-RNN[R]s N-Ev2-RNN[R]s N-Ev-RNN[R]s

R
– Ñ-Ev2-RNN[R]s Ñ-Ev-RNN[R]s

= Σ1
1 (boldface) = Σ1

1 (boldface) = Σ1
1 (boldface)

super-Turing super-Turing super-Turing

Table 7 – Expressive powers of the six models of N-RNNs and the four models of Ñ-RNNs.

Proof. (1) ↔ (2): By Theorem 45, D-St-RNN[Q]s and deterministic Muller TMs
are computationally equivalent. This result can be extended to show that N-St-
RNN[Q]s and nondeterministic Muller TMs are also computationally equivalent.
(2)↔ (3): This equivalence is given by [159, Theorem 3.5].
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We now prove that the nine other models of nondeterministic neural networks
are computationally equivalent to each other, and strictly more powerful than non-
deterministic Muller Turing machines. To begin with, we show that any analytic
neural ω-language is recognizable by some N-St-RNN[R] and by some N-Ev2-
RNN[Q].

Proposition 50. Let L ⊆ (BM)ω. If L ∈ Σ1
1, then L is recognizable by some N-St-

RNN[R] and by some N-Ev2-RNN[Q].

Proof. We first consider the case of a N-St-RNN[R]. Since L ∈ Σ1
1, there exists

some X ⊆ (BM)ω × {0, 1}ω such that X ∈ Π0
2 and L = π1(X) (cf. Chapter 2).

Since X ∈ Π0
2, it can be written as X =

⋂
i≥0

⋃
j≥0(pi,j · (BM)ω × qi,j · {0, 1}ω),

where each (pi,j, qi,j) ∈ (BM)∗ × {0, 1}∗. Consequently, the set X (and hence also
L) is completely determined by the countable sequence of pairs of finite prefixes
((pi,j, qi,j))i,j≥0. Hence, in order to encode the subset L into some real number, it
suffices to encode the corresponding sequence of prefixes ((pi,j, qi,j))i,j≥0. We con-
sider some encoding rX ∈ R of the infinite sequence ((pi,j, qi,j))i,j≥0 such that, for
any pair of indices (i, j) ∈ N×N, the decoding procedure (rX , i, j) 7→ (pi,j, qi,j) is
recursive.

We now consider the infinite procedure given by Algorithm 6 below. This pro-
cedure requires an infinite input stream s ∈ (BM)ω and an infinite guess stream
g ∈ Bω provided step by step, as well as the real number rX . Provided that the
real number rX is given in advance, every instruction of Algorithm 6 is recursive.
By construction, Algorithm 6 returns infinitely many 1’s on the pair of infinite se-
quences (s, g) iff (s, g) belongs to X.

Based on the infinite procedure, we provide the description of a N-St-RNN[R]
N such that L(N ) = L. First, we consider a neural circuit which stores the in-
coming values of the input and guess streams s ∈ (BM)ω and g ∈ Bω into M + 1
designated neurons, and which contains one additional neuron x′ with one static
real synaptic weight (bias) c′ of value rX . Afterwards, according to the real time
computational equivalence between (static) rational RNNs and TMs [155], we con-
sider a (static) rational-weighted RNN which is suitably designed and connected
to the above mentioned circuit in order to simulate all the recursive instructions of
Algorithm 6. We then add a single Boolean output neuron y and update the whole
construction in such a way that y takes an activation value of 1 iff the simulation
of Algorithm 6 by our network enters the instruction “returns 1”. Finally, the Boo-
lean output cell y leads to the existence of only three possible attractors, namely
{(0)}, {(0), (1)}, and {(1)}. We set {(0)} as spurious, and {(0), (1)} and {(1)} as
meaningful. In this way, one has the description of a N-St-RNN[R] N which suit-
ably simulates the behavior of Algorithm 6. By construction, for any infinite input
s ∈ (BM)ω and guess g ∈ Bω, the Boolean computation c′(s,g) visits a meaningful
attractor iff Algorithm 6 returns infinitely many 1’s on the pair of infinite sequences
(s, g).

Hence, one has that s ∈ L(N ) iff, by definition, there exists some g ∈ Bω such
that inf(c′(s,g)) is meaningful, iff, by construction, there exists g ∈ Bω such that
Algorithm 6 returns infinitely many 1’s on the pair of infinite sequences (s, g), iff,
there exists g ∈ Bω such that the pair (s, g) ∈ X, iff, by definition, s ∈ π1(X) = L.



7.5. Nondeterministic Sigmoidal Neural Networks 121

Algorithm 6 Infinite procedure
Require:

1. Input stream s = u(0)u(1)u(2) · · · ∈ (BM)ω supplied step by step at successive
time steps t = 0, 1, 2, . . .

2. Guess stream g = g(0)g(1)g(2) · · · ∈ Bω supplied step by step at successive time
steps t = 0, 1, 2, . . .

3. Real number rX .

1: SUBROUTINE 1
2: c← 0 // c counts the number of letters provided so far

3: for all time step t ≥ 0 do
4: store each incoming Boolean vector u(t) ∈ BM

5: store each incoming bit g(t) ∈ {0, 1}
6: c← c + 1
7: end for
8: END SUBROUTINE 1

9: SUBROUTINE 2
10: i← 0, j← 0
11: loop
12: wait until c ≥ max{|pi,j|, |qi,j|}
13: decode (pi,j, qi,j) from rX // recursive procedure if rX is given

14: if pi,j ⊆ s[0:c] and qi,j ⊆ g[0:c] then // (s, g) ∈ pi,j · (BM)ω × qi,j · {0, 1}ω

15: return 1 // ∃ j s.t. (s, g) ∈ pi,j · (BM)ω × qi,j · {0, 1}ω

16: i← i + 1, j← 0 // test if (s, g) ∈ pi+1,0 · (BM)ω × qi+1,0 · {0, 1}ω

17: else // (s, g) 6∈ pi,j · (BM)ω × qi,j · {0, 1}ω

18: return 0 // ¬∃j′ ≤ j s.t. (s, g) ∈ pi,j′ · (BM)ω × qi,j′ · {0, 1}ω

19: i← i, j← j + 1 // test if (s, g) ∈ pi,j+1 · (BM)ω × qi,j+1 · {0, 1}ω

20: end if
21: end loop
22: END SUBROUTINE 2

Therefore, L(N ) = L, which shows that L is recognized by the N-St-RNN[R] N .

We now slightly adapt the argument in order to capture the case of a N-Ev2-
RNN[Q]. First, we consider an encoding of the infinite sequence ((pi,j, qi,j))i,j≥0 by
some infinite word wX ∈ {0, 1}ω (rather than by some real number rX) such that,
for any pair of indices (i, j) ∈N×N, the decoding procedure (wX , i, j) 7→ (pi,j, qi,j)

is recursive. Next, we replace lines 3 and 13 of Algorithm 6 by the following ones:

3’: Auxiliary stream wX = wX(0)wX(1)wX(2) · · · ∈ Bω supplied step by step at
successive time steps t = 0, 1, 2, . . .
13’: wait that wX has become ‘long enough’ and decode (pi,j, qi,j) from wX

Afterwards, we adapt the construction of the N-St-RNN[R] N in order to con-
struct a N-Ev2-RNN[Q] N ′ which suitably simulates the modified Algorithm 6.
In particular, we replace the static real weight c′ by the bi-valued evolving weight
c′(t) which take as successive values the successive bits of wX . We update the
construction of N in order to be able to store the successive values of wX and to
decode (pi,j, qi,j) from wX . In this way, one obtains a N-Ev2-RNN[Q] N ′ such that
L(N ′) = L, and therefore, L is recognizable by some N-Ev2-RNN[Q].
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Conversely, we show that every ω-language recognized by some Ñ-Ev-RNN[R]
is analytic. Towards this purpose, we need a preliminary Lemma. This statement
is based on the important result [26, Lemma 9] which states that, for every t ≥ 0,
any evolving real-weighted neural network N can be perfectly simulated by some
other evolving rational-weighted neural network Nt, up to time step t.

Lemma 51. Let (N , E) be some Ñ-Ev-RNN[R] and let f(N,E) : (BM)ω × E → (BP)ω be
the function defined by f(N,E)(s, e) = c′(s,e), where c′(s,e) = y(0)y(1)y(2) · · · is the Boolean
computation produced by (N , E) when it receives the input stream s = u(0)u(1)u(2) · · ·
and selects the evolution e = e(0)e(1)e(2) · · · . Then, f(N,E) is of Baire class 1.

Proof. Note that the nature of our dynamics ensures that the function f(N,E) is se-
quential, i.e., for any time step t ≥ 0, the vectors u(t), e(t) and y(t) are generated si-
multaneously. Therefore, for any t ≥ 0, the t first Boolean vectors y(0)y(1) · · · y(t−
1) only depend on the t first input and evolution vectors u(0)u(1) · · · u(t− 1) and
e(0)e(1) · · · e(t− 1). Formally, given any basic open set y · (BP)ω with y ∈ (BP)∗,
one has that f−1

(N,E)(y · (BP)ω) is of the form

Θy =
⋃
i∈I

[
ui · (BM)ω × (eR,i · ([S, S′]K)ω ∩ E)

]
where each ui ∈ (BM)|y| and eR,i ∈ ([S, S′]K)|y| (i.e., ui and eR,i are sequences of
length |y|).

Now, the result [26, Lemma 9] ensures that, for any (s, e) ∈ (BM)ω × E, the
Boolean computation produced by (N , E) subjected to (s, e) is the very same – up
to time step |y| – as that produced by (N , E) subjected to (s, e′), where e′ is obtained
by truncating all the components of all the vectors of e after t(|y|) bits21, for some
function t : N → N. Formally, by [26, Lemma 9], given any ui and eR,i as above,

there exists a finite sequence IQ,i =
(

∏K
k=1[aj,k, bj,k]

)
j<|y|

⊆ ([S, S′]K)|y|, where each

aj,k, bj,k ∈ Q and eR,i ∈ IQ,i, and such that

f(N,E)

(
ui · (BM)ω × (IQ,i · ([S, S′]K)ω ∩ E)

)
⊆ y · (BP)ω.

Hence, if we let ui · (BM)ω × (IQ,i · ([S, S′]K)ω ∩ E) be denoted by Ci, the above
relation is equivalent to Ci ⊆ f−1

(N,E)(y · (BP)ω) = Θy, for each i ∈ I, and thus⋃
i∈I Ci ⊆ Θy. On the other hand, by construction of IQ,i, one has Θy ⊆

⋃
i∈I Ci.

Therefore, Θy =
⋃

i∈I Ci, i.e.,

Θy =
⋃
i∈I

[
ui · (BM)ω × (IQ,i · ([S, S′]K)ω ∩ E)

]
.

Since the bounds of the hyper-intervals involved in the IQ,i’s are rational numbers,
there exist only countably many distinct ui and IQ,i, and thus, Θy can be rewritten
as

Θy =
⋃
i∈J

[
ui · (BM)ω × (IQ,i · ([S, S′]K)ω ∩ E)

]
21Note that for any r ∈ R, the set of r′ ∈ R such that the truncations of (the binary representations

of) r and r′ after n bits are the same is a closed interval of the form [a, b], where a, b ∈ Q and r ∈
[a, b]. Formally, a and b are the rational numbers whose binary representations are r|n · 0ω and r|n · 1ω ,
respectively, where r|n denotes the truncation of (the binary representations of) r after n bits.
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where the index set J is countable.

Now, notice that for each i ∈ J, the sets ui · (BM)ω and IQ,i · ([S, S′]K)ω ∩ E are
clopen and closed sets of (BM)ω and E, respectively. Consequently, ui · (BM)ω ×
(eR,i · ([S, S′]K)ω ∩ E) is a closed set of (BM)ω × E, as a product of closed sets, and
Θy is a Σ0

2-set of (BM)ω × E, as a countable union of closed sets. Therefore, f(N,E) is
of Baire class 1.

Proposition 52. Let (N , E) be some Ñ-Ev-RNN[R]. Then L((N , E)) ∈ Σ1
1.

Proof. Since N contains finitely many Boolean output cells, it can exhibit finitely
many possible output states, and thus also finitely many possible attractors. This
feature is independent from the nondeterministic behavior associated with the set
of possible evolutions E. Hence, suppose that N contains the I meaningful attrac-
tors Ai = {bi1 , . . . , bik(i)}, for i = 1, . . . , I, where 1 ≤ i1 < . . . < ik(i) ≤ 2P, and

where bn denotes the n-th Boolean vector of BP according to the lexicographic or-
der. Then, the ω-language L((N , E)) can be expressed by the following sequence of
equalities (where we use the fact that f(N,E) is of Baire class 1, established in Lemma
51):

L((N , E))

=
{

s ∈ (BM)ω : there exists e ∈ E s.t. inf(c′(s,e)) is a meaningful attractor
}

=
{

s ∈ (BM)ω : there exists e ∈ E s.t. inf(c′(s,e)) = Ai, for some i = 1, . . . , I
}

= π1
({

(s, e) ∈ (BM)ω × E : inf(c′(s,e)) = Ai, for some i = 1, . . . , I
})

= π1
( ⋃

1≤i≤I

{
(s, e) ∈ (BM)ω × E : inf(c′(s,e)) = Ai

})
= π1

( ⋃
1≤i≤I

{
(s, e) ∈ (BM)ω × E :

∀j ∈
{

i1, . . . , ik(i)
}

, f(N,E)(s, e) contains infinitely many bj’s and

∀j ∈ {1, . . . , 2P}\
{

i1, . . . , ik(i)
}

, f(N,E)(s, e) contains finitely many bj’s
})

= π1

( ⋃
1≤i≤I

[ ⋂
j∈{i1,...,ik(i)}

{
(s, e) ∈ (BM)ω × E :

f(N,E)(s, e) ∈
⋂

n≥0

⋃
m≥0

(BP)n+m · bj · (BP)ω

︸ ︷︷ ︸
c′
(s,e) contains infinitely many bj ’s, i.e.

∀n≥0 ∃m≥n y(n+m) = bj , thus in Π0
2

}

∩
⋂

j ∈
{

1, . . . , 2P
}

r
{

i1, . . . , ik(i)
}
{
(s, e) ∈ (BM)ω × E :

f(N,E)(s, e) ∈
( ⋂

n≥0

⋃
m≥0

(BP)n+m · bj · (BP)ω
){

︸ ︷︷ ︸
c′
(s,e) contains only finitely many bj ’s, i.e.

complement of a Π0
2 -set, thus in Σ0

2

}])
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= π1

( ⋃
1≤i≤I

[ ⋂
j∈{i1,...,ik(i)}

f−1
(N,E)

( ⋂
n≥0

⋃
m≥0

(BP)n+m · bj · (BP)ω
)

︸ ︷︷ ︸
preimage by a Baire class 1 function of a Π0

2-set
thus in Π0

3 [87]

∩

⋂
j ∈
{

1, . . . , 2P
}

r
{

i1, . . . , ik(i)
}

f−1
(N,E)

(( ⋂
n≥0

⋃
m≥0

(BP)n+m · bj · (BP)ω
){)

︸ ︷︷ ︸
preimage by a Baire class 1 function of a Σ0

2 -set
thus in Σ0

3 [87]

])
.

It follows that L((N , E)) is a projection of a finite union and intersection of Π0
3

and Σ0
3 subsets of the Polish space (BM)ω × E, and therefore, L((N , E)) ∈ Σ1

1 (cf.
Chapter 2).

Finally, the following theorem is a direct consequence of previous Propositions
50 and 52.

Theorem 53. Let L ⊆ (BM)ω. The following conditions are equivalent:

1. L ∈ Σ1
1;

2. L is recognizable by some N-St-RNN[R];

3. L is recognizable by some N-Ev2-RNN[Q];

4. L is recognizable by some Ñ-Ev2-RNN[Q];

5. L is recognizable by some N-Ev-RNN[Q];

6. L is recognizable by some Ñ-Ev-RNN[Q];

7. L is recognizable by some N-Ev2-RNN[R];

8. L is recognizable by some Ñ-Ev2-RNN[R];

9. L is recognizable by some N-Ev-RNN[R].

10. L is recognizable by some Ñ-Ev-RNN[R].

Proof. The implications (1) → (2) and (1) → (3) are given by Proposition 50. The
implications (2) → (10), (3) → (10), (3) → (4) and (4) → (10), (3) → (5) and
(5) → (10), (3) → (6) and (6) → (10), (3) → (7) and (7) → (10), (3) → (8) and
(8) → (10), and (3) → (9) and (9) → (10) all hold by the relationships between
the various neural models described in Figure 41. The last implication (10) → (1)
is provided by Proposition 52.

7.6 DISCUSSION

We have provided a characterization of the expressive powers of several models
of Boolean, sigmoidal deterministic, and sigmoidal nondeterministic first-order re-
current neural networks, in relation with their attractor dynamics.
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In the Boolean context (Section 7.3), we have extended, in light of modern au-
tomata theory, the seminal equivalence between Boolean recurrent neural networks
and finite state automata [89, 118, 119]. We have proven that Boolean recurrent
neural networks provided with a less and more general type specification of their
attractors are expressively equivalent to Büchi and Muller automata, respectively
(Theorems 28 and 37). Consequently, they recognize up to the class of ω-rational
neural languages. The Wagner hierarchy [182] can therefore be transposed from the
automaton to the neural network context, inducing two decidable hierarchical clas-
sifications, and in turn, two novel attractor-based complexity measures for Boolean
neural networks (Theorems 32, 33, 41, 42). This complexity is linked to the intri-
cacy of the attractors’ structure of the networks, or more precisely, to the maximal
number of times that a network might alternate between meaningful and spurious
attractors along their possible computations.

In the sigmoidal deterministic context (Section 7.4), we have considered six dif-
ferent models of recurrent neural networks according to whether their synaptic
weights are modelled by rational or real numbers, and according to whether the
these synaptic weights are either of a static nature, or able to evolve over time
among only two possible values, or able to evolve over time among any possi-
ble values between two designated bounds. We have shown that D-St-RNN[Q]s
are computationally equivalent to deterministic Muller Turing machines (Theorem
45). The five other models of D-Ev2-RNN[Q]s, D-Ev-RNN[Q]s, D-St-RNN[R]s, D-
Ev2-RNN[R]s, D-Ev-RNN[R]s are computationally equivalent to each other and
strictly more powerful than deterministic Muller Turing machines – with a class of
ω-languages equal to BC(Π0

2) (Theorem 46).

In the sigmoidal nondeterministic context (Section 7.5), two types of nondeter-
ministic neural networks have been considered. In the first case, the nondetermin-
ism is expressed via some external binary guess stream processed by means of an
additional Boolean guess cell, along the very lines of that introduced in [154, 155].
In the second case, the nondeterminism is expressed as a set of possible evolving
patterns that the synaptic connections of the network might follow over the suc-
cessive time steps. At the beginning of a computation, the network selects one
such possible evolving pattern – in a nondeterministic manner – and then sticks
to it throughout its whole computational process. Six models of neural networks
of type 1 and four of type 2 have been considered according to the nature of their
synaptic weights: rational, real, static, bi-valued evolving or general evolving. It
has been observed that the nondeterminism of type 1 is a special case of that of
type 2. We have proven that the rational-weighted static neural networks of type
1 are computationally equivalent to the nondeterministic Muller Turing machines,
and hence, recognize the class of Σ1

1 (lightface) neural ω-languages (Theorem 49).
The nine other models of neural networks are computationally equivalent to each
other; they recognize the class of Σ1

1 (boldface) neural ω-languages, and hence, are
strictly more powerful than the nondeterministic Muller Turing machines (Theo-
rem 53).

These results show that nondeterminism injects an extensive amount of compu-
tational power – from BC(Π0

2) to Σ1
1 – to the neural systems (see Tables 6 and 7). In

the nondeterminism of type 2, as opposed to that of type 1 and to the determinis-
tic case, the consideration of real synaptic weights does actually not add any extra



126 7. Attractor-Based Computation

computational power to the neural networks. The added value of the power of the
continuum is somehow absorbed by the nondeterminism, and any kind of analog
assumption can therefore be dropped without compromizing the achievement of a
maximal computational power.

Overall, these results constitute a precise generalization to the current compu-
tational context of those obtained for the cases of classical as well as interactive
computations (see Chapters 5 and 6) [21, 24, 25, 26, 32, 35]. In the deterministic
as well as in the nondeterministic context, the consideration of bi-valued evolving
capabilities provides the possibility to break the Turing barrier of computation and
achieve a maximal super-Turing expressive power. The additional consideration of
real synaptic weights or of any more general phenomenon of architectural evolv-
ability would actually not increase further the capabilities of the neural networks.
As already mentioned, this feature is of specific interest, since discrete architectural
evolving phenomena are indeed observable in biological neural networks, as op-
posed to the power of the continuum, which remains at a conceptual level.

Besides, our attractor-based approach to the computational capabilities of re-
current neural networks is justified by the fact that, in our model, the periodic at-
tractor dynamics of the neural networks are the phenomena that precisely underly
the arising of spatiotemporal patterns of discharges [30, 31] – a feature which is as-
sumed to be significantly involved in the processing and coding of information in
the brain [2, 3, 4, 5, 80, 116, 137, 174, 175, 178, 180]. This correspondence between
periodic attractors and spatiotemporal patters is illustrated in Figure 26.

In our framework, the computational capabilities of recurrent neural networks
is measured by the topological complexity of their underlying neural ω-language,
i.e., the set of input streams which induce meaningful attractor dynamics. This cor-
relation between “computational capabilities” and “topological complexity” takes
its full meaning once we understand that the latter concept corresponds precisely to
the ability of the networks to perform more or less complicated classification tasks
of their input streams, via the manifestation of meaningful or spurious attractor
dynamics.

To illustrate this feature, consider some recurrent neural network N whose as-
sociated ω-language would be the (very) basic Σ0

1-set L(N ) = 0 · 0 · 1 · (BM)ω

(where 0 and 1 denote the M-dimensional vectors with only 0’s and 1’s, respec-
tively). If some input stream s is supplied to the network N , then, in order to cor-
rectly classify s with respect to L(N ), the network simply needs to scan the three
first elements of s: if they correspond to 0, 0 and 1, N accepts the whole input by
entering into some meaningful attractor (since s ∈ 0 · 0 · 1 · (BM)ω); otherwise, N
rejects the input by entering into some spurious attractor (since s 6∈ 0 · 0 · 1 · (BM)ω).
Consequently, in this basic case, the classification task of N reduces to the trivial
scanning procedure of the three first elements of s in order to accept or reject the
input. However, in cases where the ω-language L(N ) consists of a more topologi-
cally complicated set, the classification task performed by N to accept or reject the
input would amount to a much more intricate “procedure”.

In the Boolean and in the sigmoidal deterministic contexts (Sections 7.3 and
7.4), those classification tasks will never be more complicated than the membership
problem of a BC(Π0

2)-set. The essence of such a procedure is described in Algo-
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rithm 5. In the sigmoidal nondeterministic context (Section 7.5), the complexity of
these tasks reduces to the membership problem of a Σ1

1-set. Such a classification
procedure is described in Algorithm 6. In this case, the power of the nondetermin-
ism is crucially involved: it provides – through some auxiliary guess stream (for
the nondeterminism of type 1) or through the evolvability of the network (for the
nondeterminism of type 2) – an additional encoded information which allows the
network to reduce its classification task to that of a Π0

2 ω-language only.22 In all
cases, the output of the classification task is provided by an attractor dynamics: a
meaningful attractor signifies the acceptance of the input, and a spurious one sig-
nifies rejection.

Note that many of these classification tasks are not of an “algorithmic” nature
(in the classical sense of the term), since the networks are able to recognize ω-
languages that cannot be recognized by any ω-Turing machine. They correspond
to some “procedures” lying beyond the reach of the Turing machine model of com-
putation, and accordingly, could be qualified as super-Turing or hypercomputational
procedures.

We can illustrate these theoretical considerations in light of experimental re-
sults. For instance, in an experimental paradigm, freely-moving behaving rats were
trained to discriminate two classes of human vowels [51, 179]. If the discrimination
was correct, the rats had to go to a specific area of the labyrinth and received a food
reward. After reaching a steady-state performance, usually above 90%, the rats un-
derwent a brain surgery and multiple electrodes were fit in an area of the cerebral
cortex connected to the ascending auditory pathway and in the inferolimbic cortex,
that is an area of the cerebral cortex associated with higher cerebral functions (pro-
cessing of cross-contingencies, time relations, rehearsal of memory traces). During
the intracellular recording, several spatiotemporal patterns associated to specific
behaviors were found. Figure 42 shows an example of a spatiotemporal pattern
of discharges associated to the class of stimuli that were priming the food reward.
Note that the firing pattern was associated with the equivalence class of the vowel,
irrespective of the pitch or of any other simple acoustical feature.

Here, we are in a case of a biological neural network performing some discrimi-
nation tasks among equivalence classes of human vowels. The discrimination of the
auditory input is achieved via some specific attractor dynamics of the neural net-
work activity, which, in turn, evokes precise spatiotemporal patterns of discharges
that can be detected experimentally. According to our theoretical model, the neural
ω-language of the neural networks would correspond to the set of auditory inputs
which belong to the suitable equivalence class of a human vowels. The classification
task of the neural network consists in determining whether some given auditory in-
put belongs to its neural ω-language or not. The output of this classification process
is expressed via some meaningful or spurious attractor dynamics which, in turn, evoke
precise spatiotemporal patterns of discharge. The computational power of the neural net-
work is determined by the topological complexity of its underlying ω-language,
or equivalently, by the complexity of the classification task associated with this ω-
language.

Finally, from a general perspective, our study provides a novel theoretical ap-

22This corresponds precisely the idea of the proof of Proposition 50
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proach to the crucial role that attractors and spatiotemporal patterns of discharges
play in the computational capabilities of neural networks, and more generally, in
the processing and coding of information in the brain. They establish a link be-
tween the attractor dynamics of the networks, their spatiotemporal patterns of dis-
charge, and their ability to perform more or less intricate classification tasks of their
input streams.

A Spatiotemporal firing pattern
<10,1,6; 190±3.0, 408±3.0>

B

cell #1
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Figure 42 – A. Raster display of the activities of three cortical neurons: Cells #1 and #6 were
recorded in the auditory area Te1 from the left hemisphere from two different electrodes,
and cell #10 in the auditory area Te3 from the right hemisphere. The rasters are aligned by
displaying the first spike in the pattern at lag 0 ms. The pattern occurred 9 times during the
session, starting with a spike of cell #10, then after 190 ms a spike of cell #1 with a jitter±3 ms
and then after 218± 3 ms a spike of cell #6. This pattern is denoted 〈10, 1, 6; 190± 3, 408± 3〉.
B. The same triplet is plotted at a different time scale in order to show the corresponding
stimuli onset times. Notice that the pattern occurred always after stimuli of the class ‘s’, but
that the lag after specific stimuli, i.e. ‘s9’, is much shorter than after other specific stimuli, i.e.
‘s1’.



8 CONCLUSION

In this manuscript, we have reviewed some achievements concerning the compu-
tational capabilities of various recurrent neural network models involved in di-
verse computational contexts: classical, interactive, and attractor-based. Overall,
the Boolean static recurrent neural networks are computationally equivalent to fi-
nite state automata, irrespective of whether their synaptic weights are modelled by
rational or real numbers. The sigmoidal static rational-weighted and real-weighted
neural nets are equivalent to Turing machines and Turing machines with advices,
respectively. The sigmoidal evolving neural networks are also equivalent to Tur-
ing machines with advices – and hence to static real neural nets –, irrespective of
whether their synaptic weights are modelled by rational or real numbers, and their
patterns of evolvability restricted to binary updates or expressed by any more gen-
eral form of updating.

In the contexts of classical and interactive computations (Chapters 5 and 6), the
results support the already mentioned Thesis of Analog Computation [149, 154] and
Thesis of Interactive Computation [100]. In view of our novel results concerning the
capabilities of evolving neural networks, these claims could be extended as fol-
lows: any analog and/or evolving system involved in a classical or interactive paradigm of
computation can be captured by the Turing machine with advice model.

In the three paradigms of computation that have been investigated, the incor-
poration in a basic neural model of either analog assumptions (involving the power
of the continnuum), on the one hand, or evolving capabilities, on the other hand,
represents alternative and equivalent ways towards the achievement of maximal
super-Turing computational capabilities. Yet as opposed to the power of the con-
tinuum, which is a mathematical concept, the evolving capabilities of the networks
are by contrast observable in nature, and therefore, more grounded in the physi-
cal world. These consideration support the claim that the general mechanism of
evolvability should be critically involved in the computational and dynamical ca-
pabilities of biological neural networks, and more generally, in the processing and
coding of information in the brain. They provide a theoretical complement to the
numerous experimental studies emphasizing the importance of the phenomenon
of plasticity in the brain’s information processing [1, 48, 69].

More generally, these results show that recurrent neural networks represent a
natural model of computation beyond the scope of classical Turing machines [33].
They are sometimes invoked to support the debatable claim that some intrinsic
dynamical and computational features of neurobiological systems might fail to be
captured by Turing-equivalent neural network models, and accordingly, should lie
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beyond the scope of standard artificial models of computation.

In fact, the Turing equivalent neural models can only capture brain-like systems
that are discrete, based on bit-calculations, and fixed in their architectures. By con-
trast, the super-Turing neural models can describe brain-like structures involving
continuous levels of chemicals as well as adaptive and evolving architectures. In
particular, the static analog and the evolving neural models are capable of appre-
hending non-linear dynamical properties that are most relevant to brain dynamics,
such as rich chaotic behaviors [79, 84, 166, 167, 168], as well as dynamical and ide-
alized chaotic systems [149] – which cannot be described by the universal Turing
machine model.

As already mentioned earlier, in the case of evolving neural networks, the achieve-
ment of super-Turing potentialities depends on the possibility for “nature” to re-
alize non-recursive patterns of evolvability. Otherwise, the whole process could
be simulated by some Turing machine. The assumptions that nature would not
only follow preprogrammed patterns, that biological structures could involve non-
recursive processes, like purely random phenomena for instance, would suffice to
acknowledge the existence of hypercomputational capabilities, for these features
cannot be simulated by the Turing machine model. But even with these premises
accepted, the issue of the possibility to harness such hypercomputational capabili-
ties remains open, and of paramount importance. For deeper philosophical consid-
erations about hypercomputation, see for instance [46, 47, 126, 160, 161].

In the context of noisy neural networks (not treated in this manuscript), the
computational capabilities of the networks rely on the specific conception of noise
that we consider [26]. An analog noise would generally decrease the capabilities of
the systems to those of finite state automata [18, 111, 115]; by contrast, some discrete
source of stochasticity would rather maintain or even increase the capabilities of
the networks [153]. The empirical questions concerning the nature of the noise
that could occur in biological neural networks and the effects that the noise could
have on the functioning of the networks remain open [46]. This issue may not be
reduced to the simple dichotomy between either an analog or a discrete nature of
noise. For instance, one might consider some source of analog noise itself subjected
to fluctuations over time, according to some non-recursive pattern.

More generally, Cicurel and Nicolelis have recently argued that the brain cannot
be simulated by any Turing machine [43]. They claim that the brain should rather
be conceived as a hybrid digital-analog computational engine (HDACE):

According to the relativistic brain theory, complex central nervous sys-
tems like ours generate, process, and store information through the re-
cursive interaction of a hybrid digital-analog computation engine (HDACE).
In the HDACE, the digital component is defined by the spikes produced
by neural networks distributed all over the brain, whereas the analog
component is represented by the superimposition of time-varying, neu-
ronal electromagnetic fields (NEMFs), generated by the flow of neu-
ronal electrical signals through the multitude of local and distributed
loops of white matter that exist in the mammalian brain. [43, p.27]

Some of our results might provide a theoretical foundation towards the under-
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standing of the Turing and super-Turing computational capabilities of such hybrid
digital/analog – and also evolving – brain-like models of computation.

Alan Turing himself explained that his machine model is different from the hu-
man brain: “Electronic computers are intended to carry out any definite rule of
thumb process which could have been done by a human operator working in a dis-
ciplined but unintelligent manner” [172]. Yet, he trusted that other models will ex-
ist that will describe intelligence better: “My contention is that machines can be con-
structed which will simulate the behaviour of the human mind very closely” [170].
In 1952, Turing suggested a particular direction, based on adaptability and learn-
ing: “If the machine is built to be treated only as a domestic pet, and is spoon-fed
with particular problems, it will not be able to learn in the varying way in which
human beings learn” [173]. While Turing died within two years and did not man-
age to realize his own direction, we hope that our results shall constitute a step
forward in the study of more intelligent systems, following Turing 1952’s call.

For future work, the study of the computational capabilities of more biologi-
cally-oriented neural models involved in more bio-inspired paradigms of compu-
tation is expected to be pursued. In particular, the computational capabilities of
neural networks that are at stake in the crucial mechanism of Spike Timing Depen-
dent Plasticity (STDP) are expected to be investigated. The relationship between
the graph topology of the networks and their computational complexity is also of
specific interest. Furthermore, we would also be highly interested in the possibility
of obtaining some classifications of the super-Turing computational and expressive
powers of analog and/or evolving recurrent neural networks, according to some
notion of complexity. For instance, Balcázar, Gavaldà and Siegelmann provided a
transfinite hierarchization of the super-Turing power of analog neural nets in terms
of the Kolomogorov complexity of their real synaptic weights [17]. It is easy to no-
tice that this classification does not hold anymore in the context of evolving neural
nets: indeed, evolving networks with real weights of minimal Kolomogorov com-
plexity – i.e., rational weights – can nevertheless achieve maximal super-Turing
capabilities. Consequently, the analog and evolving neural networks are, in light of
the Kolmogorov complexity of their synaptic weights, not computationally equiva-
lent anymore. This research direction might therefore provide a better understand-
ing of the possible equivalence and discrepancies that exist between the models of
analog and evolving networks.

Finally, we hope that such comparative studies between the computational ca-
pabilities of neural models and abstract machines might eventually bring further
insight to the understanding of both biological and artificial intelligences. We be-
lieve that similarly to the foundational work from Turing [171], which played a
crucial role in the practical realization of modern computers, further theoretical
considerations about neural- and natural-based models of computation shall con-
tribute to the emergence of novel computational technologies, and step by step,
open the way to the next computational generation.
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1 INTRODUCTION

Nowadays, game theory has become a major field of research, mainly used in math-
ematical economics – towards the modelling of competing behaviors of interacting
agents –, but also with considerable applications in logic, computer science, biol-
ogy, political science, and psychology (see the books series AUMANN and HART

(1992), AUMANN and HART (1994), AUMANN and HART (2002), YOUNG and ZA-
MIR (2015) for an outstanding survey of the field).

In this general context, formal interactive epistemology provides a general frame-
work in which epistemic notions – such as knowledge, belief and subsequent con-
cepts – can be modelled for situations involving multiple agents AUMANN (1999),
AUMANN (1999). When employed in the specific context of game-playing agents,
the discipline, referred to as epistemic game theory, studies the behavioral implica-
tions of such epistemic hypotheses in games, see DEKEL and SINISCALCHI (2015)
and all the references there. The targeted objective of this epistemic approach to
game theory consists in characterizing existing solution concepts in terms of epis-
temic assumptions, as well as in proposing new solution concepts by studying the
consequences of refined or novel epistemic hypotheses. In fact, epistemic game
theory can be regarded as complementing classical game theory. While the latter
is based on the two basic primitives – game form and choice – the former adds an
epistemic framework as a third elementary component such that knowledge and
beliefs can be explicitly modelled in games.

In our work, we follow Aumann’s set-based approach to epistemic game the-
ory, as introduced in AUMANN (1976) and developed notably by AUMANN (1987),
AUMANN (1995), AUMANN (1996), AUMANN (1998), AUMANN (1998), AUMANN

(1999), AUMANN (1999), and AUMANN (2005). This approach formalizes epistemic
notions via the consideration of set-theoretic tools. Events are represented as sets
of possible worlds, and knowledge and belief as set-theoretic operators.

However, the standard set-based approach to interactive epistemology some-
how misses a general framework providing some formal notion of closeness be-
tween events.1 By adding a topological dimension to an epistemic structure, it is
actually possible to introduce a perception of closeness of events into the reasoning

1For the specific purpose of dealing with counterfactuals, STALNAKER (1968) and LEWIS (1973) con-
sider closeness between possible worlds as a primitive in the semantics of their conditional logics. The
basic idea is that for every possible world and every statement, a selection function picks the closest
world such that the statement holds true. In contrast to the classical models of Stalnaker and Lewis, we
consider closeness between events; have closeness determined by an underlying topology; and do not
restrict attention concerning closeness to counterfactuals.
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of agents.2 In such an enriched epistemic-topological framework, the reasoning of
agents may thus also depend on topological instead of mere epistemic features of
the underlying interactive situation.

For instance, suppose an agent is reasoning about the weather in London. Intu-
itively, the event It is cloudy in London seems to be closer to the event It is raining in
London than the event It is sunny in London. Now, the agent may make identical de-
cisions being informed only of the truth of some event within a class of close events.
In fact, the agent might decide to stay at home not only in the case of it raining
outside, but also in the case of events perceived by him to be similar, i.e. close, such
as it being cloudy outside. In a topologically enriched epistemic framework, the
notion of closeness is induced by the topology.

Note that such an epistemic-topological approach is of descriptive not norma-
tive character. Due to the heterogeneity of real-world agents, different people may
have different perceptions of closeness and ways of reasoning. It therefore seems
implausible to claim that there is some kind of universal topology that represents
the correct perception of the event space that agents should hold. In contrast, differ-
ent intuitive cognitive-topological patterns of closeness can be formalized and serve
as the agents’ perceptions of the event space. Such a descriptive use of topologies
is in line with RUBINSTEIN (1989)’s view that topology can be used as a substantial
tool to formalize natural intuitions about closeness.

In line with these consideration, BACH and CABESSA (2011), BACH and CABESSA

(2012), BACH and CABESSA (2009), BACH and CABESSA (2016) introduced a topo-
logical approach to interactive epistemology and epistemic game theory. They con-
sider Aumann structures equipped with topologies on the event space in order to
capture some notion of closeness between events. On that basis, they introduce
the epistemic-topological operator limit knowledge, defined as the topological limit
of all higher-order mutual knowledge claims, and accordingly, linked to both the
epistemic as well as the topological features of the underlying semantics.

They further study some game-theoretic consequences of limit knowledge, and
show that this epistemic-topological operator is capable of relevant characteriza-
tions of solution concepts in games BACH and CABESSA (2012), BACH and CABESSA

(2009). Besides, they revisit AUMANN (1976)’s “no-agreeing to disagree theorem”
in their enriched epistemic-topological context, and prove that the impossibility to
agree to disagree does no longer hold when the epistemic hypothesis of common
knowledge of the posteriors is replaced by that of limit knowledge of the posteriors
BACH and CABESSA (2011), BACH and CABESSA (2016). These considerations argue
in favor of a general topological approach to set-based interactive epistemology.

The following chapters present this topological approach to interactive episte-
mology and epistemic game theory. Chapter 2 recalls the basics of the set-based
approach to interactive epistemology. Chapter 3 introduces the epistemic-topologi-
cal operator limit knowledge and emphasizes its difference with common knowledge.
Chapter 4 studies the behavioral implications of limit knowledge of rationality in
game theory. Chapter 5 revisit AUMANN (1976)’s “no agreeing to disagree” theo-

2We recall that topological spaces are generalizations of metric spaces. While closeness between
elements is explicitly measured via the respective distance function in metric spaces, it is only implicitly
determined the coleection of open sets in topological spaces.
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rem from the limit knwoledge perspective. Finally, Chapter 6 provides some con-
cluding remarks.





2 SET-BASED APPROACH TO INTER-
ACTIVE EPISTEMOLOGY

2.1 AUMANN STRUCTURES

The so-called set-based approach to interactive epistemology has been introduced
and notably developed by AUMANN (1976), AUMANN (1987), AUMANN (1995),
AUMANN (1999), AUMANN (1999) and AUMANN (2005). This approach formal-
izes epistemic notions via the consideration of set-theoretic tools. Events are repre-
sented as sets of possible worlds, and knowledge and belief as set-theoretic opera-
tors.

The basic ingredient of this set-based approach is the concept of an Aumann
structure.

Definition 1. An Aumann structure consists of a tuple A = (Ω, (Ii)i∈I , p), where:

• Ω is a countable set of possible worlds;

• I is a finite set of agents;

• for each agent i ∈ I, Ii is a possibility partition of Ω;

• p : Ω→ [0, 1] is a common prior belief function satisfying ∑ω∈Ω p(ω) = 1.

The elements of Ω are called possible worlds, or states, and provide a complete
descriptions of the way the world might be. The Aumann structure is called finite if
Ω is finite and infinite otherwise. The possibility partition Ii of Ω, for each agent i ∈
I, represents the agent’s information. The cell of Ii containing the world ω is denoted
by Ii(ω) and consists of all worlds considered possible by i at world ω. In other
words, agent i cannot distinguish between any two worlds ω and ω′ that are in the
same cell of his partition Ii. Two such worlds are called indistinguishable for agent i.
Equivalently, if Ii(ω) 6= Ii(ω

′), then ω and ω′ are said to be distinguishable for agent
i. We then call two worlds ω and ω′ distinguishable if they are distinguishable for all
agents i ∈ I. The common prior belief function p : Ω → [0, 1] represents probability
that each possible world ω ∈ Ω corresponds to the real (or actual) world.

In this context, an event is defined as a set E ⊆ Ω of possible worlds. For in-
stance, the event that it is raining in London would be represented by the set of
all worlds in which it does in fact rain in London. The common prior belief func-
tion p is naturally extended to a common prior belief measure on the event space
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p : P(Ω) → [0, 1] by setting p(E) = ∑ω∈E p(ω). This probability measure repre-
sents the probability that each possible event E ⊆ Ω does actually occur in the real
world.

Besides, it is supposed that each information set of each agent has non-zero
prior probability, i.e., p(Ii(ω)) > 0, for all i ∈ I and ω ∈ Ω. Such a hypothe-
sis seems plausible since it ensures that no information is excluded a priori. It is
also assumed that all agents are Bayesian, and hence, update the common prior be-
lief given their private information according to Bayes’ rule. More precisely, given
some event E and some world ω, the posterior belief of agent i in E at ω is given by

p(E | Ii(ω)) =
p(E ∩ Ii(ω))

p(Ii(ω))
.

⌦
E

Figure 1 – Illustration of an Aumann structure A = (Ω, (Ii)i∈{1,2}, p) involving two agents.
The blue and red partitions represent the information of agent 1 and 2, respectively. The set
E ⊂ Ω represents a possible event.

Example 2. A simple Aumann structure is illustrated in Figure 3 (at the end of the
chapter).

2.2 AUMANN STRUCTURES IN GAME THEORY

Aumann structures can also be used as epistemic models for games. In this context,
the Aumann structure needs an additional component that connects the interactive
epistemology to the game. Before stating the formal definition, the general notion
of a game is recalled.

Definition 3. A game consists of a tuple Γ = (I, (Si)i∈I , (ui)i∈I), where:

• I is a set of players;

• Si is the strategy set of player i, for each i ∈ I, ;

• ui : ∏i∈I Si → R is the utility function of player i, for each i ∈ I;

The set of players I is countable and each strategy sets Si is possibly uncount-
able. The utility function ui : ∏i∈I Si → R assigns to each strategy profile (si)i∈I ∈
∏i∈I Si of the players a certain level of satisfaction ui((si)i∈I) ∈ R of player i.
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Aumann structures, when being employed as epistemic models for games, spec-
ify an additional choice function for each player i that connects the interactive epis-
temology to the game.

Definition 4. Let Γ = (I, (Si)i∈I , (ui)i∈I) be some game. An epistemic model of Γ
is an augmented Aumann structure AΓ = (Ω, (Ii)i∈I , (σi)i∈I) where:

• Ω is a set of possible worlds;

• I is a set of players;

• Ii is a possibility partition of Ω, for each player i ∈ I;

• σi : Ω→ Si is a choice function, for each player i ∈ I.

As for classical Aumann structures, Ω represents the set of possible worlds and
(Ii)i∈I the information partitions of the players. The additional choice function σi :
Ω → Si assigns to each possible world ω ∈ Ω a definite strategy σi(ω) that player
i will follow if the actual world would correspond to ω. The corresponding choice
function profile σ : Ω → ∏i∈I Si, mapping each possible world to its corresponding
strategy profile, is naturally defined by σ(ω) = (σi(ω))i∈I .

In this context, it is standard to assume that each player knows his own strat-
egy choice. This so-called measurability assumption seems natural in the context
of game theory, where agents make their choices deliberately and consciously. AU-
MANN and BRANDENBURGER (1995) even denote it as tautologous by pointing out
that knowing one’s own choice is implicit in consciously making a choice. For-
mally, the measurability assumption requires each player’s choice function σi to be
measurable with respect to Ii, i.e. if two worlds ω and ω′ are in the same cell of
player i’s information partition, then σi(ω) = σi(ω

′).

Example 5. A simple game and epistemic model of it is illustrated in Example 10
(at the end of the chapter).

2.3 KNOWLEDGE

In Aumann structures, knowledge is formalized as a set-theoretic operator Ki which,
to any event E, associates a corresponding event “agent i knows E”.

Definition 6. Given some event E, the event that agent i knows E is defined as

Ki(E) := {ω ∈ Ω : Ii(ω) ⊆ E}.

Equivalently, Ki(E) corresponds to the union of all partition cells of Ii that are
included in E, as illustrated in Figure 2. Intuitively, agent i knows some event E if,
in all worlds he considers possible, E holds. Agent i is said to know E at world ω if
ω ∈ Ki(E). Naturally, the mutual knowledge of E among the set I of agents is defined
as the event K(E) :=

⋂
i∈I Ki(E). Iterated mutual knowledge can then be formalized

inductively. More precisely, letting K0(E) := E, m-order mutual knowledge of the
event E among the set I of agents is defined by Km(E) := K(Km−1(E)) for all m > 0.
Accordingly, mutual knowledge can also be denoted as 1-order mutual knowledge.
Knowledge and mutual knowledge are illustrated in Figure 2.
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⌦
E

K1(E)

K2(E)

K(E)

Figure 2 – Illustration of the concepts of knowledge and mutual knowledge in an Aumann
structure A = (Ω, (Ii)i∈{1,2}, p) involving two agents. The event K1(E) and K2(E) and the
unions of the blue and red partition cells that are included in E, respectively. The event K(E)
is the intersection of K1(E) and K2(E).

The belief operator is naturally defined as the dual of the knowledge one. For-
mally, agent i believes E if and only if she doesn’t know the negation of E, i.e.,

Bi(E) := (Ki(Ec))c,

where Xc denotes the complement of X.

One can show that the knowledge operator Ki satisfies the following properties:

Ki(E) ⊆ E (Factiveness or Truth Axiom)

Ki(E) ⊆ Ki(Ki(E)) (Positive Introspection)

(Ki(E))c ⊆ Ki((Ki(E))c) (Negative Introspection)

If E ⊆ F then Ki(E) ⊆ Ki(F) (Monotonicity)

If (En)n∈N is a decreasing sequence of events, then

Ki(
⋂

n∈N
En) =

⋂
n∈N

Ki(En) (P1)

If n ≥ m , then Kn
i (E) ⊆ Km

i (E) (P2)

The “factiveness” or “truth axiom” says that if i knows E, then E necessarily
holds, i.e., it is not possible to know false things. In fact, the notable contrast be-
tween knowledge and belief resides in the very fact that false claims cannot be
known, yet can be believed. The “positive introspection” states that if i knows
E, then she knows that she knows E. The “negative introspection” states that if
i doesn’t know E, then she knows that she doesn’t know E. The “monotonicity”
means that if E implies F and i knows E, then i also knows F, which means that
agents never make make wrong inferences. Property P1 states that, when decreas-
ing sequences are considered, the knowledge operator commutes with the infinite
intersection. Property P2 states that the sequence of iterated mutual knowledge
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claims is decreasing, and therefore, satisfies Property P1. It generalizes the charac-
teristic property of knowledge – the truth axiom – to arbitrary higher-order mutual
knowledge.

Finally, from Property P2, one can infer that any sequence of iterated mutual
knowledge (Km(E))m>0 is either strictly shrinking, i.e., Km+1(E) ( Km(E) for all
m ≥ 0, or eventually constant, i.e., there exists some index p such that Km(E) =

Kp(E) for all m ≥ p. Indeed, Property P2 ensures that the sequence is shrinking,
i.e., Km+1(E) ⊆ Km(E), for all m ≥ 0. Now, suppose that the sequence is not
strictly shrinking, i.e., there exists p ≥ 0 such that Kp+1(E) = Kp(E). It follows
by induction on n that Kp+n(E) = Kp(E), for all n > 0. Hence, the sequence is
eventually constant. The case of sequences of iterated mutual knowledge being
strictly shrinking will be of specific importance in the sequel.

Example 7. An simple case of the concepts of knowledge and mutual knowledge
is illustrated in Example 10 (at the end of the chapter).

2.4 COMMON KNOWLEDGE

The notion of “common knowledge” is one of the central epistemic concepts in
game theory. It is used in basic background assumptions, such as common knowl-
edge of the game form, as well as in epistemic hypotheses, such as common knowl-
edge of rationality, which in turn can be applied to epistemic foundations of solu-
tion concepts.

The notion has originally been introduced by LEWIS (1969) as a prerequisite for
a rule to become a convention. Intuitively, some event is said to be common knowl-
edge among a set of agents, if everyone knows the event, everyone knows that
everyone knows the event, everyone knows that everyone knows that everyone
knows the event, etc., ad infinitum. In his seminal paper, AUMANN (1976) writes:

Call two people 1 and 2. When we say that an event is “common knowl-
edge”, we mean more than just both 1 and 2 know it; we require also
that 1 knows that 2 knows it, 2 knows that 1 knows it, 1 knows that
2 knows that 1 knows it, and so on. For example, if 1 and 2 are both
present when the event happens and see each other there, then the event
becomes common knowledge.

It has therefore become standard to define common knowledge of an event as
the infinite intersection, or conjunction, of all iterated mutual knowledge claims of
that event. These consideration lead to the so-called iterative definition of common
knowlegde.

Definition 8. Let A be an Aumann structure and E be some event. The event that
E is common knowledge among agents is defined as

CKiter(E) :=
⋂

m>0
Km(E).

Accordingly, we say that E is common knowledge at world ω among the set I of agents
iff ω ∈ CKiter(E).
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An alternative formalization of common knowledge is proposed by AUMANN

(1976) in terms of the meet of the agents’ possibility partitions.1 Formally, common
knowledge of some event E can be stated as

CKmeet(E) := {ω ∈ Ω : (
∧
i∈I
Ii)(ω) ⊆ E}.

Alternatively put, CKmeet(E) is the union of all the meet’s cells that are contained
in E. Hence, an event E will be called common knowledge at world ω among the set I
of agents iff (

∧
i∈I Ii)(ω) ⊆ E, or in words, iff E includes the cell of the meet

∧
i∈I Ii

that contains ω.

A third fixed-point characterization of common knowledge has also been pro-
posed in the literature, for instance by MONDERER and SAMET (1989). This fixed
point view is in fact implicit in AUMANN (1976)’s meet definition of common knowl-
edge. Here, common knowledge of some some event is defined as the claim that
everyone knows both the event and common knowledge of the event. Common
knowledge of E is therefore a solution of the set-theoretic equation:

X = K(E ∩ X).

A non self-referential definition of this concept can actually be given. It is based
on the notion of an evident knowledge event. We say that E is an evident knowledge
event if whenever it occurs, all agents know it, i.e., if E ⊆ Ki(E), for each agent
i ∈ I, or equivalently if E ⊆ K(E). Note that the factiveness of knowledge (cf.
Section 2.3) ensures that K(E) ⊆ E, and hence, evident knowledge events actually
satisfy E = K(E). These events are consequently fixed-points of the knowledge
operator, as well as of any iteration if the knowledge operator, i.e., E = Km(E), for
all m ≥ 0.2 The typical evident knowledge events are public announcements: as
soon as they happen, everyone necessarily knows them. The fixed-point definition
of common knowledge of some event E is then stated as follows:

CK f p(E) := {ω ∈ Ω : there exists some evident knowledge event E′

satisfying ω ∈ E′ ⊆ K(E)}

In words, CK f p(E) is the union of all evident knowledge events that are contained
in K(E). Accordingly, the event E is said to be common knowledge at world ω among
the set I of agents iff there exists an evident knowledge event E′ such that ω ∈ E′ ⊆
K(E).

The natural question then arises whether these three definitions are equivalent.
BARWISE (1988) provided a special situation-theoretic model in which the standard
and fixed point views of common knowledge do not coincide. Moreover, SARENAC

(2008) also showed the non-equivalence of the two notions within a framework of
epistemic logic with topological semantics. However, in Aumann structures, the

1Given two partitions P1 and P2 of a set S, partition P1 is called finer than partition P2 or P2 coarser
than P1, if each cell of P1 is a subset of some cell of P2. Given n partitions P1,P2, . . . ,Pn of S, the finest
partition that is coarser than P1,P2, . . . ,Pn is called the meet of P1,P2, . . . ,Pn and is denoted by

∧n
j=1 Pj.

Moreover, given x ∈ S, the cell of the meet
∧n

j=1 Pj containing x is denoted by (
∧n

j=1 Pj)(x).
2The property is easily proven by induction on m.
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three notions do coincide. This equivalence (between the iterative and meet defi-
nitions) was already informally stated by AUMANN (1976), and is properly shown
by the following Lemma. Consequently, for any event E, the three identical events
CKiter(E), CKmeet(E) and CK f p(E) will simply be referred to as CK(E) in the sequel.

Lemma 9. Let A = (Ω, (Ii)i∈I , p) be an Aumann structure and E ⊆ Ω be an event.
Then, CKiter(E) = CKmeet(E) = CK f p(E).

Proof. Firstly, we show that CKmeet(E) ⊆ CKiter(E). By definition, CKmeet(E) is
the union of the cells of the meet

∧
i∈I Ii that are included in E. Since the meet∧

i∈I Ii is coarser than each agent’s possibility partition, the event CKmeet(E) can
thus be written as a union of information cells for each agent i ∈ I, i.e. for all
i ∈ I, there exists a set Fi ⊆ Ω such that CKmeet(E) =

⋃
ω′∈Fi

Ii(ω
′). It follows

that Ki(CKmeet(E)) = Ki(
⋃

ω′∈Fi
Ii(ω

′)) =
⋃

ω′∈Fi
Ii(ω

′) = CKmeet(E), for all i ∈ I.
Hence, K(CKmeet(E)) =

⋂
i∈I Ki(CKmeet(E)) =

⋂
i∈I CKmeet(E) = CKmeet(E). It fol-

lows by induction that Km (CKmeet (E)) = CKmeet (E), for all m > 0. Hence, CKiter

(CKmeet(E)) =
⋂

m>0 Km(CKmeet (E)) =
⋂

m>0 CKmeet (E) = CKmeet (E), which
shows that CKmeet(E) is a fixed point of the CKiter operator. Finally, since the op-
erator CKiter is monotone with respect to set inclusion and since CKmeet(E) ⊆ E, it
follows that CKmeet(E) = CKiter(CKmeet(E)) ⊆ CKiter(E).

Secondly, we show that CKiter(E) ⊆ CKmeet(E). As a preliminary claim, we
prove by induction on n ∈ N that, for any ω, ω∗ ∈ Ω, if both ω∗ 6∈ E and there
exists a sequence of n + 1 possibility cells (Ik)

n
k=0 such that ω ∈ I0, ω∗ ∈ In, and

Ik ∩ Ik+1 6= ∅ for all 0 ≤ k < n, then ω 6∈ Kn+1(E). First of all, for the case n = 0,
let ω, ω∗ ∈ Ω and I0 be a possibility cell such that ω, ω∗ ∈ I0, and ω∗ 6∈ E. Since
ω ∈ I0, the cell I0 can be written as Ii0(ω), where i0 ∈ I denotes the agent to whom
the cell I0 belongs. Also, ω∗ ∈ I0 = Ii0(ω) and ω∗ 6∈ E imply that Ii0(ω) 6⊆ E.
It follows that ω 6∈ Ki0(E) and hence ω 6∈ ⋂i∈I Ki(E) = K(E) = K1(E). Now, as-
sume that the claim holds true for some n = m. Let ω, ω∗ ∈ Ω and let (Ik)

m+1
k=0 be

a sequence of m + 2 possibility cells such that ω∗ 6∈ E, ω ∈ I0, ω∗ ∈ Im+1, and
Ik ∩ Ik+1 6= ∅ for all 0 ≤ k < m + 1. Since I0 ∩ I1 6= ∅, there exists some world
ω′ ∈ I0 ∩ I1. Now consider the sequence of m + 1 possibility cells (Jk)

m
k=0 defined

by Jk = Ik+1 for all 0 ≤ k ≤ m. This sequence satisfies ω′ ∈ J0, ω∗ ∈ Jm, and
Jk ∩ Jk+1 6= ∅ for all 0 ≤ k < m. By the induction hypothesis, it follows that
ω′ 6∈ Km+1(E). Moreover, since ω′ ∈ I0, the cell I0 can be written as Ii0(ω

′), where
i0 ∈ I denotes the agent to whom the cell I0 belongs. Hence, ω′ ∈ I0 = Ii0(ω)

and ω′ 6∈ Km+1(E) imply that Ii0(ω) 6⊆ Km+1(E). It follows that ω 6∈ Ki0(K
m+1(E))

and hence ω 6∈ ⋂
i∈I Ki(Km+1(E)) = K(Km+1(E)) = Km+2(E), which completes

the proof of the preliminary claim. Now, let ω 6∈ CKmeet(E). By the definition
of CKmeet(E), it holds that (

∧
i∈I Ii)(ω) 6⊆ E. Since the meet

∧
i∈I Ii is the finest

partition coarser than all agents’ possibility partitions, the cell (
∧

i∈I Ii)(ω) can
be written as a union of consecutively intersecting distinct cells, i.e. there ex-
ists an index set K ⊆ N and a sequence of possibility cells (Ik)k∈K such that
(
∧

i∈I Ii)(ω) =
⋃

k∈K Ik, as well as ω ∈ I0 and Ik−1 ∩ Ik 6= ∅, for all k ∈ K \ {0}.
Note that any two consecutive terms of the sequence (Ik)k∈K actually belong to
distinct agents, since Ik−1 ∩ Ik 6= ∅ ensures that Ik−1 and Ik are not in a same
agent’s possibility partition. As (

∧
i∈I Ii)(ω) 6⊆ E, there exists a world ω∗ such that

ω∗ ∈ (
∧

i∈I Ii)(ω) and ω∗ 6∈ E. Moreover, since ω∗ ∈ (
∧

i∈I Ii)(ω) =
⋃

k∈K Ik,
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there exists an index l ∈ K such that ω∗ ∈ Il . Therefore, ω∗ 6∈ E, and the sequence
of l + 1 possibility cells (Ik)

l
k=0 satisfies ω ∈ I0, ω∗ ∈ Il , as well as Ik ∩ Ik+1 6= ∅,

for all 0 ≤ k < l. By the preliminary claim, it thus follows that ω 6∈ Kl+1(E). Hence,
ω 6∈ ⋂m>0 Km(E) = CKiter(E).

We finally show that CKiter(E) = CK f p(E). Let ω ∈ CKiter(E) =
⋂

m>0 Km(E).
By taking E′ = CKiter(E), one has, by Property P1 of knowledge, that E′ is an
evident event. Moreover, E′ satisfies ω ∈ E′ ⊆ K(E). Hence, w ∈ CK f p(E).
Conversely, let ω ∈ CK f p(E). Then, there exists an evident event E′ such that
ω ∈ E′ ⊆ K(E). Since E′ is evident knowledge and by the monotonicity of the
knowledge operator, one has E′ = K(E′) ⊆ K2(E). By induction on m, it follows
that E′ ⊆ Km(E), for all m > 0, and thus E′ ⊆ ⋂

m>0 Km(E) = CKiter(E). Since
ω ∈ E′, one has ω ∈ CKiter(E).

We finally provide a simple example which illustrates all the previous notions.

Example 10. Consider the case of a two player prisoner’s dilemma. Each player
might either cooperate or defect, and the playoffs corresponding to each strategy
profile of the players are given in Table 1 below. A possible epistemic model of this
simple game is given by the Aumann structure of Figure 3. In terms of the strategy
profiles of the players, there are only four possible worlds represented by each cell
of the payoff matrix. In this case, the choice functions σi are naturally given by
σ1((x; y)) = x and σ2((x; y)) = y, for all x, y ∈ {C, D}, i.e., at world (x; y) Player 1
and 2 play strategies x and y, respectively.

Cooperate (C) Defect (D)

Cooperate (C) (1; 1) (3; 0)

Defect (D) (0; 3) (2; 2)

Table 1 – Payoff matrix of the game of the prisoner’s dilemma.

In this specific case, the informations of Player 1 and 2 are not symmetric. In-
deed, Player 1 can distinguish between her own strategies, but cannot distinguish
between those of her opponent: the worlds (C; C) and (C; D) belong to a same pos-
sibility cell of hers, and the worlds (D; C) and (D; D) also. By contrast, Player 2
can distinguish between his own strategies, and, only in the specific case where he
defects, he can also distinguish between those of his opponent: the worlds (C; C)
and (D; C) belong to a same possibility cell, but the worlds (C; D) and (D; D) are
isolated into two possibility cells.

The event E that “Player 2 defect” is composed of the two possible worlds where
player 2 does defect, i.e., E = {(C; D), (D; D)}. At worlds (C; D) and (D; D), Player
2 knows that she defects, since K2(E) = {(C; D), (D; D)}. However, player 1 never
knows that player 2 defects, since K2(E) = ∅. Hence, the players never mutual
know that Player 2 defects, since K(E) = K1(E) ∩ K2(E) = ∅, and a fortiori, it is
never common knowledge that Player 2 defects, since CK(E) = ∅.
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(C; C) (C; D)

(D; C) (D; D)

1/4 1/4

1/4 1/4

Figure 3 – An Aumann structure providing an epistemic model for the game of the prisoner’s
dilemma given by Table 1. The choice functions σi are naturally given by σ1((x; y)) = x and
σ2((x; y)) = y, for all x, y ∈ {C, D}, i.e., at world (x; y) Player 1 and 2 play strategies x and
y, respectively. The blue and red partitions represent the informations of Player 1 and 2,
respectively. The prior beliefs are given by the fractions associated to each possible world.
Here, we assume that the players chose their strategies randomly, and therefore, each of
the four worlds are equiprobable. The event that “Player 2 defect”, composed of the two
possible worlds where player 2 does defect, is illustrated by the black set.





3 LIMIT KNOWLEDGE

3.1 INTRODUCTION

Apart from comparing distinct conceptions of common knowledge, a further re-
lated question concerns the relationship between the standard definition of com-
mon knowledge and the infinite sequence of iterated mutual knowledge underly-
ing it. In fact, LIPMAN (1994) showed that common knowledge of the particular
event rationality is not equivalent to the limit of iterated mutual knowledge for
some specific notion of limit.

Here, we also study the relationship between common knowledge and the limit
of the sequence of iterated mutual knowledge, but from a topological point of
view.1 More precisely, we introduce the epistemic-topological operator “limit knowl-
edge”, defined as the topological limit of the the sequence of iterated mutual knowl-
edge claims. We further show that “common knowledge” and “limit knowledge”
do genuinely differ.

3.2 LIMIT KNOWLEDGE

The epistemic-topological operator “limit knowledge” is defined as the topological
limit of the sequence of higher-order mutual knowledge claims, according to some
topology on the event space.

Definition 11. Let (Ω, (Ii)i∈I , p) be an Aumann structure, T a topology on P(Ω),
and E an event. If the limit point of the sequence (Km(E))m>0 is unique, then
LK(E) := limm→∞ Km(E) is the event that E is limit knowledge among the set I of
agents.

Hence, limit knowledge of an event E is constituted by – whenever unique – the
limit point of the sequence of iterated mutual knowledge, and thus linked to both
epistemic as well as topological aspects of the event space.

1For sake of self-containedness, some basic notions from topology are recalled. Given some set X,
a topology T on X consists of a family of subsets of X, i.e. X ⊆ P(X), such that the empty set and X
belong to T , and the family T is closed under finite intersection as well as under arbitrary union. If T
is a topology on X, the pair (X, T ) is called topological space, where the elements of T are called open
sets. For any p ∈ X, an open neighbourhood of p is an open set containing p. Moreover, given some subset
S ⊆ X, an element p ∈ X is a limit point of S if every open neighbourhood of p contains some element of
S different from p. Given some sequence s = (xi)i≥0 of elements of X, if the limit point of s is unique, it
is denoted by limi→∞ xi .
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Limit knowledge of an event can be understood as the event which is approached
by the sequence of iterated mutual knowledge, according to the notion of close-
ness between events provided by a given topology on the event space.2 Thus, the
higher the iterated mutual knowledge, the closer this epistemic event is to limit
knowledge.

It is possible to link limit knowledge to reasoning patterns of agents based on
closeness of events. In fact, agents satisfying limit knowledge of some event are in
a situation infinitesimally close to having arbitrarily-high iterated mutual knowl-
edge of this event, and the agents’ reasoning may be influenced accordingly. Note
that a reasoning pattern associated with limit knowledge depends on the particular
topology on the event space, which fixes the closeness relation between events.

Although being more and more proximal to iterated mutual knowledge the
higher the iteration, it is possible – depending on the topology – that limit knowl-
edge is not included in all higher-order mutual knowledge or even in the under-
lying event itself (see Example 15). Therefore, limit knowledge does not a priori
inherit the purely epistemic properties of higher-order mutual knowledge or even
knowledge. Actually, agents entertaining limit knowledge of some event might no-
tably be in situations in which the event does not hold, while at the same time being
arbitrarily close to the highest iterated mutual knowledge of the event.

Generalizations of the concept of limit knowledge could be conceived in order
to overcome the undefinability of this operator in cases of non unique limit points.
For instance, multiple-limit knowledge of E could be defined as the union of all limit
points of (Km(E))m>0.

3.3 LIMIT KNOWLEDGE VS COMMON KNOWLEDGE

The two epistemic and topological-epistemic operators of “common knowledge”
and “limit knowledge” are both grounded on the sequence of iterated mutual knowl-
edge claims. Hence, a natural question to be addressed is to clarify the relationship
between the two operators. We show that these two concepts are closely related for
finite, yet do substantially differ for infinite Aumann structures.

We first focus on finite Aumann structures. In this case, for any topology on
the event space, common knowledge of an event E is always a limit point of the
sequence of higher-order mutual knowledge of E, as established by the following
result.

Proposition 12. Let A be a finite Aumann structure, T be a topology on P(Ω), and E be
some event. Then, CK(E) is a limit point of (Km(E))m>0. In particular, if the limit point
of (Km(E))m>0 is unique, then CK(E) = LK(E).

Proof. Note that since Ω is finite, its power set P(Ω) is also finite. Moreover, Prop-
2In our epistemic-topological framework, there exist various ways in which a notion of closeness

between events can be defined based on the underlying topology, and in particular, on the open neigh-
bourhoods. For instance, two events could be said to be close, if they violate the so-called Hausdorff-
condition, i.e., if there exist no disjoint neighbourhoods of these two events. Also, degrees of closeness
could possibly be defined in the sense that the more neighbourhoods contain two events, the closer the
respective events are to each other. In case of the considered topology on the event space to be metriz-
able, there exists a distance function which could explicitly measure the closeness between events.



3.3. Limit knowledge vs Common Knowledge 165

erty P2 of knowledge ensures that Km+1(E) ⊆ Km(E) for all m > 0. Thus, by
finiteness of P(Ω), the sequence (Km(E))m>0 is eventually constant, i.e. there
exists some index p such that Km(E) = Kp(E) for all m ≥ p. Hence CK(E) =⋂

m>0 Km(E) =
⋂

m≥p Km(E) = Kp(E). Moreover, for any T -open neighbourhood
N of CK(E), it holds that Km(E) = Kp(E) = CK(E) ∈ N, for all m ≥ p. Therefore,
CK(E) is a limit point of the sequence (Km(E))m>0. If the limit point of (Km(E))m>0
is unique, then it is LK(E) by definition, and thus CK(E) = LK(E).

Note that the sequence (Km(E))m>0 may converge to multiple limit points, and
CK(E) is always one of them. However, if P(Ω) is equipped with a Hausdorff
topology, then the limit of (Km(E))m>0 is necessarily unique, and thus CK(E) =

LK(E). Since the discrete topology is the only Hausdorff topology on finite spaces,
one has CK(E) = LK(E) in this case.

Now, infinite Aumann structures are considered. The following result shows
that if the sequence of iterated mutual knowledge is eventually constant3, then
common knowledge is always one of its limit points.

Proposition 13. Let A be an infinite Aumann structure, T be a topology on P(Ω), and
E be some event. If (Km(E))m>0 is eventually constant, then CK(E) is a limit point of
(Km(E))m>0. In particular, if the limit point of (Km(E))m>0 is unique, then CK(E) =

LK(E). If the limit point of (Km(E))m>0 is unique, then it is LK(E) by definition, and
thus CK(E) = LK(E).

Proof. Suppose that the sequence (Km(E))m>0 is eventually constant from index p
onwards. By Property P2 of knowledge, it follows that CK(E) =

⋂
m>0 Km(E) =⋂

m>p Km(E) = Kp(E). Now let N be a T -open neighborhood of CK(E). Since
Km(E) = Kp(E) = CK(E), for all m ≥ p, it follows that Km(E) ∈ N, for all m ≥ p.
Therefore, CK(E) is a limit point of the sequence (Km(E))m>0.

It follows that common knowledge and limit knowledge can only possibly be
distinct in the case of the sequence of iterated mutual knowledge not being even-
tually constant. Since the latter sequence is either eventually constant or strictly
shrinking, potential differences of the two concepts necessarily require the strictly
shrinking condition to be met.

In case of the sequence of iterated mutual knowledge being strictly shrinking,
common knowledge and limit knowledge may indeed differ.

Proposition 14. There exist an infinite Aumann structure A, a topology on the event
space P(Ω), and some event E, such that CK(E) 6= LK(E).

Proof. Consider the infinite Aumann structure A = (N, (Ii)i∈{Alice,Bob}) given by

IAlice = {{0}, {1, 3}, {2, 4}, {5, 7}, {6, 8}, {9, 11}, {10, 12}, . . .},
IBob = {{0, 2}, {1}, {3, 5}, {4, 6}, {7, 9}, {8, 10}, {11, 13}, . . .}.

Let E be the event N \ {0}. Then, KAlice(E) = N \ {0} and KBob(E) = N \ {0, 2},
thus K1(E) = K(E) = KAlice(E) ∩ KBob(E) = N \ {0, 2}. It follows by induction

3We recall that the sequence (Km(E))m>0 is eventually constant iff there exists p ≥ 0 such that
Kp+n(E) = Kp(E), for all n ≥ 0. It is strictly shrinking iff Km(E) ( Km+1(E), for all m ≥ 0.
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that Km(E) = N \ {0, 2, . . . , 2m} for all m > 0. Consequently Km+1(E) ( Km(E) for
all m > 0, i.e. the sequence (Km(E))m>0 is strictly shrinking. Moreover, CK(E) =⋂

m>0 Km(E) =
⋂

m>0 N \ {0, 2, . . . , 2m} = {2n + 1 : n ≥ 0}. Now, let L ⊆ Ω
be some event different from CK(E), and suppose that the event space P(N) is
equipped with the topology T = {O ⊆ P(N) : L 6∈ O} ∪ {P(N)}. Then, the
only T -open neighbourhood of L is P(N), and, since all terms of the sequence
(Km(E))m>0 are contained in P(N), it follows that L is a limit point of the sequence
(Km(E))m>0. Moreover, L is actually the unique limit point of (Km(E))m>0. Indeed,
since (Km(E))m>0 satisfies the strictly shrinking condition, for any event F 6= L,
the elements of (Km(E))m>0 will never all be contained in the T -open neighbour-
hood {F} of F from some index onwards, showing that F is not a limit point of
(Km(E))m>0. Hence, limm→∞ Km(E) = L = LK(E). Yet since L was precisely cho-
sen to be different from CK(E), it follows that LK(E) 6= CK(E).

The following example shows that common knowledge may even differ from
limit knowledge in the case of so-called well-behaved – i.e. completely metrizable
and Hausdorff – topologies.4

Example 15. Let A = (N, IAlice, IBob) be the infinite Aumann structure described
in the proof of Proposition 14, and E be the event N \ {0}. Then, as shown in the
proof of Proposition 14, Km(E) = N \ {0, 2, . . . , 2m} and CK(E) = {2n+ 1 : n ≥ 0}.
Consider farther the Cantor space {0, 1}N of functions from N to {0, 1} equipped
with its usual topology, i.e. the product topology of the discrete topology on {0, 1}.
This space is Polish, i.e. Hausdorff and completely metrizable, and the induced
metric is defined by d( f , g) = 2−r, where r = min{n : f (n) 6= g(n)}. Consider
finally the sets F1 = {2n : n ≥ 0} and F2 = {2n + 1 : n ≥ 0}, and the bijection
f : P(N) −→ {0, 1}N defined by

f (F) =


χF if F 6= F1, F2

χF2 if F = F1

χF1 if F = F2 ,

where χA denotes the characteristic function of A. Now, suppose that the event
space P(N) is equipped with the topology T defined by letting O ∈ T if and only

4We recall that a metric space (X, d) is a set X together with a metric function d : X × X → R+

satisfying the following properties: for every x, y, z ∈ X,

• d(x, y) ≥ 0;

• d(x, y) = 0 iff x = y;

• d(x, y) = d(y, x);

• d(x, z) ≤ d(x, y) + d(y, z).

The metric topology on X induced by d is the topology Td induced by the open balls of d, i.e., the
topology induced by the base

{B(x, r) = {y ∈ X : d(x, y) < r} : for all x ∈ X and r ∈ R+} .

A topological space (X, T ) is metrizable if there exists a metric d : X × X → R+ whose induced metric
topology Td coincides with T . In this case, the distance between elements of the space can be explicitly
measured via the metric function.
A topological space (X, T ) is completely metrizable if it is metrizable by some by some metric function d
for which every Cauchy sequence is convergent.
A topological space (X, T ) is Hausdorff (or T2) iff every distinct points of X have disjoint open neighbor-
hoods.
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if f (O) is an open set of the Cantor space. Since f is an homeomorphism from
P(N) to {0, 1}N, the topological space (P(N), T ) is also Polish, and hence every
sequence converges to at most one limit point. We next prove that the sequence
(χKm(E))m>0 converges to χF2 in the Cantor space {0, 1}N. First of all, the proof of
Proposition 14 ensures that χKm(E) = χN\{0,2,...,2m} for all m > 0. Moreover, observe
that d(χKm(E), χF2) = 2−(m+1). Hence, for any ε > 0, it holds that d(χKm(E), χF2) =

2−(m+1) < ε for all m > log2(
1
ε )− 1. Therefore, limm→∞ χKm(E) = χF2 . Since f is a

homeomorphism, it follows that

LK(E) = lim
m→∞

Km(E) = lim
m→∞

f−1(χKm(E))

= f−1( lim
m→∞

χKm(E)) = f−1(χF2) = F1 6= CK(E),

which yields the desired property. ♣

3.4 DISCUSSION

These considerations show that limit knowledge and common knowledge do dif-
fer, and therefore, should not be amalgamated. Even if being both based on the
sequence of higher order mutual knowledge, the two operators can be perceived
as sharing distinct implicative properties with regards to these claims. Common
knowledge bears a standard implicative relation in terms of set inclusion to all iter-
ated mutual knowledge. In contrast, limit knowledge entertains a relation in terms
of set proximity with iterated mutual knowledge: the higher the iteration, the closer
the respective higher-order mutual knowledge to limit knowledge.

Note that this proximity relation does not comply with any purely logical con-
cept, but relates to a whole variety of possible cognitive perceptions induced by the
respective topology. In fact, depending on the considered topology, the induced
relation of set proximity between events may reflect physical properties of these
events, but also mental representations on the event space. Therefore, as opposed
to common knowledge which only captures a single epistemic phenomenon, limit
knowledge is able to represent a variety of possible epistemic-topological phenom-
ena as a function on the particular topology on the event space. In this sense, limit
knowledge can be viewed as some kind of generalized epistemic-topological con-
cept which, for every possible underlying topology, becomes an operator with pre-
cise meaning.

Notably, Proposition 13 ensures that limit knowledge becomes interesting as
a possible distinction or refinement of common knowledge precisely in circum-
stances of the sequence of iterated mutual knowledge being strictly shrinking, i.e.,
whenever common knowledge actually requires infinitely many higher-order knowl-
edge claims to be computed.

Besides, as opposed to the purely epistemic operator common knowledge, for
which factiveness holds, i.e. CK(E) ⊆ E, the epistemic-topological operator limit
knowledge does in general not bear this property.5 However, if the sequence of
higher-order mutual knowledge of some event E is not strictly shrinking, then limit

5For example, in Example 15, an Aumann structure is constructed, the event space is furnished with
a topology, and an event E is considered for which LK(E) 6⊆ E.
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knowledge is equal to common knowledge, and therefore, limit knowledge is fac-
tive, i.e., LK(E) ⊆ E. In particular, limit knowledge is factive in all finite Aumann
structures.

However, of specific relevance are the situations in which limit knowledge in-
deed strictly refines common knowledge. In those cases, limit knowledge does im-
ply all iterated mutual knowledge and can be interpreted as some kind of highest
iterated mutual knowledge. Example 19 of the next Chapter 4 provides an illus-
tration where limit knowledge is a strict refinement of common knowledge and
induces behavioral consequences that cogently differ from the latter.

In general, limit knowledge also differs from approximations of common knowl-
edge such as MONDERER and SAMET (1989)’s common p-belief as well as RU-
BINSTEIN (1989)’s almost common knowledge. Indeed, common p-belief and al-
most common knowledge are both implied by common knowledge, whereas limit
knowledge is not.



4 LIMIT KNOWLEDGE AND GAMES

4.1 INTRODUCTION

The epistemic operator “common knowledge” has often been argued as being in-
appropriate for the modelling of a widely shared conception of knowledge. This
is mainly due to its standard infinite iterative definition (cf. Definition 8), to its
startling implications in AUMANN (1976)’s and MILGROM and STOKEY (1982)’s
seminal impossibility agreement and trading results, as well as to a series of so-
called common-knowledge paradoxes reviewed by MORRIS (2002). As a conse-
quence, the notion has been challenged and much literature has been focused on the
study of game-theoretic consequences of weaker or modified epistemic hypotheses.

For instance, RUBINSTEIN (1989) considered a notion of almost common knowl-
edge and addressed a paradoxical game-theoretic example where the coordination
games played under common knowledge and under almost common knowledge
substantially differ. LIPMAN (1994) showed that common knowledge of rationality
is not, in general, equivalent to the limit of order n mutual knowledge of rational-
ity. Also, MONDERER and SAMET (1989) introduced the notion of common p-belief
as a relevant approximation of common knowledge, and BÖRGERS (1994) studied
the game theoretic consequences associated with common p-belief. MORRIS (1999)
generalized this approach by proposing alternative notions of approximate com-
mon knowledge based on the concept of p-belief and studying their consequences
in games.

In Chapter 3, we analyzed the relationship between common knowledge and
limit knowledge and showed that the two concepts do genuinely differ. Hence, a
a natural question concerns the study of the game-theoretic consequences of the
epistemic-topological operator limit knowledge. Here, we consider limit knowl-
edge of the specific event rationality and characterize its implications in terms of
solution concepts for games. A concrete static infinite game is constructed in which
limit knowledge of rationality strictly refines common knowledge of rationality, in
terms of solution concepts. In this example, the latter epistemic hypothesis implies
iterated strict dominance, while the former entails iterated strict dominance fol-
lowed by weak dominance. Furthermore, it is generally shown that, for any given
game and epistemic model of it satisfying some appropriate epistemic-topological
conditions, limit knowledge of rationality is capable of characterizing any possi-
ble solution concept. Due to this universal foundational capability, limit knowl-
edge of rationality could thus be used for epistemic-topological characterizations
of solution concepts. These considerations argue in favor of a general topological

169
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approach to set-based interactive epistemology.

4.2 COMMON KNOWLEDGE OF RATIONALITY

Common knowledge of the particular event that all players are rational has been
used in epistemic characterizations of solution concepts in games. A well-known
result, e.g., BERNHEIM (1984), PEARCE (1984), TAN and WERLANG (1988) as well as
BÖRGERS (1993), states that common knowledge of rationality, with the standard
notion of rationality as subjective expected utility maximization, provides an epis-
temic characterization the solution concept “iterated strict dominance”. We now
give an epistemic foundation of pure strategy iterated strict dominance in terms
of common knowledge of some weaker than standard rationality for possibly infi-
nite games. More precisely, we employ a normal form adapted version of AUMANN

(1995)’s knowledge-based notion of rationality, originally stated for extensive forms
with perfect information. As argued by AUMANN (1995) and AUMANN (1996), this
notion is more general and simpler than standard subjective expected utility max-
imization, since the latter implies the former but the former does not imply the
latter, and knowledge-based rationality completely dispenses with probabilities.

Here, the following weaker than standard notion of rationality will be used in
the sequel.

Definition 16. Let Γ be a game, AΓ be an epistemic model of it, and i be some
player. The event that i is rational is defined as

Ri :=
⋂

si∈Si

(Ω \ Ki({ω ∈ Ω : ui(si, σ−i(ω)) > ui(σ(ω))})) .

Accordingly, a player i is rational – in a weak sense – whenever for any of his
strategies si ∈ Si, he does not know that si would yield him higher utility than his
actual choice. In other words, i is rational at ω if for any of his strategies si ∈ Si
he considers possible a world ω′ ∈ Ii(ω) in which his strategy choice σi(ω

′), being
equal to his actual choice σi(ω) by measurability, could give him at least as much
utility as si. The event R :=

⋂
i∈I Ri that all players are rational is called rationality.

In game theory so-called solution concepts are developed that reduce the strat-
egy profile space. Formally, a solution concept SC consists of a mapping associating
with each game Γ a subset SCΓ ⊆ ∏i∈I Si of its strategy profile space. A solution
concept thus provides a generic method which does not depend on any particular
given game. Intuitively, a solution concept yields the choices a player should make.
One of the most established game-theoretic solution concepts for the normal form
is iterated strict dominance, which can be defined as follows.

Definition 17. Let Γ = (I, (Si)i∈I , (ui)i∈I) be a game. Moreover, let S0
i = Si for all

i ∈ I, and let the sequence (SDk)k≥0 of strategy profile sets be inductively given
by SD0 = ∏i∈I S0

i and SDk+1 = ∏i∈I SDk+1
i , where SDk+1

i = SDk
i \ {si ∈ SDk

i :
there exists s′i ∈ SDk

i such that ui(si, s−i) < ui(s′i, s−i), for all s−i ∈ SDk
−i}, for all

i ∈ I. The solution concept iterated strict dominance is defined as ISDΓ :=
⋂

k≥0 SDk.

Note that DUFWENBERG and STEGEMAN (2002) study iterated strict dominance
for arbitrary static games in a non-epistemic context, unveiling potential ill-bevaiour.
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It is shown that iterated strict dominance can be order-dependent, return an empty
set of strategy profiles, or fail to yield a maximal reduction after countably many
steps. Moreover, they prove the existence and uniqueness of a non-empty maximal
reduction by requiring compactness of the players’ strategy spaces and continuity
of the utility functions. However, according to Definition 17, order dependence is
no longer a possible problem, since at each round, all the remaining strictly domi-
nated strategies are eliminated.

We now give an epistemic foundation of pure strategy iterated strict dominance
in terms of common knowledge of rationality for possibly infinite games with the
weaker than standard concept of knowledge-based rationality. Note that in Propo-
sition 18 below, as well as in all results of Section 4.3, common knowledge of the
structure of the game is endorsed as an implicit background assumption.

Proposition 18. Let Γ be a game and AΓ be an epistemic model of it. Then, σ(CK(R)) ⊆
ISDΓ.

Proof. By induction, we prove that σ(Km(R)) ⊆ SDm+1, for all m ≥ 0. It then
follows that σ(CK(R)) = σ(

⋂
m>0 Km(R)) = σ(

⋂
m≥0 Km(R)) ⊆ ⋂m≥0 σ(Km(R)) ⊆⋂

m≥0 SDm+1 =
⋂

m>0 SDm =
⋂

m≥0 SDm = ISDΓ. First of all, consider (si)i∈I ∈
σ(K0(R)) = σ(R). Then, there exists ω ∈ R =

⋂
i∈I Ri such that σ(ω) = (si)i∈I .

Hence, by definition of Ri and measurability of σi, for all si ∈ Si, there exists ω′ ∈
Ii(ω) such that ui(si, σ−i(ω

′)) ≤ ui(σ(ω
′)) = ui(σi(ω), σ−i(ω

′)). It follows that
σi(ω) ∈ SD1

i for all i ∈ I, and thus σ(ω) = (si)i∈I ∈ ∏i∈I SD1
i = SD1. Therefore,

σ(K0(R)) ⊆ SD1 obtains. Now, assume σ(Km(R)) ⊆ SDm+1 for some m > 0, and
let (si)i∈I ∈ σ(Km+1(R)). Then, there exists ω ∈ Km+1(R) such that σ(ω) = (si)i∈I .
Hence, Ii(ω) ⊆ Km(R), and thus, by the induction hypothesis, σ(Ii(ω)) ⊆ SDm+1

obtains. Besides, since ω ∈ Ri, for all si ∈ SDm+1
i there exists ω′ ∈ Ii(ω) such

that ui(si, σ−i(ω
′)) ≤ ui(σ(ω

′)) = ui(σi(ω), σ−i(ω
′)). Yet since σ(Ii(ω)) ⊆ SDm+1,

each ω′ ∈ Ii(ω) induces σ−i(ω
′) ∈ SDm+1

−i , which in turn implies that σi(ω) ∈
SDm+2

i for all i ∈ I, and consequently (si)i∈I = σ(ω) ∈ ∏i∈I SDm+2
i = SDm+2.

Therefore, σ(Km+1(R)) ⊆ SDm+2 holds, which concludes the proof.

4.3 LIMIT KNOWLEDGE OF RATIONALITY

The new epistemic operator limit knowledge can be used in the context of games.
Indeed, we now illustrate that limit knowledge is capable of refining common
knowledge in terms of solution concepts. More precisely, a Cournot-type game
is constructed where the application of iterated strict dominance followed by weak
dominance, denoted by (ISD + WD)Γ for a given game Γ, is a strict refinement of
iterated strict dominance.1 Then, an epistemic Aumann model of this game is given
such that the event common knowledge of rationality precisely reveals all the pos-
sible strategy profiles that survive iterated strict dominance, while limit knowledge
of rationality conveys the unique strategy profile in accordance with iterated strict
dominance followed by weak dominance. Moreover, in this case, limit knowledge

1Formally, given a game Γ, iterated strict dominance followed by weak dominance is defined
as (ISD + WD)Γ := ∏i∈I(ISDΓ

i \ {si ∈ ISDΓ
i : there exists s′i ∈ ISDΓ

i such that ui(si , s−i) ≤
ui(s′i , s−i) for all s−i ∈ ISDΓ

−i and ui(si , s′−i) < ui(s′i , s′−i) for some s′−i ∈ ISDΓ
−i}).
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of rationality being strictly included in common knowledge of rationality is thus
being interpretable as some kind of highest iterated mutual knowledge.

Example 19. Consider the Cournot-type game Γ = (I, (Si)i∈I , (ui)i∈I) with player
set I = {Alice, Bob, Claire, Donald}, strategy sets SAlice = SBob = [0, 1], SClaire =

{U, D}, SDonald = {L, R}, and utility functions ui : SAlice× SBob× SClaire× SDonald →
R, for all i ∈ I, defined by uAlice(x, y, v, w) = x(1 − x − y), uBob(x, y, v, w) =

y(1− x− y), and uClaire(x, y, v, w) and uDonald(x, y, v, w) as given in Figure 4.

Claire

Donald

L R

U (2, 1) (1, 1)

D (2, 2) (2, 3)

for all (x, y) 6= ( 1
3 , 1

3 )

Claire

Donald

L R

U (2, 3) (2, 2)

D (1, 1) (2, 1)

for (x, y) = ( 1
3 , 1

3 )

Figure 4 – The four player game of Example 19.

Solving the game by iterated strict dominance – requiring infinitely many elim-
ination rounds – yields the sequence of successively surviving strategy profile sets(
[an, bn]2 × {U, D} × {L, R}

)
n≥0, where [a0, b0] = [0, 1], [an+1, bn+1] = [ an+bn

2 , bn] if

n is odd, and [an+1, bn+1] = [an, an+bn
2 ] if n is even. The non-unique solution of the

game is thus given by the remaining four strategy profiles

ISDΓ =
⋂

n≥0

(
[an, bn]

2 × {U, D} × {L, R}
)
= {1

3
} × {1

3
} × {U, D} × {L, R}.

However, it is possible to further restrict the remaining strategy sets of Claire and
Donald by a weak dominance argument – a potential refinement that only emerges
after applying iterated strict dominance. Indeed, in the set ISDΓ the strategies D
and R are weakly dominated by U and L for Claire and Donald, respectively. There-
fore, iterated strict dominance followed by weak dominance yields the singleton set
(ISD + WD)Γ = {( 1

3 , 1
3 , U, L)} as a possible strictly refined solution of the game.

Before turning towards the epistemic Aumann model of this game, some pre-
liminary observations are needed. Note that, by definition of the utility functions,
the best response strategy of Alice to an opponents’ strategy combination only de-
pends on Bob’s choice, and vice versa. More precisely, Alice’s and Bob’s best re-
sponse functions bAlice : [0, 1]×{U, D}×{L, R} → [0, 1] and bBob : [0, 1]×{U, D}×
{L, R} → [0, 1] are given by bAlice(y, v, w) = 1−y

2 and bBob(x, v, w) = 1−x
2 , respec-

tively. Hence, the set of all strategy profiles in which Alice and Bob simultaneously
play best responses is given by { 1

3} × { 1
3} × {U, D} × {L, R}. On the basis of

these two functions, we now describe an infinite sequence (sn
Alice, sn

Bob)n≥0 of strat-
egy combinations for Alice and Bob which will be central to the construction of our



4.3. Limit Knowledge of Rationality 173

epistemic Aumann model. This sequence is defined for all n ≥ 0 by induction as
follows.

(
s0

Alice, s0
Bob

)
= (0, 1)(

s1
Alice, s1

Bob

)
=

(
0,

1
2

)
(

s2n+2
Alice , s2n+2

Bob

)
=

(
1− s2n+1

Bob
2

, s2n+1
Bob

)
(

s2n+3
Alice , s2n+3

Bob

)
=

(
s2n+2

Alice ,
1− s2n+2

Alice
2

)

This infinite sequence (sn
Alice, sn

Bob)n≥0 of strategy combinations for Alice and Bob is
illustrated in Figure 5. The depicted points indicate its first few elements. Note that
the terms

(
s2n+2

Alice , s2n+2
Bob

)
and

(
s2n+3

Alice , s2n+3
Bob

)
are given by the projections of their pre-

decessors on Alice’s and Bob’s best response curves, respectively. Farther observe
that the sequence converges to ( 1

3 , 1
3 ).

1

10

Figure 5 – Illustration of the infinite sequence (sn
Alice, sn

Bob)n≥0 of strategy combinations for
Alice and Bob.

Next, consider the epistemic Aumann model AΓ = (Ω, (Ii)i∈I , (σi)i∈I) of Γ,
where the countable set of all possible worlds is given by

Ω = {α, β, γ, δ, α0, β0, γ0, δ0, α1, β1, γ1, δ1, α2, β2, γ2, δ2, . . .},
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the players’ information partitions are specified by

IAlice = {{α, β, γ, δ}} ∪
{{α2n, β2n, γ2n, δ2n, α2n+1, β2n+1, γ2n+1, δ2n+1} : n ≥ 0} ,

IBob = {{α, β, γ, δ}, {α0, β0, γ0, δ0}} ∪
{{α2n−1, β2n−1, γ2n−1, δ2n−1, α2n, β2n, γ2n, δ2n} : n > 0} ,

IClaire = {{α, β}, {γ, δ}} ∪
{{αn, βn} : n ≥ 0} ∪ {{γn, δn} : n ≥ 0} ,

IDonald = {{α, γ}, {β, δ}} ∪
{{αn, γn} : n ≥ 0} ∪ {{βn, δn} : n ≥ 0} ,

and the choice function σ = (σAlice, σBob, σClaire, σDonald) : Ω → ∏i∈I Si assembling
all the players’ choice functions is defined for all n ≥ 0 by:

σ(α) = (1/3, 1/3, U, L) σ(αn) = (sn
Alice, sn

Bob, U, L)

σ(β) = (1/3, 1/3, U, R) σ(βn) = (sn
Alice, sn

Bob, U, R)

σ(γ) = (1/3, 1/3, D, L) σ(γn) = (sn
Alice, sn

Bob, D, L)

σ(δ) = (1/3, 1/3, D, R) σ(δn) = (sn
Alice, sn

Bob, D, R).

By definition of the sequence (sn
Alice, sn

Bob)n≥0, the two equalities s2n
Alice = s2n+1

Alice and
s2n+1

Bob = s2n+2
Bob hold for all n ≥ 0, and therefore our epistemic Aumann model

satisfies the standard measurability requirement for the players’ choice functions.

We now analyze the players’ rationality. First of all, consider Alice and note that
she is rational at worlds α, β, γ and δ. By construction of the sequence (sn

Alice, sn
Bob)n≥0,

if ω is a world such that (σAlice(ω), σBob(ω)) = (s2n
Alice, s2n

Bob) for some n ≥ 0, then
uAlice(σ(ω)) = uAlice(bAlice(σ−Alice(ω)), σ−Alice(ω)) ≥ uAlice(x, σ−Alice(ω)), for all
x ∈ SAlice. It follows that Alice is rational at every world ω′ ∈ IAlice(ω). By def-
inition of IAlice, since each cell contains a world ω such that (σAlice(ω), σBob(ω)) =

(s2n
Alice, s2n

Bob) for some n ≥ 0, it follows that RAlice = Ω. Secondly, Bob is shown not to
be rational at every possible world. In fact, his strategies σBob(α0), σBob(β0), σBob(γ0)

and σBob(δ0) all equal 1, which in turn is strictly dominated by any y ∈ (0, 1), thus
α0, β0γ0, δ0 6∈ RBob. Analogous reasoning as for Alice allows to conclude that Bob
is rational at all remaining worlds. Therefore, RBob = Ω \ {α0, β0, γ0, δ0}. Finally,
Claire and Donald are rational at every possible world. Indeed, observe that Claire
is rational at α, since α ∈ IClaire(α) and uClaire(σ(α)) ≥ uClaire(D, σ−Claire(α)), where
D is her only alternative strategy. As β ∈ IClaire(α), it follows that Claire is also
rational at β. Similar arguments hold for Claire’s rationality at worlds γ and δ.
Analogously, Claire is rational at all other possible worlds αn, βn, γn and δn, for all
n ≥ 0. Donald’s rationality at each world is obtained in the same manner. There-
fore, RClaire = RDonald = Ω and the event of all players being rational is given by
R =

⋂
i∈I Ri = Ω \ {α0, β0, γ0, δ0}.

It follows that K(R) =
⋂

i∈I Ki(R) = Ω \ {α0, β0, γ0, δ0, α1, β1, γ1, δ1}, and by in-
duction Km(R) = Ω \ {α0, β0, γ0, δ0, α1, β1, γ1, δ1, . . . , αm, βm, γm, δm} for all m > 0.
Therefore, CK(R) =

⋂
m>0 Km(R) = {α, β, γ, δ}. Besides, suppose the event space

P(Ω) to be equipped with the topology T = {O ⊆ P(Ω) : {α} 6∈ O} ∪ {P(Ω)}.
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Then, the only T -open neighbourhood of the event {α} isP(Ω), and all terms of the
sequence (Km(R))m>0 are contained in P(Ω). Thus (Km(R))m>0 converges to {α}.
Moreover, any singleton {F} 6= {{α}} is T -open, and, since Km+1(R) ( Km(R)
for all m > 0, the strictly shrinking sequence (Km(R))m>0 will never remain in the
open neighbourhood {F} of F from some index onwards. Hence, (Km(R))m>0 does
not converge to any such event F. Therefore the limit (Km(R))m>0 is unique, and
LK(R) = limm→∞(Km(R))m>0 = {α}.

Farther, σ(CK(R)) = {σ(α), σ(β), σ(γ), σ(δ)} = { 1
3}×{ 1

3}×{U, D}×{L, R} =
ISDΓ, while σ(LK(R)) = {σ(α)} = {( 1

3 , 1
3 , U, L)} = (ISD + WD)Γ. Hence, the so-

lution in accordance with LK(R) is a strict refinement of the solution induced by
CK(R). ♣

The preceding example describes a particular epistemic-topological epistemic
model of a given game such that limit knowledge of rationality is a strict refinement
of common knowledge of rationality in terms of solution concepts.

More generally, we now show that for any game and epistemic Aumann model
of it such that the sequence of iterated mutual knowledge of rationality is strictly
shrinking, every solution concept can be epistemic-topologically characterized by
limit knowledge of rationality.

Theorem 20. Let Γ be a game, AΓ be an epistemic Aumann model of it such that the
sequence (Km(R))m>0 is strictly shrinking, and SC be some solution concept. Then, there
exists a topology on P(Ω) such that σ(LK(R)) ⊆ SCΓ.

Proof. Consider the event F = σ−1(SCΓ) = {ω ∈ Ω : σ(ω) ∈ SCΓ}. Then
σ(F) ⊆ SCΓ. Now, suppose the event space P(Ω) to be equipped with the topol-
ogy T = {O ⊆ P(Ω) : F 6∈ O} ∪ {P(Ω)}. By definition of T , the only T -open
neighbourhood of F is P(Ω), and thus the sequence (Km(R))m>0 converges to
F. Besides, for every event E 6= F, the singleton {E} is open, and, since satisfy-
ing the strictly shrinking condition, (Km(R))m>0 will never remain in the T -open
neighbourhood {E} of E from some index onwards. Consequently, (Km(R))m>0
does not converge to E. It follows that the limit of (Km(R))m>0 is unique, and
LK(R) = limm→∞(Km(R))m>0 = F. Therefore, σ(LK(R)) = σ(F) ⊆ SCΓ.

4.4 DISCUSSION

We studied some game-theoretic consequences of limit knowledge, and showed
that this epistemic-topological operator is capable of relevant characterizations of
solution concepts in games. In fact, we provided a concrete static infinite game in
which limit knowledge of rationality strictly refines common knowledge of ratio-
nality in terms of solution concepts (Example 19). Furthermore, we showed that
limit knowledge of rationality can provide an epistemic-topological foundation for
any possible game-theoretic solution concept (Theorem 20).

Note that this universal characterization property is enabled via the choice of a
specific topology on the event space constructed for the purpose to be achieved.2

2In fact, in the proof of Theorem 20, we used the so-called “excluded point topology” to make the
sequence of higher-order mutual knowledge claims converge to the specific desired event.
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Hence, a natural approach to be followed concerns the epistemic-topological foun-
dations of solution concepts obtained on the basis topologies on the event space
that are rather “epistemically-plausible”: for instance, those revealing some kind of
underlying agent perceptions or reasoning patterns, as well as natural extensions
of implicit topologies on the state space.

As an example, a plausible epistemic-topological foundation for the solution
concept k-times strict dominance SDk is given now. Suppose a game in normal
form Γ and some epistemic model AΓ of it such that the sequence (Km(R))m>0 is
strictly shrinking. Consider the topology T on P(Ω) induced by the subbase

{{Km(R) : m > 0},P(Ω) \ {Km(R) : m > 0}}
∪ {{Km(R)} : m < k− 1}
∪
{
{Kk(R), Kk+1(R), . . . , Kn(R)} : n > k− 1

}
.

This topology can be argued to be epistemically plausible in the sense that it satis-
fies the following four properties.

1. If E is a term of the sequence (Km(R))m>0 and F is not (or vice versa), then E
and F are T2-separable.3

2. If E and F are two distinct terms of (Km(R))m>0 of index strictly smaller than
k− 1, then E and F are T2-separable.

3. If E and F are two distinct terms of (Km(R))m>0 of index strictly larger than
k− 1, then E and F are T0-separable.4

4. If E = Kk−1(R) and F is another term of (Km(R))m>0 (or vice versa), then E
and F are T0-separable.

These properties reflect a particular perception of the event space, where the agents’
topological distinction between the first (k − 2)-order knowledge of rationality is
stronger than between the remaining higher-order mutual knowledge. By defini-
tion of T , it follows that LK(R) = Kk−1(R) and therefore the proof of Proposition
18 ensures that σ(LK(R)) ⊆ SDk. In this sense, T provides a plausible epistemic-
topological foundation for the solution concept SDk.

These considerations show that the specific hypothesis “limit knowledge of ra-
tionality” is indeed capable of modelling agents’ reasoning patterns involving some
notion of closeness between events, and in turn, of characterizing relevant solution
concepts in games. More generally, analogous to the epistemic program in game
theory that attempts to provide epistemic foundations for solution concepts, the
proposed epistemic-topological approach to game theory intends to unveil relevant
epistemic-topological foundations of existing and novel solution concepts.

3Given a topological space (X, T ) two points a, b ∈ X are called T2-separable if there exist two disjoint
T -neighbourhoods Na and Nb of a and b, respectively.

4Given a topological space (X, T ) two points in X are called T0-separable if there exists an T -open
set containing precisely one of the two points.



5 LIMIT KNOWLEDGE AND AUMANN’S

AGREEMENT THEOREM

5.1 INTRODUCTION

AUMANN (1976)’s so-called agreement theorem establish the impossibility for two
agents to agree to disagree on their posterior beliefs. More precisely, if two Bayesian
agents are equipped with a common prior belief, receive private information, and
have common knowledge of their posterior beliefs, then these posteriors must be
equal. In other words, among Bayesian agents with a common prior, distinct poste-
riors cannot be common knowledge. In this sense, agents cannot agree to disagree.

Along these lines, MILGROM and STOKEY (1982) deduced an impossibility the-
orem of speculative trade. Intuitively, their result states that if two traders agree
on a prior efficient allocation of goods, then upon receiving private information, it
cannot be common knowledge that both traders have an incentive to trade.

From an empirical or quasi-empirical point of view, these impossibility results
are rather startling since real world agents do frequently disagree on a large variety
of issues. Consequently, the notion of common knowledge has been challenged and
much literature has been focused on reconsidering AUMANN (1976)’s agreement
theorem in light of weakened or modified epistemic assumptions.

In this spirit, GEANAKOPLOS and POLEMARCHAKIS (1982) showed that without
assuming common knowledge of the posteriors, agents following a specific com-
munication procedure can nevertheless not agree to disagree. A different gener-
alization was provided by BACHARACH (1985)’s non-probabilistic agreement theo-
rem. The result states that if two agents follow a common decision procedure in line
with the sure thing principle (i.e., for every event and every partition of it, when-
ever each cell of the partition induces a same decision, the event itself generates
precisely this decision) and if their particular decisions are common knowledge,
then these decisions must coincide. Besides, SAMET (1990) adopted a bounded ra-
tionality approach of the problem. He dropped the implicit negative introspection
assumption (which states that for every proposition that an agent does not know,
the agent actually knows that he does not know it) and established that Aumann’s
agreement theorem remains valid with agents ignorant of their own ignorance.

In addition, MONDERER and SAMET (1989) introduced the notion of common p-
belief as a relevant weakening of common knowledge, and proved that Aumann’s
result on the impossibility of agreeing to disagree can be approximated in this con-
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text. They showed that if Bayesian agents equipped with a common prior have
common p-belief of their posteriors for a sufficiently large p, then these posteri-
ors cannot differ significantly. This result was further generalized by NEEMAN

(1996) and KAJII and MORRIS (1997). Moreover, SONSINO (1995) and NEEMAN

(1996) independently proved that the impossibility of speculative trade does actu-
ally not hold anymore under the epistemic hypotheses of almost common knowl-
edge and common p-belief, if sufficiently large noise is considered. MORRIS (1999)
generalized this approach by proposing alternative notions of approximate com-
mon knowledge based on the concept of p-belief and studying their consequences
in the contexts agreeing to disagree and no trade results.

More recently, BACH and PEREA (2013) showed that Aumann’s impossibility re-
sult is not robust with respect to the common prior assumption in the sense that two
Bayesian agents with arbitrarily close prior beliefs can have common knowledge
of completely opposed posteriors. On that basis, they established a lexicographic
agreement theorem. Besides, the agreement theorem has also been analyzed from
the perspective of dynamic epistemic logic. DÉGREMONT and ROY (2012) obtained
a non-probabilistic impossibility result with common belief – instead of common
knowledge – of posteriors within the framework of epistemic plausibility models,
when the common priors satisfy a specific well-foundedness assumption. More-
over, several probabilistic agreement theorems are established by DEMEY (2014)
using enriched probabilistic Kripke models.

For deeper considerations about Aumann’s agreement theorem, see the com-
prehensive surveys by BONANNO and NEHRING (1997) as well as by MÉNAGER

(2012).

Here, we analyze agreeing to disagree in a topologically extended epistemic
framework. The epistemic operator common knowledge is replaced by the episte-
mic-topological operator limit knowledge. We show that Bayesian agent entertain-
ing common priors as well as limit knowledge of their posteriors can have these
posteriors being distinct. Since limit knowledge is defined as the topological limit
of higher-order mutual knowledge, our result can be interpreted as establishing –
in contrast to Aumann’s impossibility theorem – that agents can agree to disagree,
or more precisely, can limit-agree to disagree. These results show that Aumann’s
agreement theorem is not robust when considered from a more general epistemic-
topological perspective, with common knowledge being replaced by limit knowl-
edge. We further show that the notion of limit knowledge is able to capture rel-
evant reasoning patterns for which agents do agree to disagree on their posterior
beliefs. In particular, an example is constructed in which limit knowledge is iden-
tical with RUBINSTEIN (1989)’s notion of almost common knowledge, i.e., with m
iterations of mutual knowledge for some finite number m. Thereby, we give an
epistemic-topological foundation for RUBINSTEIN (1989)’s notion of almost com-
mon knowledge. In this specific case also, agents can limit-agree to disagree. Once
again, these consideration argue in favor of a general topological framework for
interactive epistemology.
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5.2 AUMANN’S AGREEING TO DISAGREE

Aumann’s agreement theorem states that if two agents have a common prior and
their posterior beliefs in some event are common knowledge, then these posterior
beliefs must coincide. In other words, if two agents with common prior beliefs hold
distinct posterior beliefs, then these posterior beliefs cannot be common knowledge
among them. Intuitively, it is impossible for agents to consent to distinct beliefs.
Thus, agents cannot agree to disagree.

Aumann’s result is now formalized in a slightly modified way. More precisely,
the introduction of arbitrary values for the agents’ posterior beliefs as in Aumann’s
original statement is dispensed with. Instead, these arbitrary values are substituted
by conceivable posterior beliefs, namely updated prior beliefs induced by some
auxiliary world. The values of the posteriors are thus made endogenous, as nothing
external to the formal structure is needed for their determination. In this sense, the
following statement of the agreement theorem is inherent to the formal structure it
is embedded in.

Aumann’s Agreement Theorem (Version 1). Let A = (Ω, (Ii)
n
i=1, p) be an Aumann

structure, E ⊆ Ω be an event, and ω̂ be a world. If CK(
⋂n

i=1{ω′ ∈ Ω : p(E | Ii(ω
′)) =

p(E | Ii(ω̂))}) 6= ∅, then p(E | I1(ω̂)) = p(E | I2(ω̂)) = · · · = p(E | In(ω̂)).

Proof. Let ω̂ ∈ Ω be such that CK(
⋂n

i=1{ω′ ∈ Ω : p(E | Ii(ω
′)) = p(E | Ii(ω̂))}) 6=

∅, and for sake of notational convenience let the event
⋂n

i=1{ω′ ∈ Ω : p(E |
Ii(ω

′)) = p(E | Ii(ω̂))} be denoted by E′. Consider a world ω ∈ CK(E′) and
some agent i∗ ∈ {1, 2, . . . , n}. As the meet

∧n
i=1 Ii is coarser than agent’s i∗ possi-

bility partition, the cell
∧n

i=1 Ii(ω) can be written as a disjoint union of information
cells of i∗, namely there exists a set Ai∗ ⊆ Ω such that

∧n
i=1 Ii(ω) =

⋃
ω′∈Ai∗ Ii∗(ω

′),
and for all ω1, ω2 ∈ Ai∗ , if ω1 6= ω2, then Ii∗(ω1) 6= Ii∗(ω2). Since ω ∈ CK(E′),
the meet definition of common knowledge ensures that

∧n
i=1 Ii(ω) ⊆ E′. By the

definition of the event E′ it then follows that p(E | Ii∗(ω̂)) = p(E | Ii∗(ω
′)), for all

ω′ ∈ Ai∗ . Thus, p(E ∩ Ii∗(ω
′)) = p(E | Ii∗(ω̂)) · p(Ii∗(ω

′)), for all ω′ ∈ Ai∗ . Sum-
ming over the worlds in Ai∗ yields the following equation of sums ∑ω′∈Ai∗ p(E ∩
Ii∗(ω

′)) = p(E | Ii∗(ω̂)) ·∑ω′∈Ai∗ p(Ii∗(ω
′)). By countable additivity of the proba-

bility measure p, pairwise disjointness of the events E∩Ii∗(ω
′) for all ω′ ∈ Ai∗ , and

distributivity of intersection, it follows that ∑ω′∈Ai∗ p(E∩Ii∗(ω
′)) = p(

⋃
ω′∈Ai∗ (E∩

Ii∗(ω
′))) = p(E ∩⋃ω′∈Ai∗ Ii∗(ω

′)) = p(E ∩∧n
i=1 Ii(ω)) and ∑ω′∈Ai∗ p(Ii∗(ω

′)) =
p(
⋃

ω′∈Ai∗ Ii∗(ω
′)) = p(

∧n
i=1 Ii(ω)). The equation of sums can then be written

as p(E ∩ ∧n
i=1 Ii(ω)) = p(E | Ii∗(ω̂)) · p(

∧n
i=1 Ii(ω)), thence p(E | Ii∗(ω̂)) =

p(E ∩ ∧n
i=1 Ii(ω))/p(

∧n
i=1 Ii(ω)). Since i∗ has been arbitrarily chosen, the latter

equality holds for every agent i ∈ {1, 2, . . . , n}. Therefore, p(E | I1(ω̂)) = p(E |
I2(ω̂)) = · · · = p(E | In(ω̂)) = p(E ∩ ∧n

i=1 Ii(ω))/p(
∧n

i=1 Ii(ω)), which con-
cludes the proof.

The previous theorem states that, if common knowledge of the agents’ posterior
beliefs being equal to the values induced by some auxiliary world is non-empty,
then the agents’ posterior beliefs at this given world coincide. Yet as a consequence,
the agents’ posterior beliefs do not only coincide at the auxiliary world, but also at
every possible world inducing the same values as the auxiliary world. In particular,
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every world contained in common knowledge of the agents’ posterior beliefs sat-
isfies equality of posterior beliefs. Thus, a second version of Aumann’s agreement
theorem ensues as follows.

Aumann’s Agreement Theorem (Version 2). Let A = (Ω, (Ii)
n
i=1, p) be an Aumann

structure, E ⊆ Ω be an event, and ω̂, ω ∈ Ω be worlds such that CK(
⋂n

i=1{ω′ ∈ Ω :
p(E | Ii(ω

′)) = p(E | Ii(ω̂))}) 6= ∅ and ω ∈ CK(
⋂n

i=1{ω′ ∈ Ω : p(E | Ii(ω
′)) =

p(E | Ii(ω̂))}). Then, p(E | I1(ω)) = p(E | I2(ω)) = · · · = p(E | In(ω)).

Proof. Again, for sake of notational convenience, let the event
⋂n

i=1{ω′ ∈ Ω : p(E |
Ii(ω

′)) = p(E | Ii(ω̂))} be denoted by E′. Since ω ∈ CK(E′), it holds that ω ∈ E′.
Observe that the definition of the event E′ ensures that p(E | Ii(ω)) = p(E | Ii(ω̂))

for all agents i ∈ {1, 2, . . . , n}. Also, Theorem 5.2 implies that p(E | I1(ω̂)) = p(E |
I2(ω̂)) = · · · = p(E | In(ω̂)). Therefore, p(E | I1(ω)) = p(E | I2(ω)) = · · · =
p(E | In(ω)).

The two preceding versions of Aumann’s Agreement Theorem provide slightly
different formulations of the impossibility for agents to agree to disagree on their
posterior beliefs. In the first version, emphasis is put on the posterior beliefs in-
duced by some auxiliary world, whereas the second version focuses on the pos-
terior beliefs that the agents actually hold. Basically, the first version intuitively
states that, if the agents’ posterior beliefs are common knowledge somewhere, then
they must coincide, while the second version states that, if the agents’ actual poste-
rior beliefs are common knowledge, then they must coincide.

Agreeing to disagree can be graphically illustrated for the case of two agents.
In Figure 6, the set of all possible worlds Ω is partitioned horizontally in equiva-
lence classes of worlds that yield a same posterior belief for agent Alice in some
fixed event E. Similarly, the vertical slices represent equivalence classes with re-
spect to worlds that induce a same posterior belief for Bob in E. Observe that the
partition formed by the horizontal slices is coarser than Alice’s possibility partition,
since Bayesian updating ensures that Alice’s posteriors remain constant throughout
any cell of her possibility partition. Similarly, the partition formed by the vertical
slices is coarser than Bob’s possibility partition. Moreover, the intersection of the
horizontal and vertical slices forms a refined partition whose cells represent equiv-
alence classes of worlds that induce a same posterior belief profile, i.e. the posterior
of each agent remains constant throughout the cell. Given an auxiliary world ω̂ –
a world which merely serves the supply of posterior beliefs that can potentially
be generated given the constraints of the formal structure – the cell of this refined
partition containing ω̂ represents the event E′ =

⋂
i∈I{ω′ ∈ Ω : p(E | Ii(ω

′)) =

p(E | Ii(ω̂))} and includes the event CK(E′). In particular, note that CK(E′) can be
empty.

The claim of Aumann’s agreement theorem can now be understood graphically:
given a world ω̂, if the corresponding cell E′ of the refined partition includes a non-
empty CK(E′), then identical values for the agents’ posterior beliefs obtain at ω̂,
and hence also at all worlds throughout cell E′. Conversely, common knowledge
of the agents’ posteriors equals the empty set in all cells of the refined partition in
which the posteriors of Alice and Bob differ. In particular, the equality of the two
agents’ posteriors throughout CK(E′) is established. Finally, note that in the specific
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Ω

E′

IAlice(ω̂)

IBob(ω̂)

ω̂
CK(E′)

Figure 6 – Illustration of agreeing to disagree for the case of two agents.

Aumann structure represented in Figure 6, at world ω̂, none of the two agents know
the true fact that their posteriors coincide, since each agent, respectively, considers
possible a world at which the other agent’s posterior belief is different. In contrast,
for any world ω ∈ CK(E′), the agents’ posterior beliefs are not merely equal at
such a world, but the agents also know that they coincide, know that they know
that they coincide, etc.

5.3 LIMIT-AGREEING TO DISAGREE

The question whether agents with a common prior belief can agree to disagree on
their posterior beliefs is addressed from a topological point of view. The original
hypotheses of Aumann’s result are modified in that the epistemic operator common
knowledge is replaced by the epistemic-topological operator limit knowledge. It is
now shown that agents can indeed limit-agree to disagree.

Theorem 21. There exist an Aumann structure A = (Ω, (Ii)i∈I , p) equipped with a
topology T on the event space P(Ω), an event E ⊆ Ω, and worlds ω, ω̂ ∈ Ω such that
ω ∈ LK(

⋂
i∈I{ω′ ∈ Ω : p(E | Ii(ω

′)) = p(E | Ii(ω̂))}), as well as both p(E |
Ii(ω̂)) 6= p(E | Ij(ω̂)) and p(E | Ii(ω)) 6= p(E | Ij(ω)) for some agents i, j ∈ I.

Proof. Consider the Aumann structure A = (Ω, (Ii)i∈I , p), which is illustrated in
Figure 7 and where Ω = {ωn : n ≥ 0}, I = {Alice, Bob}, IAlice = {{ω2n, ω2n+1} :
n ≥ 0}, IBob = {{ω0}} ∪ {{ω2n+1, ω2n+2} : n ≥ 0}, as well as p : Ω → R is given
by p(ωn) = 1

2n+1 for all n ≥ 0. Note that the common prior belief function p is
well defined since ∑n≥0

1
2n+1 = 1. Now, consider the event E = {ω2n : n ≥ 1},

and the world ω2 ∈ Ω. Besides, for sake of notational convenience, let the event⋂
i∈I{ω′ ∈ Ω : p(E | Ii(ω

′)) = p(E | Ii(ω2))} be denoted by E′. First of all,
observe that p(E | IAlice(ω2)) =

2
3 and p(E | IBob(ω2)) =

1
3 . Moreover, {ω′ ∈ Ω :

p(E | IAlice(ω
′)) = p(E | IAlice(ω2)) = 2

3} = Ω \ {ω0, ω1} and {ω′ ∈ Ω : p(E |
IBob(ω

′)) = p(E | IBob(ω2)) = 1
3} = Ω \ {ω0}, thus E′ = (Ω \ {ω0, ω1}) ∩ (Ω \

{ω0}) = Ω \ {ω0, ω1}. Furthermore, the definitions of the possibility partitions of
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Alice and Bob ensure that Km(E′) = Km(Ω \ {ω0, ω1}) = Ω \ {ω0, ω1, . . . , ωm+1},
for all m > 0. Consequently, the sequence (Km(E′))m>0 is strictly shrinking and
CK(E′) = {ω ∈ Ω : (

∧
i∈I Ii)(ω) ⊆ E′} = ∅. Now, consider the topology T

on P(Ω) defined by T = {O ⊆ P(Ω) : {ω0, ω1, ω2} 6∈ O} ∪ {P(Ω)}. Then,
the only open neighbourhood of the event {ω0, ω1, ω2} is P(Ω), and all terms of
the sequence (Km(E′))m>0 are contained in P(Ω). Thus (Km(E′))m>0 converges to
{ω0, ω1, ω2}. Moreover, for every event F ∈ P(Ω) such that F 6= {ω0, ω1, ω2},
the singleton {F} is open, and since Km+1(E′) ( Km(E′) for all m > 0, the strictly
shrinking sequence (Km(E′))m>0 will never remain in the open neighbourhood {F}
of F from some index onwards. Hence (Km(E′))m>0 does not converge to any such
event F. Therefore the limit point {ω0, ω1, ω2} of the strictly shrinking sequence
(Km(E′))m>0 is unique, and LK(E′) = limm→∞ Km(E′) = {ω0, ω1, ω2}. The event
E′ and its limit point LK(E′) are also illustrated in Figure 7. Next, consider the
world ω1. Note that ω1 ∈ LK(E′). Also, observe that p(E | IAlice(ω2)) =

2
3 6= 1

3 =

p(E | IBob(ω2)) as well as p(E | IAlice(ω1)) = 0 6= 1
3 = p(E | IBob(ω1)). Finally,

taking ω = ω1 and ω̂ = ω2 concludes the proof.

w1 w2 w4 w5 w6 w7 · · ·w8w3

· · ·
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Figure 7 – Illustration of the Aumann structure described in the proof of Theorem 21. The
dotted and dashed sets represent the possibility partitions of Alice and Bob, respectively. The
fractions correspond to the prior probabilities associated to the possible worlds.

The preceding theorem counters Aumann’s impossibility result in the sense of
showing that agents can limit-agree to disagree. More precisely, agents may hold
distinct actual posterior beliefs, while at the same time satisfying limit knowledge
of their posteriors being equal to the specific values induced by a given auxiliary
world. Hence, agents may agree in the sense of satisfying limit knowledge of their
posteriors, while at the same time disagree in the sense of actually having different
posterior beliefs.

The interactive situation depicted in the proof of Theorem 21 shows that agree-
ing to disagree becomes possible when common knowledge is substituted by limit
knowledge. Thus, Aumann’s impossibility result no longer holds when moving
to a topologically enriched context. In such an epistemic-topological framework,
agents can now be seen to have cognitive access to a further dimension in their
reasoning that permits them to agree to disagree on their posterior beliefs. More
precisely, the agents are in a limit situation of having higher-order mutual knowl-
edge of their posteriors, which, in connection with the particular notion of closeness
provided by the topology, leads them to actually possess different posterior beliefs.

Note that the epistemic model constructed in the proof of Theorem 21 could
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actually be strengthened in the sense of generating different posterior beliefs for
the agents not only at some but at all worlds contained in limit knowledge. For
instance, taking as topology on the event space T = {O ⊆ P(Ω) : {ωn : n >

0} 6∈ O} ∪ {P(Ω)} yields LK(
⋂

i∈I{ω′ ∈ Ω : p(E | Ii(ω
′)) = p(E | Ii∈I(ω̂))}) =

Ω \ {ω0}, and hence different posterior beliefs for Alice and Bob at all worlds in
Ω \ {ω0}. More generally, it would actually be possible to make limit knowledge
correspond to any event F by equipping the event space with the corresponding
excluded point topology T = {O ⊆ P(Ω) : F 6∈ O} ∪ {P(Ω)}. This topology
does not have any intuitive interpretation, but has merely be chosen as to keep the
proof of Theorem 21 as simple as possible. However, in Section 5.4, a topological
structure on the event space is given, which is based on intuitive properties and
under which limit-agreeing to disagree also obtains.

The proof of Theorem 21 illustrates an epistemic situation in which limit knowl-
edge of the agents’ posterior beliefs holds concurrently with distinct actual poste-
rior beliefs of the agents, in the particular case of the agents’ posterior beliefs being
nowhere common knowledge in the structure. Hence, the impression might arise
that the relevance of limit knowledge for a possible disagreement only occurs in
epistemic models in which common knowledge of the agents’ posterior beliefs does
not hold anywhere at all. However, it can be shown that the possibility of such a
disagreement may also emerge in situations in which common knowledge of the
agents’ posteriors actually holds somewhere in the structure. Hence, disagreement
induced by limit knowledge does not depend on the existence or non-existence of
common knowledge of the agents’ posteriors beliefs in the epistemic model. From
an interpretative point of view, limit knowledge of the agents’ posteriors might be
consistent with a disagreement between the agents irrespective of whether these
posteriors would have been publicly disclosed somewhere, or not. Also, the proof
of Theorem 21 describes an interactive situation in which limit knowledge of dis-
tinct agents’ posterior beliefs obtains simultaneously with differing actual posterior
beliefs of the agents. Thus, the impression might arise that a possible disagreement
could only be elicited by limit knowledge of already distinct posteriors. However,
it can be shown that agents may actually disagree, while having limit knowledge of
identical posterior beliefs. Countering the preceding two possible impressions, the
following example indeed depicts an epistemic situation in which a disagreement
on the agents’ actual posterior beliefs is induced by limit knowledge of identical
posterior beliefs, while common knowledge of these posteriors also holds some-
where in the structure.

Example 22. Consider the Aumann structure A = (Ω, (Ii)i∈I , p), where Ω =

{ωn : n ≥ 0}, I = {Alice, Bob}, IAlice = {{ω0}, {ω1}} ∪ {{ω2n, ω2n+1} : n >

0}, IBob = {{ω0}} ∪ {{ω2n+1, ω2n+2} : n ≥ 0}, and p : Ω → R is given by
p(ωn) = 1

2n+1 for all n ≥ 0. This structure is illustrated in Figure 8. Note that
the common prior belief function p is well defined since ∑n≥0

1
2n+1 = 1. Now,

consider the event E = {ω1} and the world ω0. Besides, for sake of notational
convenience, let the event

⋂
i∈I{ω′ ∈ Ω : p(E | Ii(ω

′)) = p(E | Ii(ω0))} be
denoted by E′. First of all, observe that p(E | IAlice(ω0)) = 0 as well as p(E |
IBob(ω0)) = 0. Moreover, {ω′ ∈ Ω : p(E | IAlice(ω

′)) = p(E | IAlice(ω0)) =

0} = Ω \ {ω1} and {ω′ ∈ Ω : p(E | IBob(ω
′)) = p(E | IBob(ω0)) = 0} =

Ω \ {ω1, ω2}, whence E′ = (Ω \ {ω1}) ∩ (Ω \ {ω1, ω2}) = Ω \ {ω1, ω2}. Fur-
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thermore, the definitions of the possibility partitions of Alice and Bob ensure that
Km(E′) = Km(Ω \ {ω1, ω2}) = Ω \ {ω1, ω2, . . . , ωm+2}, for all m > 0. Conse-
quently, the sequence (Km(E′))m>0 is strictly shrinking. Now, consider the topol-
ogy T on P(Ω) defined by T = {O ⊆ P(Ω) : {ω1, ω2} 6∈ O} ∪ {P(Ω)}. Then,
the only open neighbourhood of the event {ω1, ω2} is P(Ω), and all terms of
the sequence (Km(E′))m>0 are contained in P(Ω). Thus (Km(E′))m>0 converges
to {ω1, ω2}. Moreover, for every event F ∈ P(Ω) such that F 6= {ω1, ω2}, the
singleton {F} is open, and since Km+1(E′) ( Km(E′) for all m > 0, the strictly
shrinking sequence (Km(E′))m>0 will never remain in the open neighbourhood
{F} of F from some index onwards. Hence (Km(E′))m>0 does not converge to any
such event F. Therefore the limit point {ω1, ω2} of the strictly shrinking sequence
(Km(E′))m>0 is unique, and LK(E′) = limm→∞ Km(E′) = {ω1, ω2}. Besides, note
that CK(E′) = {ω ∈ Ω : (

∧
i∈I Ii)(ω) ⊆ E′} = {ω0}. Next, consider the world

ω1. Observe that ω1 ∈ LK(E′) and p(E | IAlice(ω1)) = 1 6= 2
3 = p(E | IBob(ω1)).

Thus, CK(E′) 6= ∅, and world ω1 satisfies both conditions ω1 ∈ LK(E′) as well as
p(E | IAlice(ω1)) 6= p(E | IBob(ω1)). ♣
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23

w4 w5 w6w3

1
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· · ·

· · ·

LK(E0)E0
0 = CK(E0) E0

1

Figure 8 – Illustration of the Aumann structure used in Example 22. The dotted and dashed
sets represent the possibility partitions of Alice and Bob, respectively. The fractions corre-
spond to the prior probabilities associated with the possible worlds. Note that E′ = E′0 ∪ E′1.

Observe that the structure of the two agents’ possibility partitions in the proof
of Theorem 21 and Example 22 is similar to the structure of the partitions in RUBIN-
STEIN (1989)’s electronic mail game. Indeed, the resemblance lies in the existence of
an infinite chain-type pattern which consecutively links information cells of the two
agents by a single world in the intersection of the respective two cells, and where
each information cell only contains two worlds. In our framework, such a pattern
ensures that the sequence of iterated mutual knowledge is strictly shrinking, which
is a necessary condition for limit knowledge to differ from common knowledge.

More generally, observe that all possible ways of limit-agreeing to disagree can
actually be classified into three mutually exclusive cases.

First of all, disagreement on the agents’ actual posteriors may be induced by
limit knowledge of already distinct posteriors, while common knowledge of these
posteriors is empty. Such agreeing to disagree is illustrated by the interactive situ-
ation depicted in the proof of Theorem 21.

Secondly, disagreement on the agents’ actual posteriors can be induced by limit
knowledge of identical posteriors, while common knowledge of these posteriors is
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non-empty. Such agreeing to disagree is illustrated in Example 22.

Thirdly, disagreement on the agents’ actual posteriors can also be induced by
limit knowledge of identical agents’ posteriors, while common knowledge of these
posteriors is empty. To see this, consider the Aumann structure given in the proof
of Theorem 21, the event E = {ω0}, the world ω2, and the topology on the event
space T = {O ⊆ P(Ω) : {ω0, ω1} 6∈ O} ∪ {P(Ω)}. It thus follows that p(E |
IAlice(ω2)) = p(E | IBob(ω2)) = 0 and E′ =

⋂
i∈I{ω′ ∈ Ω : p(E | Ii(ω

′)) = p(E |
Ii(ω2))} = Ω \ {ω0, ω1}. Then, CK(E′) = ∅ and LK(E′) = {ω0, ω1}, as well as
both ω1 ∈ LK(E′) and p(E | IAlice(ω1)) =

2
3 6= 0 = p(E | IBob(ω1)).

The fourth possibility of a disagreement on the agents’ actual posteriors based
on limit knowledge of already distinct posteriors and with non-emptiness of com-
mon knowledge of these posteriors is excluded by Aumann’s agreement theorem.

Besides, in the epistemic-topological situations described in the proof of Theo-
rem 21 as well as in Example 22, limit knowledge is not factive, i.e., the relation
LK(E′) ⊆ E′ does not hold for the considered event E′. However, the possibility
to limit-agree to disagree established in Theorem 21 does not directly follow from
the non-factiveness of limit knowledge. We now show that agents can limit-agree
to disagree with factive limit knowledge, and that in this case, the distinct actual
posteriors are induced by limit knowledge of already distinct posteriors as well as
common knowledge of these posteriors being empty.

Lemma 23. There exist an Aumann structureA = (Ω, (Ii)i∈I , p) equipped with a topol-
ogy T on the event space P(Ω), an event E ⊆ Ω, and worlds ω, ω̂ ∈ Ω such that
LK(

⋂
i∈I{ω′ ∈ Ω : p(E | Ii(ω

′)) = p(E | Ii(ω̂))}) ⊆ ⋂
i∈I{ω′ ∈ Ω : p(E |

Ii(ω
′)) = p(E | Ii(ω̂))}, ω ∈ LK(

⋂
i∈I{ω′ ∈ Ω : p(E | Ii(ω

′)) = p(E | Ii(ω̂))}), as
well as p(E | Ii(ω)) 6= p(E | Ij(ω)) for some agents i, j ∈ I. In this case, CK(

⋂
i∈I{ω′ ∈

Ω : p(E | Ii(ω
′)) = p(E | Ii(ω̂))}) = ∅ and p(E | Ii(ω̂)) 6= p(E | Ij(ω̂)) for some

agents i, j ∈ I.

Proof. First, the existence of an Aumann structure and a topology satisfying the
postulated properties is established. Consider the Aumann structure A and the
events E and E′ given in the proof of Theorem 21. Let the topology T on the event
space P(Ω) be defined by T = {O ⊆ P(Ω) : {ω2} 6∈ O} ∪ {P(Ω)}. It follows that
LK(E′) = limm→∞ Km(E′) = {ω2} ⊆ Ω \ {ω0, ω1} = E′, and p(E | IAlice(ω2)) =
2
3 6= 1

3 = p(E | IBob(ω2)). Taking ω = ω̂ = ω2 concludes the first part of the
proof. Next, it is shown that if an Aumann structure and a topology satisfy the
postulated properties, then the corresponding posteriors are distinct and common
knowledge of these posteriors is thus empty. Consider some Aumann structure
A = (Ω, (Ii)i∈I , p), some topology T on the event space P(Ω), some event E,
and some worlds ω, ω̂ ∈ Ω satisfying the postulated conditions. Let the event⋂

i∈I{ω′ ∈ Ω : p(E | Ii(ω
′)) = p(E | Ii(ω̂))} be denoted by E′. Since ω ∈ LK(E′)

and LK(E′) ⊆ E′ both hold by the postulated conditions, it follows that ω ∈ E′, i.e.
p(E | Ii(ω)) = p(E | Ii(ω̂)), for all i ∈ I. Moreover, as the postulated conditions
ensure that p(E | Ii(ω)) 6= p(E | Ij(ω)) for some agents i, j ∈ I, it is the case
that p(E | Ii(ω̂)) 6= p(E | Ij(ω̂)) also obtains for some agents i, j ∈ I. Now, the
contraposition of Aumann’s Agreement Theorem (Version 1) directly implies that
CK(E′) = ∅.
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Finally, agreeing to disagree with limit knowledge can be graphically illustrated
for the case of two agents. A particular interactive situation is represented in Fig-
ure 9. Again, as in Figure 6, the event space is partitioned in equivalence classes of
worlds inducing a same posterior belief profile in some underlying event E. Hence,
the event E′ denotes the equivalence class of worlds inducing the same posterior
beliefs for all agents as at the auxiliary world ω̂. In the considered interactive situ-
ation, the event CK(E′) is non-empty, and the topology on the event space implies
that the event LK(E′) is well-defined, distinct from CK(E′), and not even included
in the event E′ itself. Since CK(E′) is non-empty, Aumann’s agreement theorem en-
sures that the agents’ posterior beliefs induced by the auxiliary world ω̂ coincide,
and thus any world in the equivalence class E′ also induces identical posterior be-
liefs for all agents. Therefore, the posterior beliefs that are both common knowledge
as well as limit knowledge are identical for all agents. Moreover, note that, as ω1
lies in the equivalence class E′, the agents’ posterior beliefs at world ω1 are the
same as the ones induced by the auxiliary world ω̂, and thus all identical. Conse-
quently, since ω1 is also contained in both CK(E′) as well as in LK(E′), agents do
agree on identical posteriors at ω1, both with common knowledge and with limit
knowledge. Besides, the position of the world ω2 relative to ω1 in Figure 9 en-
sures that Alice and Bob hold distinct posterior beliefs at ω2. Similarly, the agents
have different posterior beliefs at ω3. Since ω2 and ω3 are contained in LK(E′),
agents actually agree to disagree with limit knowledge at both worlds. Observe
that, although being based on limit knowledge of the same posterior beliefs, the
disagreements at ω2 and ω3 differ. Furthermore, both such disagreements are in
fact induced by limit knowledge of equal posteriors, as the posteriors of Alice and
Bob coincide throughout E′.

Ω

E′
CK(E′)

LK(E′)

ω̂ ω1 ω2

ω3

Figure 9 – Illustration of limit-agreeing to disagree for the case of two agents.

5.4 A REPRESENTATIVE EXAMPLE

The extension of the standard set-based approach to interactive epistemology with
a topological dimension has been shown to enable the possibility for agents to limit-
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agree to disagree on their posterior beliefs. The question then arises whether limit-
agreeing to disagree remains possible in interactive situations, where the topolo-
gies are based on intuitive properties. A topology describing a specific agents’ per-
ception of the event space is now presented. Accordingly, lower iterated mutual
knowledge up to some finite level is grasped by the agents in a more refined man-
ner than higher iterations from that level onwards. Such a property seems natural,
since real world agents typically only have distinguished cognitive access to iter-
ated knowledge claims up to some finite level, in contrast to the idealized agents
that can equally well conceive of any layer of the complete hierarchy of interactive
knowledge. For this intuitive topology it is then shown that agreeing to disagree
with limit knowledge is possible. Besides, this intuitive topology establishes that
limit knowledge is identical to iterated mutual knowledge for some finite level m,
i.e. it is equal to almost common knowledge, a concept due to RUBINSTEIN (1989).
The example could thus also be seen as a contribution to the literature of bounded
reasoning. However, it differs from models of k-level reasoning, which express
a specific and different kind of finite level reasoning in the particular context of
games.1

Towards this purpose, consider an Aumann structureA= (Ω, (Ii)i∈I , p) and an
event E. Furthermore, for any world ω ∈ Ω, let E′ω denote the event consisting of
all worlds that induce the same posterior beliefs in E for all agents as at ω, i.e. E′ω =⋂

i∈I{ω′ ∈ Ω : p(E | Ii(ω
′)) = p(E | Ii(ω))}. Note that constancy of the agents’

posterior beliefs in E yields an equivalence relation on the set of possible worlds,
and hence every E′ω represents an equivalence class of worlds. Consequently, the
collection C = {E′ω : ω ∈ Ω} of all equivalence classes of worlds that induce a
same posterior belief profile forms a partition of Ω. Given some event E and some
index m∗ > 0, the epistemically-based topology TE,m∗ is defined as the topology on
the event space P(Ω) generated by the subbase

{{Km(E′ω) : m ≥ 0} : ω ∈ Ω}
∪ {P(Ω) \ {Km(E′ω) : m ≥ 0 and ω ∈ Ω}}
∪ {{Km(E′ω)} : 0 ≤ m < m∗ and ω ∈ Ω}
∪ {{Km∗+j(E′ω) : 0 < j ≤ n} : n > 0 and ω ∈ Ω}.

The topology TE,m∗ is illustrated in Figure 10, where the sequence (Km(E′ω))m≥0
is represented by a horizontal sequence of points for each ω ∈ Ω, and open sets of
the subbase by circle-type shapes around these points. In this topology, the close-
ness relation between events is represented by means of the T0 and T2 separation
properties.2

1Loosely speaking, k-level reasoning restricts a belief hierarchy in the particular context of games
such that random play is assumed at the first level, and only best responses to the respective preceding
levels are admitted at the iterated levels up to some finite level k. In fact, CRAWFORD, COSTA-GOMES,
and IRIBERRI (2013) provide a recent overview on the literature of k-level reasoning and other theories
of finite reasoning.

2Given a topological space (A, T ), two points in A are called T2-separable, if there exist two disjoint
T -open neighbourhoods of these two points. Moreover, two points in A are called T0-separable, if there
exists a T -open set containing precisely one of these two points. Note that T2-separability implies T0-
separability. In fact, two events that are T0-separable but not T2-separable can be said to be closer to
each other than two events that are both T0-separable as well as T2-separable.



188 5. Limit Knowledge and Aumann’s Agreement Theorem

P(Ω)

E′
ω K(E′

ω) K2(E′
ω) Km∗

(E′
ω) Km∗+1(E′

ω) Km∗+2(E′
ω) Km∗+3(E′

ω)

Figure 10 – Illustration of the topology TE,m∗ .

The topology TE,m∗ reveals a specific agent perception of the event space, ac-
cording to which the agents express a more refined distinction between the m∗ first
iterated mutual knowledge of their posterior beliefs in E than between the remain-
ing ones. This specific perception is formally reflected by two separation properties
satisfied by the topology TE,m∗ .

Firstly, given two events X and Y, if X and Y are two distinct terms of the same
sequence (Km(E′ω))m>0, such that X = Km1(E′ω) and Y = Km2(E′ω), for some ω ∈ Ω
and m1, m2 < m∗, then X and Y are T2-separable, and therefore also T0-separable.
Secondly, if X and Y are two different elements of the same sequence (Km(E′ω))m>0,
such that X = Km1(E′ω) and Y = Km2(E′ω), for some ω ∈ Ω and m1, m2 > m∗, then
X and Y are T0-separable, yet not T2-separable. According to these two separation
properties, agents have access to a more refined distinction between the m∗ first
iterated knowledge claims of their posterior beliefs in E than between the iterated
mutual knowledge claims of order strictly larger than m∗. In other words, iterated
mutual knowledge claims are only precisely discerned up to a given amount of
iterations, and thereafter the higher iterations become less distinguishable for the
agents. Also, from a bounded rationality point of view, the agents’ perception of
higher-order mutual knowledge due to the topology TE,m∗ reflects that people typ-
ically lose track from some iteration level onwards when reasoning about higher-
order mutual knowledge.

Furthermore, the topology TE,m∗ notably satisfies the following epistemic-topo-
logical property: for any event E′ω, if the sequence (Km(E′ω))m>0 is strictly shrink-
ing, then LK(E′ω) = Km∗(E′ω). Indeed, suppose that the sequence (Km(E′ω))m>0 is
strictly shrinking. Then, by definition of TE,m∗ , the only open neighbourhoods of
Km∗(E′ω) are P(Ω) and {Km(E′ω) : m ≥ 0}. Since both sets contain all terms of
the sequence (Km(E′ω))m>0, it follows that Km∗(E′ω) is a limit point of the sequence
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(Km(E′ω))m>0.

Moreover, this limit point is actually unique. To see this, consider F ∈ P(Ω)

such that F 6= Km∗(E′ω). Then either F = Km(E′ω′) for some m < m∗ and some
ω′ ∈ Ω, or F = Km(E′ω′) for some m > m∗ and some ω′ ∈ Ω, or F = Km∗(E′ω′) for
some ω′ 6= ω, or F 6= Km(E′ω′) for all m ≥ 0 and all ω′ ∈ Ω. These four mutually
exclusive cases are now considered in turn. First of all, if F = Km(E′ω′) for some
m < m∗ and some ω′ ∈ Ω, then {Km(E′ω′)} is an open neighbourhood of F. Since
the sequence (Km(E′ω))m>0 is strictly shrinking, it can then not be the case that the
singleton open neighbourhood {Km(E′ω′)} of F contains all terms of the sequence
(Km(E′ω))m>0 from some index onwards. Therefore F is not a limit point of the
sequence (Km(E′ω))m>0. Secondly, if F = Km(E′ω′) for some m > m∗ and some ω′ ∈
Ω, then {Km∗+j(E′ω′) : 0 < j ≤ m−m∗} is an open neighbourhood of F. Since the
set {Km∗+j(E′ω′) : 0 < j ≤ m−m∗} is finite, F cannot be a limit point of the sequence
(Km(E′ω))m>0. Thirdly, if F = Km∗(E′ω′) for some ω′ 6= ω, then {Kn(E′ω′) : n ≥ 0} is
an open neighbourhood of F. Moreover, since Km∗(E′ω) 6= Km∗(E′ω′) = F, it directly
follows that E′ω 6= E′ω′ . Yet since C = {E′ω′′ : ω′′ ∈ Ω} is a partition of Ω, it holds
that E′ω ∩ E′ω′ = ∅. Moreover, as Km(E′ω) ⊆ E′ω for all m ≥ 0, and Kn(E′ω′) ⊆ E′ω′
for all n ≥ 0, as well as E′ω ∩ E′ω′ = ∅, it follows that Km(E′ω) 6= Kn(E′ω′) for
all m, n ≥ 0. Thus the open neighbourhood {Kn(E′ω′) : n ≥ 0} of F contains no
term of the sequence (Km(E′ω))m>0 whatsoever. Therefore, F is not a limit point
of the sequence (Km(E′ω))m>0. Fourthly, if F 6= Km(E′ω′) for all m ≥ 0 and all
ω′ ∈ Ω, then P(Ω) \ {Km(E′ω) : m ≥ 0 and ω ∈ Ω} is an open neighbourhood of
F. Yet this set contains no term of the sequence (Km(E′ω))m>0. Thus F is not a limit
point of the sequence (Km(E′ω))m>0. To summarize, there consequently exists no
F 6= Km∗(E′ω) which is a limit point of the sequence (Km(E′ω))m>0. Hence, the limit
point Km∗(E′ω) of the sequence (Km(E′ω))m>0 is unique, and therefore, LK(E′ω) =

limm→∞ Km(E′ω) = Km∗(E′ω).

Furthermore, since the sequence (Km(E′ω))m>0 is strictly shrinking, CK(E′ω) =⋂
m>0 Km(E′ω) ( Km∗(E′ω), and hence CK(E′ω) 6= LK(E′ω).

Note that if the event space is equipped with the topology TE,m∗ , the episte-
mic-topological event LK(E′) actually coincides with RUBINSTEIN (1989)’s notion
of almost common knowledge if m∗ is large, i.e. LK(E′) = Km∗(E′). Thus, agents
with topological mental states according to TE,m∗ who have limit knowledge actu-
ally reason in line with almost common knowledge. More precisely, if agents can
only accurately conceive of higher-order interactive knowledge up to some fixed
level, then they reason with limit knowledge if and only if they reason with almost
common knowledge up to that level only. In fact, the connection between cognitive-
topologically perceiving iterated knowledge distinctly only up to some finite level
and epistemically reasoning in line with almost common knowledge up to that level
does seem natural. Thus, the topology TE,m∗ provides an intuitive topological foun-
dation for RUBINSTEIN (1989)’s almost common knowledge in terms of the agents’
cognitive perception of the event space.

Finally, the following example describes an interactive situation, in which the
intutive topology TE,m∗ provides a possibility for the agents to agree to disagree on
their posterior beliefs with limit knowledge.

Example 24. Consider the Aumann structureA = (Ω, (Ii)i∈I , p), where Ω = {ωn :
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n ≥ 0}, I = {Alice, Bob}, IAlice = {{ω0}, {ω1, ω2}, {ω3, ω4, ω5, ω6}, {ω7, ω8,
ω9}} ∪ {{ω2n, ω2n+1} : n ≥ 5}, IBob = {{ω0, ω1, ω2, ω3, ω4}, {ω5, ω6, ω7, ω8}} ∪
{{ω2n+1, ω2n+2} : n ≥ 4}, and p : Ω → R is given by p(ωn) =

1
2n+1 for all n ≥ 0.

Also, consider the event E = {ω1, ω5} ∪ {ω2n : n ≥ 1} and the world ω10. Besides,
for sake of notational convenience, let the event

⋂
i∈I{ω′ ∈ Ω : p(E | Ii(ω

′)) =

p(E | Ii(ω10))} be denoted by E′. First of all, observe that the computation of the
posterior beliefs of Alice and Bob gives a variety of distinct values for the first ten
worlds {ω0, ω1, . . . , ω9}, as well as p(E | IAlice(ωn)) =

2
3 and p(E | IBob(ωn)) =

1
3 ,

for all n ≥ 10. It follows that {ω′ ∈ Ω : p(E | IAlice(ω
′)) = p(E | IAlice(ω10))} =

Ω \ {ω0, ω1, . . . , ω9} and {ω′ ∈ Ω : p(E | IBob(ω
′)) = p(E | IBob(ω10))} =

Ω \ {ω0, ω1, . . . , ω8}, thus E′ = (Ω \ {ω0, ω1, . . . , ω9}) ∩ (Ω \ {ω0, ω1, . . . , ω8}) =
Ω \ {ω0, ω1, . . . , ω9}. Moreover, the definitions of the possibility partitions of Alice
and Bob ensure that Km(E′) = Ω \ {ω0, ω1, . . . , ωm+9}, for all m > 0. Consequently,
the sequence (Km(E′))m>0 is strictly shrinking and CK(E′) =

⋂
m>0 Km(E′) = ∅.

Now, let m∗ > 0 be some index and suppose that P(Ω) is equipped with the topol-
ogy TE,m∗ . Since the sequence (Km(E′))m>0 is strictly shrinking, the definition of
this topology ensures that LK(E′) = Km∗(E′) = Ω \ {ω0, ω1, . . . , ωm∗+9}. Con-
sequently, the computations of the posterior beliefs of Alice and Bob give p(E |
IAlice(ω)) = 2

3 and p(E | IBob(ω)) = 1
3 , for all ω ∈ LK(E′). In other words, for all

ω ∈ LK(E′), it holds that p(E | IAlice(ω)) 6= p(E | IBob(ω)). ♣

In the preceding example, a situation is provided where agents with an intu-
itive perception of the event space do agree to disagree. Yet, as limit knowledge
coincides with RUBINSTEIN (1989)’s almost common knowledge, the example also
shows that Aumann’s agreement theorem is not robust in the sense that agents
having almost common knowledge of posteriors can hold distinct posterior beliefs.

5.5 DISCUSSION

We showed that in a topologically extended epistemic model, agents can limit-agree
to disagree. More precisely, if Bayesian agents have a common prior belief as well
as limit knowledge of their posteriors beliefs, then their actual posterior beliefs may
indeed differ. This possibility result contrasts with AUMANN (1976)’s impossibility
to agree to disagree. Moreover, we showed that limit-agreeing to disagree is also
possible in cases where the underlying topologies reveal cogent agent perception of
the event space. Indeed, in our representative example, limit-agreeing to disagree is
possible in an epistemic-topologcal situation where limit knowledge coincides with
RUBINSTEIN (1989)’s almost common knowledge. Overall, these considerations
illustrate the non-robustness of AUMANN (1976)’s agreement theorem to situations
where common knowledge is replaced by limit knowledge of the posteriors.

However, note that it is impossible for agents to limit-agree to disagree in the
case of finite Aumann structures as well as in the case of infinite Aumann struc-
tures in which the sequence of iterated mutual knowledge is not strictly shrinking.
Indeed, as shown in Chapter 3, in such cases, the epistemic-topological operator
limit knowledge necessarily coincides with the purely epistemic operator common
knowledge, and consequently, Aumann’s impossibility result does apply.

The possibility of agreeing to disagree with limit knowledge – as finitely iter-
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ated mutual knowledge – in a topologically enriched epistemic structure can also
be seen in the context of the growing literature on k-level reasoning and other the-
ories on bounded reasoning. It would be intriguing for future work to investigate
such models of finite thinking from an epistemic-topological point of view. An in-
teresting recent point of departure could be KETS (2014) and KETS (2014)’s theory
of finite depth reasoning. Accordingly, the language of game-playing agents is re-
stricted such that they can only reason about higher-order beliefs up to some level
k. This is related to our intuitive topology in Section 5.4, which also restricts agents’
reasoning to finitely iterated mutual knowledge. Even though any higher-order
mutual knowledge is – in contrast to Kets’ models – part of the agents’ language,
they cannot conceive of it in a precise but only in a “blurred” way. Hence, a rele-
vant question would be what topological conditions need to generally be invoked
on standard epistemic structures for games, such that the players’ reasoning re-
mains restricted as in Kets’ style type spaces.

For future work, the possibility for agents to agree to disagree with limit knowl-
edge is expected to be further analyzed in the context of other epistemically-based
as well as agent specific topologies, i.e., in all those topological contexts revealing
some relevant or plausible notion of closeness between events. More generally, it
would be of specific interest to provide a precise characterization of the topologies
that enable or exclude the possibility to limit-agree to disagree. The classical im-
possibility to agree to disagree (with common knowledge) would thus appear as
a particular case of this global topological characterization: the specific situations
where limit knowledge coincide with common knowledge.





6 CONCLUSION

SUMMARY. The standard set-based approach to interactive epistemology lacks
the possibility to model some formal notion of closeness between worlds, events,
or other features expressible in the underlying semantic structures. Accordingly,
we considered an epistemic-topological approach to interactive epistemology and
epistemic game theory which enables the modelling of some notion of proximity
between events.

In this context, we introduced the new epistemic-topological operator limit knowl-
edge, defined as the topological limit of higher-order mutual knowledge claims, ac-
cording to some topology on the event space (BACH and CABESSA (2009)). Limit
knowledge can be understood as the event which is approached by the sequence
of iterated mutual knowledge, with respect to the notion of closeness induced by
the underlying topology. It can be viewed as some kind of generalized epistemic-
topological concept which, for every possible underlying topology, becomes an op-
erator with precise meaning. In general, limit knowledge differs from common
knowledge as well as from other approximations of it, such as RUBINSTEIN (1989)’s
almost common knowledge as well as MONDERER and SAMET (1989)’s common
p-belief.

We showed that limit knowledge can yield to some relevant characterizations
of solution concepts in games (BACH and CABESSA (2012), BACH and CABESSA

(2009)). We provided an example of a Cournot-type game where the behavioral im-
plications of limit knowledge of rationality strictly refine those of common knowl-
edge of rationality. Moreover, we showed that limit knowledge of rationality is
capable of characterizing any possible solution concept, under some appropriate
epistemic-topological conditions.

Furthermore, we revisited AUMANN (1976)’s “no-agreeing to disagree theo-
rem” in the epistemic-topological context of limit knwoledge (BACH and CABESSA

(2011), BACH and CABESSA (2016)). We proved that the impossibility to agree to
disagree does no longer hold when the epistemic hypothesis of common knowl-
edge of the posteriors is replaced by that of limit knowledge of the posteriors. We
also provided an epistemic-topological foundation for RUBINSTEIN (1989)’s notion
of almost common knowledge. These results show that Aumann’s agreement theo-
rem is not robust when considered from a more general epistemic-topological per-
spective, where limit knowledge is substituted to common knowledge.

The epistemic-topological operator of “limit knowledge” represents a relevant
alternative to that of “common knowledge”, which has often been argued as be-
ing inappropriate or paradoxical for the modelling of a deeply shared knowledge,

193
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see MORRIS (2002). It permits to model some reasoning patterns of game-theoretic
agents based on a notion of proximity between their higher-order knowledge claims,
rather than on purely logical considerations.

TOPOLOGICAL AUMANN STRUCTURES. Aumann structures represent an abstract
framework in which, on the basis of epistemic assumptions, the reasoning of agents
about events can be formalized. By enriching this epistemic framework with a topo-
logical dimension, one obtains an epistemic-topological semantics which permits
to model richer agent perceptions of the event and state spaces, and subsequently,
wider agent reasoning patterns that do not only depend on mere epistemic but also
on topological features of the underlying interactive situations.

For instance, as already mentioned in Chapter 1, the event It is cloudy in London
seems to be closer to the event It is raining in London than the event It is sunny
in London. Now, agents may make identical decisions only being informed of the
truth of some event within a class of close events. Indeed, Alice might decide to
stay at home not only in the case of it raining outside, but also in the case of events
perceived by her to be similar, such as it being cloudy outside.

Accordingly, we envision the consideration of a more general epistemic-topo-
logical framework – the topological Aumann structures – comprising topologies not
only on the event space but also on the state space. Such an extension permits an
explicit consideration of a notion of closeness between events and between worlds,
and hence, allows to model common agent perceptions of the event and state spaces.1

The definition of this epistemic-topological structure would be the following:

Definition 25. A topological Aumann structure is a tuple AT = (A, T Ω, T P(Ω)),
where A = (Ω, (Ii)i∈I , p) is an Aumann structure, T Ω is a topology on the state
space Ω, and T P(Ω) is a topology on the event space P(Ω).

In this context, it might be of distinguished interest to base topologies on first
principles, such as epistemic axioms or natural closeness properties. In line with
this perspective, the topology provided in Section 5.4 reflects the natural agent per-
ception for which iterated mutual knowledge becomes imprecise from some level
onwards.

Besides, in order to model subjective rather than common agent perceptions of
the event and state spaces, one could also assign specific and potentially distinct
topologies for every agent. A collective topology reflecting a common closeness
perception could then be constructed on the basis of the particular agent topologies.
For instance, by providing a topology that is coarser than each agent’s one, the meet
topology could be used as a representative collective topology.

It would also seem natural to require that the topologies on the state and event
spaces should depend on each other. For instance, topologies on the event space
could be given by specific extensions of the topological framework in line with the

1Note that similar considerations also arise in epistemic logical frameworks such as in DÉGREMONT

and ROY (2012). Since the plausibility orderings in their framework could not only be defined on the
states but also on the propositions, which are events from a semantic point of view, it could be of in-
terest to analyze different – intuitive – ways of deriving plausibility orderings on propositions from the
plausibility orderings on the states, or to more generally impose intuitive criteria on such orderings.



195

usual measure-theoretic structure the state space.2

EPISTEMICALLY PLAUSIBLE TOPOLOGIES. Within the framework of topologi-
cal Aumann structures, the topologies that represent epistemic features of a given
underlying interactive situation or those that reveal particular agents’s perception
patterns of the event or state spaces are of specific interest.

For instance, in Section 4.4, we provided an epistemically plausible topology
on the event space such that limit knowledge of rationality implies the solution
concept strict dominance of order k. In Section 5.4, we described an epistemically-
plausible topology on the event space such that limit knowledge is identical to
RUBINSTEIN (1989)’s notion of almost common knowledge (i.e., iterated mutual
knowledge for some finite level m), and consequently, which induces a possibility
for agents to limit-agree to disagree.

Epistemically plausible topologies on the state instead of the event space should
also be considered. For example, consider the partition topology on the state space
generated by the basis

B =
{

O ⊆ Ω : O =
⋂
i∈I
Ii(ω) , for some ω ∈ Ω

}
.

Accordingly, every basic open set can be written as an intersection of the agents’
possibility sets and interpreted as some kind of bundled, refined information of the
agents. This topology represents the indistinguishability of worlds by all agents.
Indeed, any two possible worlds ω and ω′ are indistinguishable by all agents if
and only if ω and ω′ are not Hausdorff-separable, i.e., there do not exit two disjoint
open sets O and O′ such that ω ∈ O and ω′ ∈ O′. Equivalently, two possible worlds
are distinguishable by some agents if and only if the two worlds are Hausdorff-
separable. Hence, the partition topology conveys a notion of closeness between
worlds that reflects precisely the informational indistinguishability between agents.
Note that in this case, the closeness relation can be precisely determined. Indeed,
the partition topology is in fact pseudometrizable with the pseudometric3 d : Ω×
Ω→ R defined by d(ω, ω′) = k, where k equals the number of agents being able to
distinguish between ω and ω′. Consequently, the distance between any two worlds
corresponds precisely to the number of minimal agents that are able to distinguish
between these latter.

2Topologies on spaces of subsets of a given topological space X are typically defined in terms of the
topology of X, such as the Hausdorff or Vietories topologies.

3A pseudometric space (X, d) is a set X together with a function d : X×X → R+ such that, for every
x, y, z ∈ X:

• d(x, y) ≥ 0;

• d(x, y) = d(y, x);

• d(x, z) ≤ d(x, y) + d(y, z).

The pseudometric topology on X induced by d is the topology Td induced by the open balls of d, i.e., the
topology induced by the base

{B(x, r) = {y ∈ X : d(x, y) < r} : for all x ∈ X and r ∈ R+}.

A topology T is pseudometrizable if there exists a pseudometric d whose induced pseudometric topol-
ogy Td coincides with T .
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A further example of an epistemically plausible topology is based on the notion
of evident knowledge event or common truism (cf. Section 2.4). An event T ⊆ Ω is a
common truism if and only if CK(T) = T. Intuitively, a common truism event is di-
rectly commonly known, i.e., it cannot occur without being commonly known, and
can hence be understood as a reliable piece of information that all agents receive in
public announcement or joined observation type situations. In fact, BINMORE and
BRANDENBURGER (1990) already remarked that the set of all common truisms form
a topology. This topology on the state space exhibits the property that two possi-
ble worlds ω and ω′ are separable if and only if there exist two disjoint common
truisms T and T′ such that ω ∈ T and ω′ ∈ T′. The worlds are thus separated by
mutually exclusive pieces of self-evident information which considerably distin-
guish them. Consequently, this topology expresses a notion of closeness between
worlds based on the concept of indistinguishability via common truisms.

COUNTERFACTUALS. A notion of closeness between worlds is typically needed
for theories of counterfactual reasoning. Hence, the enriched framework of topo-
logical Aumann structures could be used to model counterfactual knowledge and
reasoning in set-based interactive epistemology. For instance, if some event E does
not hold at the actual world ω, the reasoning of an agent i may depend on whether
E is nevertheless close to what he actually considers possible, i.e., on whether the
worlds contained in E are closer to the worlds ω′ ∈ Ii(ω) than those contained in
Ω \ (E ∪ Ii(ω)).

THE EPISTEMIC-TOPOLOGICAL APPROACH. Our topological approach to set-
based interactive epistemology fits within the context of a series of papers involv-
ing topologies on the semantic structures, in order to introduce some notions of
proximity which is not captured by the purely epistemic framework. For instance,
MONDERER and SAMET (1996) proposed a topology on information structures de-
fined in terms of the common belief that players have about the proximity of each
player’s information, and satisfying some important continuity properties of equi-
libria in games with incomplete information. KAJII and MORRIS (1998) described
the weakest topology on probability distributions that is sufficient to restore the
lower hemicontinuity between the probability distributions over the types and the
corresponding equilibrium payoffs. DEKEL, FUDENBERG, and MORRIS (2006) de-
fined the notion of a “strategic topology” on the Harsanyi-Mertens-Zamir universal
type space which satisfies the property that two types are close if their strategic be-
havior is similar in all strategic situations.

Our topological approach to set-based interactive epistemology can be used to
model some additional agents’ perceptions of closeness between elements of the
semantic structures, like worlds or events. This additional dimension enables to
capture broader reasoning patterns of interacting or game-theoretic agents – in-
volving some notion of “closeness” – which not only depend on the epistemic but
also on the topological features of the interactive situation. These reasoning patters
are therefore related to some subjective appreciation of the agents that some pos-
sible worlds, events or other features might seem to them closer or farther apart,
without any logical justification. In a broad sense, this corresponds precisely to the
modelling of some form of intuition.
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Finally, in the long term, we hope that this enriched epistemic-topological frame-
work could be used to better understand and model behaviors of actual agents, and
hence, reduce the discrepancies between theoretical predictions and real-world sit-
uations (CAMERER (2003)).
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