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Abstract—Synfire rings are fundamental neural circuits capa-
ble of conveying self-sustained activities in a robust and tempo-
rally precise manner. We propose a Turing-complete paradigm
for neural computation based on synfire rings. More specifically,
we provide an algorithmic procedure which, for any fixed-
space Turing machine, builds a corresponding Boolean neural
network composed of synfire rings capable of simulating it. As
a consequence, any fixed-space Turing machine with tapes of
length N can be simulated in linear time by some Boolean neural
network composed of O(V) rings and cells. The construction can
naturally be extended to general Turing machines. Therefore, any
Turing machine can be simulated in linear time by some Boolean
neural network composed of infinitely many synfire rings. The
linear time simulation relies on the possibility to mimic the
behavior of the machines. In the long term, these results might
contribute to the realization of biological neural computers.

I. INTRODUCTION

In theoretical neural computation, the computational capa-
bilities of diverse models of neural networks have been shown
to range from the finite state automaton degree, up to the
Turing or even to the super-Turing level [1-6]. In short, (finite)
Boolean neural networks are computationally equivalent to
finite state automata, rational-weighted neural nets are Turing
complete, and real-weighted and evolving neural networks are
super-Turing. But the neural networks involved in these results
are generally far from the biological reality.

In machine learning, an augmented neural network model
that can interact with a read and write external memory
— following the behavior of a Turing machine — has been
proposed [7]. In a more biological context, several bio-inspired
Turing-complete neural network models have been consid-
ered [8-10].

Synfire chains are feedforward neural circuits where ev-
ery layer is connected to the next by means of conver-
gent/divergent excitatory synapses [11-15]. According to this
architecture, the neurons of each layer tend to fire simul-
taneously, and the firing activity can propagate through the
successive layers in a synchronized manner. Hence, these
circuits are able to convey repeated complex spatio-temporal
patterns of discharges in a robust and highly temporally precise
way. Synfire rings are looping synfire chains [16-18]. As
an additional dynamical feature, the ring shape enables the

emergence of self-sustained activities, which correspond to
attractor dynamics.

Synfire chains and rings have been argued to be crucially
involved in the processing and coding of information in bio-
logical neural networks. Furthermore, they have been shown
to spontaneously emerge in neural networks subject to diverse
kinds of synaptic plasticity mechanisms, like spike-timing-
dependent plasticity (STDP) for instance [16-24].

Based on these considerations, an automaton-complete
paradigm for neural computation based on synfire rings has
been proposed [25-27]. Here, we extend these results towards
Turing computation. More specifically, we describe an algo-
rithmic procedure which, for any fixed-space Turing machine,
builds a corresponding Boolean neural network composed of
synfire rings capable of simulating it. As a consequence, any
fixed-space Turing machine with tapes of length N can be
simulated in linear time by some Boolean neural network com-
posed of O(N) rings and cells. The construction can naturally
be extended to general Turing machines. Therefore, any Turing
machine can be simulated in linear time by some Boolean
recurrent neural network composed of infinitely many synfire
rings. The linear time simulation relies on the possibility to
mimic the behavior of the machines. In the long term, these
results might contribute to the realization of biological neural
computers.

II. BOOLEAN NEURAL NETWORKS AND TURING
MACHINES

A. Boolean neural networks

A Boolean recurrent neural network (BRNN) is a network
composed of binary neurons related together in a general archi-
tecture [1]. Formally, a BRNN is a tuple N = (U, X, A, B, c),
where
e U={u;:j=1,...,M} is the set of input cells;
e X={x;:j=1,...,N} is the set of internal cells;
o A € QV*N is the internal weight matrix, where A;jis
the synaptic weight from z; to x;;

o B € QV*M s the input weight matrix, where B;; is the
synaptic weight from u; to x;;

o c € QV the bias vector, where c; is the bias of x;.



The input and the state of network N at time t are
denoted by u(t) = (u1(t),...,un(t))” € BM and x(t) =
(21(t),...,zn(t)" € BN, respectively, for t = 1,2, .... The
dynamics of N is given by the following equation

x(t+1)=0(A-x(t)+B-u(t) +c) (1)

where x(0) = 0 and 6 is the componentwise hard-threshold
activation function defined by 6(z) = 0if x < 1 and 0(z) =1
if x> 1.

B. Turing Machines
A k-tape Turing machine (k-tape TM) is a tuple M =
(Qa Ev Fa 6; 40, Qacc qTCj) where:
o ( is the set of states;
o X ={0, 1} is the input alphabet not containing the blank
symbol b;
o I' =X U {b} is the tape alphabet,
e 6:QxT* — QxTF x {L,R,S}* is the transition
function;
® 40, Gace, Grej € Q are the initial, accepting and rejecting
states, respectively.

A transition 6(q,ayq,...,a;) = o dg)

(also denoted as (q,ai,...,ax) q,...)
means that if the machine M is in state ¢ and reads symbols
ai,...,ar with its k heads, then it will switch to state ¢/,
overwrite symbol a; by a’, and move its heads to the directions
d; € {L,R,S}, foralli=1,...,k (L, R, S stand for ‘left’,
‘right’, ‘stay’, respectively).

A configuration of M 1is an instantaneous description of
the state, positions of the heads, and contents of the tapes
of the machine. It is denoted by a tuple of the form C =
(g, ur#tvy, ..., up#vg), where ¢ € Q, u; € T*, v; € T, and
# ¢ T, for all 1 < ¢ < k. This notation stands for the fact
that M is in state ¢, and for each ¢ = 1,... k&, the infinite
word wu,;v; is written on the i-th tape and the head is scanning
the first letter of v;.!

Given some input string w = a; ---a, € X*, the machine
M starts its computation in state gg, with input w being
written on its first tape, all other tapes being empty (blank
symbols everywhere), and all heads located at the leftmost
positions. This situation corresponds to the configuration
CM = (qo, e#wb®, e#b* ..., e#b*), where ¢ is the empty
word. The computation of M over w is the sequence of
configurations CM = (CM,C{M,C4M,...) induced by the
transition function ¢ while reading input w. The input w € ¥*
is said to be accepted (resp. rejected) by M iff the machine
eventually reaches the state gqc. (resp. grc;). Without loss of
generality, we focus on Turing machines that never stay in a
same state during their computations.

A Turing machine can be represented as a graph: the nodes
and edges of the graph represent the states and transitions of
the machine, respectively. As an example, the 2-tape Turing

;o /

(¢,dy,... a5, d1,..

ay,...,ak,d1,....dx
k'

'We recall that I'* and I’ denote the sets of finite and infinite words over
T", respectively.

machine of Figure 1 decides the non regular and non context-
free langage L = {0™1"0™ : n > 0}, i.e., the set of words that
begin with a certain number of 0’s, continue with the same
number of 1’s, and end up with the same number of 0’s again.?
The machine is designed in such a way that it never stays in
a same state during its computation. The computation over
input w = 000111000 is given by the following sequence of
transitions.

(40, 0,0) 2 (g1,0,b) 25 (g7, 0,6) 25 (1,0,1)
(G, 1,8) 2 (02,1,0) ' (g4,1,0) @)
S (021,00 (65,0,1) 5 (g3,0,1)
0B (4,0,1) "2 (g3, 6,0) "2 (qace, b, b).

In this work, a fixed-space Turing machine is a k-tape TM
whose every tape has length N > 0.3 Note that a fixed-space
TM can generate at most |Q|-3*V -k-N = O(N -3k) differ-
ent configurations. Accordingly, the machine can be simulated
by some finite state automaton of size O(N - 3*V), if each
configuration of the former is represented by a computational
state of the latter. Following to the non-optimal construction
from Minsky [3], the automaton can then also be simulated by
some Boolean neural networks containing O(N - 3% V) cells.*
Here, we show that any fixed-space TM can be simulated in
linear time by some Boolean neural networks containing O(N)
synfire rings and cells only.
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Fig. 1: Graph representation of a 2-tape Turing machine deciding the language
{0™1™0™ : n > 0}. An edge from g to ¢’ labelled by ajaz — afal, did2
represents the transition 6(g, a1,a2) = (¢, a}, al, d1, d2). The first set of 7
labels is associated to both edges g2 — Grej and g5 — gre; and the second
set of 7 labels to the edges g3 — gre; and qé — Qrej-

2Regular and context-free languages are the languages recognized by finite
state automata and pushdown automata, respectively.

3A fixed-space TM should not be confused with a bounded-space TM. In
general, a bounded-space TM refers to a TM which, for every input of length
n, is allowed to use at most f(n) cells of its tape for its computation (for
some function f : N — N). In this case, there is no notion of fixed-size tape.

4The Boolean neural network of optimal size would contain © (v N - 3k-N)
cells [28, 29].



III. SYNFIRE RINGS

Synfire chains and synfire rings are neural circuits which
have been argued to be involved in the processing and coding
of information in the brain. A synfire chain is a feedforward
neural circuit where each layer is fully connected to the next
one by means of excitatory connections (cf. Figure 2). A
synfire ring is a looping synfire chain, namely, a chain whose
last layer is connected back to the first one (cf. Figure 2).
The synfire ring architecture exhibits the following important
dynamical properties [27]:

« It allows for the emergence of a self-sustained activity.

« It is robust against synaptic failures and unreliabilities.

« It forces synchronicity among all cells of a same layer.

o It leads to the emergence of a discrete temporal structure

that corresponds to the time steps at which the successive
layers are activated.’

In this study, synfire rings will always be activated via one of
their specific layers: the activation layer. Once activated, a ring
enters into a self-sustained activity which persists as long as
no inhibition is further received (cf. Figure 3). In addition, the
synfire rings that we consider are coupled with an inhibitory
cell (blue cells in Figure 4 (left)). The role of this cell is to shut
down the activity of other rings by sending strong inhibition
to all of their cells.
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Fig. 2: A synfire chain (left) and ring (right). The filled cells form the
activation layer of the ring.
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Fig. 3: Raster plot representing the self-sustained activity of a synfire ring.
The ring is composed of 5 layers of 3 cells each governed by Equation (1).
At consecutive time steps t = 0, 1,2, .. ., the successive layers of the synfire
ring are activated (cells 1,2, 3, cells 4, 5,6, cells 7,8,9, ...).

Below, four kinds of connections between cells and rings

and between rings and rings are considered. These patterns

5This property also holds when the neurons are governed by continuous
time differential equations [27].

are described below and illustrated in Figure 4 (left panels A,

B, C, D).

(A) The cell-to-ring one-shot excitation (type A). When the
cell c is activated, it sends excitations (orange arrows) to
the activation layer and inhibitory cell of the ring R. The
weights of these connections are denoted by w¢,..

The ring-to-ring constant excitation (type B). As long
as the ring R, is activated, it keeps sending excitations
(orange arrows) to the activation layer and the inhibitory
cell of the ring Ry. The synaptic weights are chosen
such that these excitations do not suffice to activate Ro
(cf. Conditions (1)-(5) of Section IV). The weights of
these connections are denoted by w?,...
The ring-to-ring constant excitation/one-shot inhibition
(type C). As long as the ring R; is activated, it keeps
sending excitations (orange arrows) to the activation layer
and inhibitory cell of the ring Ro. Here again, the constant
activations do not suffice to activate Ry. But if Ry
happens to be activated (by receiving other excitations),
then it will send back strong inhibition (blue reverse
arrows) to R via its inhibitory cell, in order to shut
it down. The weights of these excitatory and inhibitory
connections are denoted by wS,, and wiyp.

The ring-to-ring bidirectional one-shot inhibition (type

D). When the ring R; (resp. Ro) is activated, it sends

strong inhibition (blue arrows) to the ring Ro (resp. 1)

via its inhibitory cell, in order to shut it down.
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©

(D)

IV. TURING COMPUTATION

We provide an algorithmic construction which, for any
fixed-space Turing machine, builds a synfire ring based
Boolean neural network that simulates the behavior of the
machine step by step. As a consequence, any fixed-space
Turing machine with tapes of length N can be simulated in
linear time by some Boolean neural network containing O(N)
rings and cells. Furthermore, any general Turing machine can
be simulated in linear time by some Boolean recurrent neural
network composed of infinitely many synfire rings.

Let M = (Q,%,T',0,q0, ace, Gre;) be some fixed-space
k-tape TM where every tape is of length NV, and let w €
3* be some input string of length p, where p < N (the n-
th letter of wbN =P € T'V is denoted by wb? ~P[n] for all
1 < n < N). The construction of a BRNN A composed of
|Q| - IT|* + 8Nk = O(N) synfire rings that simulates the
computation of M over w is provided in Algorithm 1 and
illustrated in Figure 4 (right). The elements of this construction
are described in more detail below.

Clock cells. The network A contains 4 input cells called
‘start’, ‘ticl’, ‘tic2’ and ‘tic3’ (line 1 of Algorithm 1 and purple
cells of Figure 4). The computation of A/ will consist of an
initial activation of ‘start’ followed by cyclic activations of
‘ticl’, ‘tic2’ and ‘tic3’. After the initial activation of ‘start’,
N will hold the encoding of the initial configuration of M.
After each activation of ‘ticl’, ‘tic2’, and ‘tic3’, the network N/
will simulate the fact that M reads the current symbols with
its heads, updates its current state, and writes new symbols



and moves its heads, respectively, according to its current
transition. Hence, after each activation of ‘tic3’, A/ will have
simulated one transition of M.

Program rings The program (set of transitions) of M is
represented by a set of |Q|-|T|* program rings in N (lines 2-5
of Algorithm 1 and top set of rings in Figure 4). Each such
ring encodes a specific event of the form: “M is in state ¢
and is currently reading symbols aq, ..., a; with its k heads”.
During the simulation process, such a ring will be active in N/
iff the event that it encodes is realized by M. Program rings
are connected together by means of type C connections (lines
14-15 of Algorithm 1).

Tape rings Each fape of lenght N of M is represented by
8 rows of N rings each in A/. This amounts to 8Nk tape rings
(lines 6-13 of Algorithm 1 and bottom rings in Figure 4). The
two last rows of rings form the position rings. They encode
the current position of M’s head on the tape. The n-th ring of
the top (resp. bottom) row is active iff M’s head is currently
scanning the n-th square of its tape, and the last move was
‘right’ (resp. ‘left’).9 The three middle rows form the symbol
rings. They encode the symbols written on the tape of M. The
n-th ring of the top (resp. middle, bottom) row is active iff
the n-th symbol of M’s tape is a 1 (resp. 0, b). The three first
rows form the cache rings. They encode the symbol currently
read by the heads of M, and will be used to simulate the state
update of M. Again, the n-th ring of the top (resp. middle,
bottom) row is active iff M’s head is currently reading the
n-th symbol of its tape, and this symbol is a 1 (resp. 0, b).
Note that for a k-tape M, these 8 rows of rings are duplicated
k times.

According to these considerations, in the network N of
Figure 4, the tape rings encode the configuration of M where
the head is scanning the 4-th cell (cf. positions rings), the
string 00110bb is written on the tape (cf. symbol rings), and
hence, the head is currently reading symbol 1 (cf. cache rings).

The connection patterns between these rings are described
by their schematic representations (cf. Figure 4 (left)). Each
top (resp. bottom) position ring has type C connections with
its right and bottom left (resp. left and top right) neighboring
rings. Each symbol ring has type D connections with others
rings in the same column. Each cache ring has type D
connections with all of its neighboring rings. Finally, there
are vertical type B connections from position to symbol and
cache rings, as well as from symbol to cache rings. The role
of these connections is described below.

Initial configuration: ‘start’ spike. The ‘start’ cell sends
type A connections to specific symbol and position rings (lines
22-26 of Algorithm 1). When °‘start’ spikes, it activates those
rings that encode the initial configuration of the machine: the
input is written on the first tape, all other tapes are blank, and
the heads are placed to the tapes’ leftmost positions.

Read symbols: ‘ticl’ spike. The ‘ticl’ cell sends type A
connections to the cache rings (line 12 of Algorithm 1). When

61t was not possible to model the positions of the TM’s head with a single
row of rings.

‘ticl” spikes, its activation gets combined with the type B
connections coming from the position and symbol rings (line
10 of Algorithm 1). Accordingly, the cache rings encoding the
symbols currently read by M are activated, and all previous
cache rings are shut down by means of the inter-cache type D
connections (line 10 of Algorithm 1).

Update state: ‘tic2’ spike. The ‘tic2’ cell sends type A
connections to the program rings (line 4 of Algorithm 1).
When ‘tic2’ spikes, its activation gets combined with the
type B connections coming from the cache rings (line 17
of Algorithm 1) as well as with the type C connections
coming from the currently active program ring (line 15 of
Algorithm 1). Consequently, a program ring encoding the new
state and symbols currently read by M is activated, and the
previous program ring is shut down.

Write symbols and move heads: ‘tic3’ spike. The ‘tic3’
cell sends connections of type A to the symbol and position
rings (line 11 of Algorithm 1). When ‘tic3’ spikes, its activa-
tion gets combined with the type B connections coming from
the current program ring (lines 18—19 of Algorithm 1). As a
consequence, the symbol and position rings encoding the new
symbols written by M and new heads’ positions of M are
activated, and the previous symbol and position rings are shut
down.

Weight conditions. In order to work properly, the processes
of ‘setting initial configuration’, ‘reading symbols’, ‘updating
state’ and ‘writing symbols and moving heads’ need to satisfy
the following conditions (line 27 of Algorithm 1):

(1) The ‘start’ cell should be able to activate its targeted rings
directly. Therefore,

start
Wege > 1

(2) Each cache ring receives activations from ‘ticl’, from one
position ring and from one symbol ring. Hence, in order
for the activation of this ring to be possible, the following
condition must hold:

wtiCl +2.wB Z 1.

exc exc

(3) Each program ring receives activations from ‘tic2’, from
k cache rings and from some other program rings (at most
one being be active). Thus, in order for this activation to
be possible, the following condition must hold:

tic2 B C
Wege T k- Wege T Weze > L

(4) Each symbol ring receives activations from the ‘tic3’
cell, from some program ring (at most one being active),
and from two position rings (at most one being active).
Accordingly, the following condition must hold:

tic3 A B
Wege T Wege T Wege > 1.

(5) Each position ring (except to leftmost ones) receives
activations from the ‘tic3’ cell, some program rings (but at
most 1 is active), 2 other position rings (at most one being
active). Therefore, the following condition must hold:

wie +w? 4w, > 1.

exrc exrc
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Fig. 4: Left. Connection patterns between a Boolean cell ¢ and a synfire ring R (panel A), or between two synfire rings R; and Rz (panels B, C, D). Each
ring is associated with an inhibitory cell (blue cell). In each panel, a schematic representation of the connection pattern is provided on top and its detailed
description given below. Red and orange arrows represent excitatory connections, while blue arrows are inhibitory ones. In panel C, for the sake of clarity,
the superimposed orange and reverse blue connections are drawn so that both can be visualized clearly. Right. General architecture of a Boolean recurrent
neural network composed of syfire rings simulating a 1-tape Turing machine. The purple nodes are the clock cells. The white and red circles represent active
and quiet synfire rings, respectively. The cell-to-ring and ring-to-ring connection patterns are those described in the left panel (schematic representations).

In addition, in each of the above condition, it is further
required that if at least one term of the sum is null, then the
sum must be strictly less than 1. This last condition ensures
that any missing activation will prevent the targeted ring from
being activated.

Consider some BRNN N obtained by application of Algo-
rithm 1 over some TM M. For any state ¢ € @, and any words
Ug,...,up € I'" and vy,...,v, € T* UTY, if the program,
symbol, position, and cache ring activities of N encode the
facts that M is in state g, that u;v; is written on the i-th
tape, and that the ¢-th head is scanning the first symbol of
v;, for each ¢ = 1,...,k, then the network A is said to be
in the configuration C' = (q, ui#v1, - - , up#vi). Otherwise,
the configuration of A/ is undefined.

Now, suppose that A is provided with the cyclic input

pattern start = 1, ticl = 1, tic2 = 1, tic3 = 1, ticl = 1,
tic2 = 1, tic3 = 1, ..., where the spikes of these input
cells are separated by sufficiently many time steps 7' in
order for the network to settle into stable activities (1" is a
constant depending on the lengths of the synfire rings). The
computation of N over w is the sequence of configurations
cN = (N, oN, e, ...) of N, where C} is the configu-
ration obtained 2 time steps after the spike of ‘start’, and for
eacht > 0, C,{v is the configuration obtained 2 time steps after
the ¢-th spike of ‘tic3’. We say that the network A simulates
the machine N in linear time if for any input w € 2=V, the
computations C and CM of A" and M over w are the same,
and each configuration C}V is obtained at time o - t + 3, for
some constants a, 3 > 0 and for all ¢ > 0. The following
result holds:



Algorithm 1

Require: k-tape TM M = (Q, X, T, 4, o, Gacc, Gre;) and input word w € N
1: create cells ‘start’, ‘ticl’, ‘tic2’, ‘tic3’

2: for all (g,a1,...,a;) € Q x I'* do
3 create the ring Ry 4, ... ay)
4 connect ‘tic2’ cell to program ring R(g 4, ,...,q,): connections of type A

5: end for

6: for all i =1 to k do

7. create 2N position rings: {R}'; :1<n < N}, {Rlp:1<n <N}

8:  create 3N symbol rings: {R}, : 1 <n <N} {Rl'q:1<n< N} {R!; :1<n< N}

9:  create 3N cache rings: {R}';, : 1 <n <N} {RP:1<n<NEL{RP(o 1 1<n< N}

10: connect the position, symbof and cache rings as described in Figure 4: connections of types B, C and D

*xx clock cells #x%
*x%* program rings x%x
program ring

tic2 to programs

x+xx k tape rings xxx
position rings
symbol rings

cache rings

tape ring connections

11: connect ‘tic3” cell to each position and symbol ring: connections of type A tic3 to positions and symbols
12: connect ‘ticl” cell to each cache ring: connections of type A ticl to caches
13: end for

14: for all transition 6(q, a1,...,ax) = (¢',a},...,a},d1,...,dy) do

*x% connections x*x

15: connect program ring (g 4, .....q,) tO program ring R<q/ aleeal) connections of type C program to program

16:  foralll <n < N do

17: connect the k£ cache rings R?,Cu,l ey Rz,c% to program ring Rg,a1,....ap)" conne.ctlons of type B caches to program

18: connect program ring R(g 4, ,...,a,) to the k symbol rings RT ol 2+ B 4+ connections of type B program to symbols
i 215y o ,a} Jal, .

19: connect program ring R(q,al,m,ak) to the k position rings R?,dl ey Rz,dk: connections of type B program to positions

20: end for

21: end for

22: forall 1 < n < N do x%% initial configuration %

23: connect ‘start’ cell to symbol rings R’ll wbN—p[n]’ connections of type A start to symbols: input wb* on lst tape rings

24: connect ‘start’ cell to the symbol rings R ,, ...
25: end for
26: connect ‘start’ cell to the position rings R% Ryce-

27: set all synaptic weights in order to satisfy Conditions (1)—(5)

, RZ, ,: connections of type A

s Ri, R:connections of type A

start to symbols: b’s on other tape rings

start to positions: leftmost positions

*x* welghts x*x

Theorem 1.

(i) Let M be a fixed-space k-tape TM and w € L=V be
some input. Then, there exists some BRNN composed of
O(N) synfire rings and cells that simulates M in linear
time.

(ii) Let M be a general k-tape TM and w € ¥* be some
input. Then, there exists a BRNN N composed of infinitely
many synfire rings that simulates M in linear time.

Proof. (Sketch) (i) Let N be the BRNN composed of synfire
ring provided by the application of Algorithm 1 on input M
and w. By construction, N is composed of |Q|-|[T'|F +8Nk =
O(N) synfire rings, and hence of O(N) cells also. Now, let
CM = (CM)i>0 and CV = (CN);>0 be the finite or infinite
computations of M and A over w, respectively. By induction
on t, we can show that CM = CN, forallt=0,1,2,....In
addition, for each ¢ > 0, the configuration C,{v is obtained at
time 37 -t + 2, where 37 is the constant number of time steps
separating two consecutive spikes of ‘tic3’.

(ii) Let AV be the BRNN composed of synfire ring provided
by a slightly modified version of Algorithm 1 where the
finitely many tape rings are replaced by infinitely many
ones. By the same argument as above, the finite or infinite
computations of M and N are the same on every input
w € ¥* and CV and the simulation is in linear time. O

V. COMPUTER SIMULATION

To illustrate the correctness of our construction (Algo-
rithm 1), we implemented the network composed of synfire

rings that simulates the fixed-size 2-tape Turing machine of
Figure 1 (with N = 10) over input w = 000111000.

The synfire rings that we consider are composed of 5 layers
of 2 cells each, plus the 1 inhibitory cell, which makes 11
cells in total. The BRNN is composed of the 4 input cells,
47 program rings, and for each tape (there are 2 tapes), there
are 3 x 10 = 30 cache rings, 3 x 10 = 30 symbol rings,
2x10 = 20 symbol rings. This makes a total of 4 cells and 207
rings, which amounts to 2281 cells. Moreover, according to the
connection patterns described in Figure 4 and Algorithm 1, the
BRNN contains 45177 synaptic connections.

The activity of the BRNN is represented in Figure 5 in
the form of a raster plot. We can see that the network
simulates the 2-tape TM correctly, in the sense described in
Theorem 1. More specifically, the successive program rings
that are activated are (top of Figure 5):

R(q0,0,)5 B(q1,0,6)> B(al,0,6), Roar,0,) By, 1,0)5
Rg2,1,0): B(g4.1,0)5 Riga,1,0)> B(gs,0,1)
Rg3,0,1), B(qy,0,1)s Bigs,b,0)1 Bgace.b,b)

The indices of these rings correspond precisely to the succes-
sive states and symbols read by the 2-tape TM of Figure 1
over input w, as described in Computation (2). Moreover, the
activity of the position, symbol and cache rings associated to
the first and second tapes of the TM encode the following
facts:

o the first head performs the following successive moves:
S,R,R,R,SR,R,R, R, R, R, S.
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Fig. 5: Raster plot: activity of the BRNN composed of synfire rings simulating the 2-tape TM of Figure 1 over input 0001110005b. The time and the network’s
cells are represented on the x and y axes, respectively. Each “wave-like” horizontal trace represents the activity of a specific synfire ring (cf. Figure 3). From
bottom to top, and delimited by blue lines, we have: the 4 input cells ‘start’, ‘ticl’, ‘tic2’ and ‘tic3’, the cache, symbol and positions rings associated to the
first tape, the cache, symbol and positions rings associated to the second tape, and the program rings. Every time ‘ticl’, ‘tic2’ or ‘tic3’ spikes, the activities
of the cache rings, the program rings and the symbol and position rings are modified, respectively. After each spike of ‘tic3’, the network enters into a new
configuration. The sequence of configurations of the network form its computation. To facilitate the reading of the raster, the states, symbols and positions
encoded by the activities of the program rings, cache rings and position rings are written on top of their respective traces, respectively.

« the symbols on the first tape are never rewritten, mean-
ing that the successive contents of the tape remain as
0001110006.

« the successive cache symbols associated to the first tape
are: 0,0,0,0,1,1,1,1,0,0, 0, b, b.

o the second head performs the following successive
moves: S, R, R, R, L, L, L, L, R, R, R, S.

« the successive contents of the second tape are: bbbbbbbbbb,
bbbbbbbbbb,  0bbbbbbbbb,  00bbbbbbbb,  000bbbDLDY,
000bbbbbbb, ~ 001bbbbLBL,  011bbbbLLL,  111bbbbbbb,
011bbbbbbb, 001bbbbbbb, 000bbbbbbL, 000bbbbLbD.

« the successive cache symbols associated to the second
tape are: b, b, b, b, b, 0, 0, 0, 1, 1, 1, b, b.

These features correctly match to the successive positions,
symbols read and symbols written by the TM’s heads, as
described in Computation (2). A movie displaying the com-
putation of this network over input w = 000111000 can be
downloaded here. The code to reproduce the results is available
on GitHub: https://github.com/JeremCab/SynfireRings.

VI. CONCLUSION

We proposed a novel Turing complete paradigm for neural
computation based on synfire rings. With these achievements,
we do not intend to argue that brain computational processes
really perform simulations of Turing machines in the way
described here. Rather, our intention is to show that a neu-
ronal paradigm for abstract computation based on sustained
activities of cell assemblies — the synfire rings — is possible
and potentially exploitable.

For future work, we intend to generalize the proposed
results to the context of more biological neural networks,
where the cells dynamics are driven by the Hodgkin-Huxley
differential equations and the patterns of connection based on
more realistic features.

In biology, reliable logical gates have been implemented
in vitro, via geometrically designed neural cultures [30, 31].
The living neural networks are forced to grow on quasi-one-
dimensional configurations which enable precise input-output



patterns of activity. Along these lines, similar biological im-
plementations of our construction would lead to the realization
of biological neural computers.
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