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Abstract—We propose a novel paradigm of neural computation
based on synfire rings, i.e., synfire chains that loop back in
on themselves. We show that any finite state automaton can
be simulated by a Boolean recurrent neural network made
up of synfire rings. More precisely, if the given automaton
and its corresponding network are run in parallel on a same
input stream, then the successive computational states of the
automaton are perfectly reflected by the consecutive sustained
activities of the network’s synfire rings. Our construction turns
out to be robust with respect to the removal of a number of
connections. These considerations support the idea that a robust
paradigm of neural computation based on sustained activities of
cell assemblies is indeed possible.

I. INTRODUCTION

According to the computational theory of mind, the mind
itself is a computational system. In a less restrictive sense, we
assume that at least some aspects of the brain processes are
of a computational nature. Therefore, the following questions
naturally arise: what are the computational capabilities of the
neural networks involved? How does the brain encode and
process information?

In this vein, the approach of theoretical computer scientists
to neural computation has mainly been focused on trying
to simulate neural network models by abstract computing
devices, and vice versa, with the aim of understanding the
computational capabilities of the neural models.

In fact, it has early been observed that Boolean recurrent
neural networks are computationally equivalent to finite state
automata [1]–[3]: any Boolean recurrent neural networks can
be simulated by some finite state automaton, and more interest-
ingly, any finite automaton can be simulated by some Boolean
network. The latter statement is of specific relevance for the
implementation of finite state machines on parallel hardware,
as well as for the incorporation of prior symbolic knowledge
in neural networks, yielding to better learning performances.
It opened the way to some important investigations concerning
the simulation of finite state machines by various models of
neural networks [4]–[19].

Nowadays, the computational capabilities of diverse neural
models have been shown to range from the finite automaton
degree [1]–[3], [19], up to the Turing [20]–[26] or even to
the super-Turing levels [27]–[31]. These kind of studies have

also been extended to alternative bio-inspired paradigms of
computations [31]–[37].

But in spite of their obvious theoretical relevance, the neural
computational paradigms engaged in the above mentioned
studies are most probably far from the neurobiological reality.
In fact, information is more likely processed by cell assemblies
rather than by isolated entities; single neural connections are
unreliable; and neural nets are subjected to various biological
phenomena, e.g., synaptic plasticity and cell death. In such a
more bio-inspired context, the implementations of associative
memory tasks, of logical gates, or of abstract devices have
been achieved on various kinds of networks of oscillators
[38]–[41]. Moreover, sophisticated logical gates have been
physically implemented in patterned neural cultures [42], [43].

In terms of information processing in the brain, the concept
of synfire chain is of specific relevance [44]. These densely
connected feedforward networks have been proposed as fun-
damental structures of biological neural nets, due to their
ability to convey repeated complex spatio-temporal patterns
of discharges [44], [45]. Such precise neural firing patterns
have been observed in various brain areas and in relation with
several neural functions [46]–[48]. Moreover, the spontaneous
emergence of an abundance of “looping” synfire chains –
referred to as synfire rings – in self-organizing neural networks
subjected to various mechanisms of plasticity has notably been
demonstrated [49].

In this work, we propose a novel paradigm of neural
computation based on synfire rings. We show that any finite
state automaton can be simulated by a Boolean recurrent
neural network consisting of synfire rings. More precisely,
if the given automaton and its corresponding network are
run in parallel on a same input stream, then the successive
computational states of the automaton are perfectly reflected
by the consecutive sustained activities of the network’s synfire
rings. In comparison to Minsky’s construction [3], ours has
the advantage of being robust with respect to the loss of a
fraction of the synapses, due to the redundancy of the inter-
and intra-ring connections. Our construction is general and
can be realized for any finite state automaton. We illustrate
this construction for one specific automaton and discuss its
robustness.
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II. FINITE STATE AUTOMATA AND BOOLEAN RECURRENT
NEURAL NETWORKS

We consider Boolean recurrent neural networks (BRNNs),
i.e., recurrent neural networks composed of McCulloch and
Pitts cells [1]. The dynamics of these networks is computed
as follows: given the activation values of the input and internal
neurons at time t, denoted by (uj(t))

M
j=1 and (xj(t))

N
j=1,

respectively, one obtains the activation values of the internal
neurons at time t + 1, denoted by (xi(t + 1))Ni=1, via the
following equations:

xi(t+ 1) =

θ

 N∑
j=1

aij · xj(t) +
M∑
j=1

bij · uj(t) + ci

 ,

for i = 1, . . . , N (1)

where the aij , bij , and ci are the synaptic weights and bias
of the network, and θ is the classical hard-threshold activation
function defined by

θ(x) =

{
0 if x < 1

1 if x ≥ 1.

These Boolean recurrent neural networks are computation-
ally equivalent to finite state automata [1]–[3]. On the one
hand, any such Boolean neural network can be simulated
by some finite state automaton, and on the other hand, any
finite automaton can also be simulated by some Boolean
network. The latter statement is of specific relevance for the
implementation of finite state machines on parallel hardware.

More precisely, in Minsky’s original construction (nowadays
known to be not optimal), a finite automaton with n states and
m input symbols is simulated by a Boolean network whose
cells are organized in a grid-like manner. The grid structure
displays one row and one column of cells per input symbol
and computational state of the automaton, respectively. The
weighted synaptic connections are then suitably chosen in such
a way that, if the automaton and its corresponding network are
running in parallel on a same input stream, then the cell of
location (i, j) in the network’s grid will produce a spike if
and only if the automaton is currently receiving the i-th input
symbol and visiting the j-th computational state. In this precise
sense, the computation of the original automaton is emulated
by the spiking pattern of the corresponding network. This
translation from a given finite automaton to its corresponding
Boolean network is illustrated in detail in Figure 1.

Table I illustrates a simulation of automaton A of Figure
1 by its corresponding Boolean network N . We see that the
consecutive input symbols i and computational states j of A
are correctly reflected by the sequence of spiking cells ci,j of
N , with a time delay of 1.
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Fig. 1. Translation from a finite state automaton A to an equivalent Boolean
recurrent neural network N . The internal cells of N are organized in a grid-
like structure: the input symbols a and b of A are associated to the lower
and upper rows of N , respectively; the states 1, 2 and 3 of A are associated
to the left, middle and right columns of N , respectively. The fact that A
receives input a or b at time t is reflected by the input cells (u0, u1) of N
taking values (1, 0) or (0, 1), respectively. The “start” cell spikes only at time
t = 0 in order to initiate the dynamics. The weighted synaptic connections
are chosen in such a way that, if automaton A and network N are running in
parallel on a same input stream, then the cell ci,j of N will produce a spike if
and only if A is currently receiving input symbol i and visiting computational
state j. In this very sense, automaton A is emulated by network N with a
time delay of 1.

TABLE I
SIMULATION OF AUTOMATON A OF FIGURE 1 (TOP) BY ITS

CORRESPONDING NETWORK N OF FIGURE 1 (DOWN).

time 0 1 2 3 4 · · ·

inputs of A a b a a a · · ·
states of A 1 3 2 3 3 · · ·

cell u0 of N 1 0 1 1 1 · · ·
cell u1 of N 0 1 0 0 0 · · ·
cell start of N 1 0 0 0 0 · · ·
spiking cell of N – ca,1 cb,3 ca,2 ca,3 ca,3

III. FINITE STATE AUTOMATA AND NETWORKS OF
SYNFIRE RINGS

We now provide an alternative way of emulating finite state
automata by Boolean recurrent neural networks composed of
synfire rings.

A. General construction

The general idea is to replace each cell ci,j of the Boolean
network of Minsky’s construction by a synfire chain that
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loops back in on itself – referred to as a synfire ring – Ri,j

[49]. In this way, each input symbol and computational state
of the original automaton will no more correspond to the
punctual activity of a specific single cell, but rather to the
sustained activity of a specific synfire ring, that will persist
until the appearance of the next input. As a result, every
computation of the original automaton will be emulated by a
corresponding sequence of sustained activities of synfire rings
in the corresponding network. The proposed construction is
a general procedure that can be applied to any finite state
automaton. It is illustrated in Figure 4.

B. Synfire rings

The so-called synfire rings that we consider consist of
feedforward neural networks with a same number of cells
for each layer. Each cell of each layer is connected to all
cells of the next layer (intra-ring connections), and there is
no other possible connections, i.e., no connection across non-
consecutive layers. The cells of the last layer are connected to
those of the first layer. A synfire ring is illustrated in Figure 2.

…

…

…

…

layer 1

layer 2layer n

layer 3

Fig. 2. A synfire ring with n layers. Each cell of each layer is connected to
all cells of the next layer. The cells of the last layer are connected to those
of the first layer.

C. Input connections

Now, Minsky’s construction needs to be adapted for our
purpose. First of all, the input connections of Minsky’s con-
struction (the blue connections of Figure 1) are replaced by
fibres of connections which project from the input cells to the
first layer of each of the targeted synfire rings. Their weights
are suitably chosen to fulfil the following condition:

(C1) The combined activity of the input cell and inter-ring
connections is sufficiently large to activate the targeted synfire
ring.

D. Inter-ring connections

Secondly, each excitatory connection between two inter-
nal cells ci,j and ci′,j′ in Minsky’s construction (the black
connections of Figure 1) is replaced by a fibre of excitatory
connections between the corresponding synfire rings Ri,j and
Ri′,j′ which connects every cells of Ri,j to every cells of Ri′,j′

(all-to-all connections). Their excitatory weights are chosen in
such a way that the following condition is verified:
(C2) The total activity of a single layer alone does not suffice
to activate the cells in the targeted rings.
This means that the internal activity of a synfire ring is enough
to sustain the activation from layer to layer within the ring, but
not to activate any other synfire ring which it projects onto.
The triangular structure discussed below will in fact impose a
stronger condition (C2’) that will replace (C2).

Interestingly, note that the looping connections of Minsky’s
construction (e.g., connections (ca,3, ca,3) and (cb,2, cb,2) of
Figure 1) do not have to be replaced by corresponding fibres
of looping connections: in fact, any synfire ring which is firing
would have its activity sustained by its very ring structure, and
therefore, doesn’t need any additional recurrent connections to
remain active.

E. The two-step transition

To replicate the activity of the network in Minsky’s con-
struction, we need that, every time that a synfire ring begins to
fire, all other rings are switched off, in order for it to remain the
only active one. Consequently, for each synfire ring, we add
a triangular structure as described in Figure 3. The activation
of a new synfire ring at time t provokes the activation of its
associated triangular structure, which in turn inhibits all the
other rings at time t+1 by means of its red cell. At time t+2,
the red cell as well as all the other rings are therefore shut
off. An example of such a transition in a network is shown in
Figure 7.

Note that the inhibitory weights of the red dotted connec-
tions need to be chosen so that the following condition holds:
(C3) The weights of the inhibitory connections projecting from
the inhibitory cell of a triangular structure to the other synfire
rings must be sufficiently negative to inhibit the total activity
of one layer of the rings onto which they project.

Hence, those weights depend on the layer size as well as
of the weights of the intra-ring connections. Note that during
the transition from Ri,j to Ri′,j′ , there are two time steps
at which the two rings are simultaneously firing, see Figure
7. Depending on the structure of the inter-ring connections,
it might happen that both Ri,j and Ri′,j′ are projecting onto
the same third ring in the network (e.g. in our example, both
Ra,2 and Ra,3 are projecting a fibre of connections to the ring
Rb,3). Consequently, the excitatory inter-ring weights must be
chosen in such a way that they fulfil the following stronger
version of condition (C2):
(C2’) The combined activity projecting from any two layers
of two synfire rings does not suffice to activate the cells of a
third ring.
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Fig. 3. The triangular structure associated to each synfire ring. Each large node
represents a synfire rings and each little node represents a single cell. The two
downward solid edges of the structure do not represent single connections, but
fibres of excitatory connections of weight 1 which project from every cells
of the upper chain to the blue and red units. The horizontal red solid edge is
a single inhibitory connection of weight −1. The downward red dotted edges
represent fibres of sufficiently large inhibitory connections which project from
the red unit to every cells of the targeted synfire ring. If the upper chain fires
at time t, it activates both red and blue cells at time t+ 1. Consequently, at
time t+2, all other synfire rings, represented as the lower nodes, are inhibited
via the red connections, and the red cell is also inhibited via the horizontal
red connection. At next time steps, as long as the upper chain keeps firing,
the red cell is kept inhibited by the horizontal red connection, and therefore,
has no more inhibition effect on the lower chains.

F. Emulation of Finite State Automata

By replacing each node of Minsky’s construction by a
synfire ring and by adding a triangular structure associated
to each such ring, one obtains a recurrent network – made
of synfire rings – which can simulate any possible finite state
automaton. The weights of the connections have to be suitably
chosen according to conditions (C1), (C2’), and (C3), as
explained above. Note that such a choice is always possible.

In fact, any finite state automaton is emulated by its corre-
sponding network of synfire rings in the following sense: when
the two systems are run in parallel on a same input stream, the
synfire ring of the network of location (i, j) in the grid – and
only this one – will fire at a certain time step if and only if
the automaton is currently receiving the i-th input symbol and
visiting the j-th computational state. Moreover, the activity of
that specific ring is self-sustained as long as no other input
is received. For such networks, the successive input patterns
have to be provided at sufficiently distant time steps, rather
than at consecutive time steps, in order for the synfire rings’
activities to settle, via the two-step transition illustrated above.

More precisely, in order to simulate one time step of
the automaton, one needs at least three time steps of its
corresponding network, in order for the two-step transition to
be completed. Consequently, the proposed simulation process
works in linear time.

In summary, one has the following result:

Theorem 1. Any finite state automaton can be emulated by
some network of synfire rings.

Table II illustrates a simulation of automaton A of Figure
1 by its corresponding Boolean network of synfire rings N ′

of Figure 4. We see that the consecutive input symbols i
and computational states j of A are correctly reflected by
the sequence of sustained activities of the synfire rings Ri,j

Ra,3

Rb,1 Rb,2 Rb,3

Ra,1 Ra,2

u0

u1

start

Fig. 4. Boolean recurrent neural network N ′ made of synfire rings which
simulates the automaton of Figure 1. Each large node represents a synfire
ring. To each synfire ring is associated a triangular structure as described in
Figure 3. The emulation is performed as follows: the synfire ring Ri,j in the
grid – and only this one – will fire if and only if the automaton receives input
symbol i and is in the j-th computational state.

of N ′. The implementation of network N ′ and its detailed
activity during this simulation process are illustrated in Figures
5 and 7.

TABLE II
SIMULATION OF AUTOMATON A OF FIGURE 1 BY ITS CORRESPONDING

NETWORK OF SYNFIRE RINGS N ′ OF FIGURE 4.

inputs of A a b a a a · · ·
states of A 1 3 2 3 3 · · ·

cell u0 of N ′ 1 0 1 1 1 · · ·
cell u1 of N ′ 0 1 0 0 0 · · ·
cell start of N ′ 1 0 0 0 0 · · ·
synfire ring of N ′ – Ra,1 Rb,3 Ra,2 Ra,3 Ra,3

IV. METHODS

A. Implementation

The network of synfire rings N ′ of Figure 4, which sim-
ulates the finite state automaton A of Figure 1 (top panel),
has been implemented in Python, using the package igraph
[50]. Figures 5 and 7 illustrate this network and snapshots of
its activity. Network N ′ is composed of 6 synfire rings, each
of which having 6 layers. Each layer is formed by 3 Boolean
cells with threshold 1, and each cell in a layer is connected to
all the cells in the following one. There are two input cells,
u0 and u1, and one start cell, which is firing only once in
correspondence with the first input. The weights of the input
connections have been set to 0.9, and the those of the inter-ring
connections are set to 0.1. The inhibitory weights projecting
from each triangular structure are set to −4. These weights are
chosen in order to satisfy the required conditions (C1), (C2’),
and (C3) of Section III. In this way, automaton A is correctly
emulated by network N ′.

4644



Ra1
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Ra2

Rb2

Ra3

Rb3

u0

u1

start

Fig. 5. Implementation of the network of synfire rings of Figure 4 which
simulates of the finite state automaton of Figure 1. The network is composed
of 6 synfire rings, each of which having 6 layers. Each layer is formed by
3 Boolean cells with threshold 1. There are two input cells, u0 and u1, and
one start cell, which is supposed to firing only once in correspondence with
the first input. The light blue, dark blue, red and grey connections correspond
to the light blue, dark blue, red and black fibres of Figure 4. The intra-ring
connections are also displayed in grey.

B. Robustness

We simulated the activity of network N ′ of Figure 5 after
removing a certain number of connections. In the first condi-
tion, we removed inter-ring connections, and in the second,
we removed intra-ring connections. The fraction of removed
connections in each case was determined by a connection
removal coefficient (real value in [0, 1]), which was increased
by increments of 0.05. For each condition, we generated 40
networks by randomly selecting, with different random seeds,
the connections to remove. The networks were fed with the
same sequence of inputs of length 80. The sequence of states
(i.e. synfire rings) activated in the network was compared with
that of N ′. We calculated how many steps in the sequence
of visited states coincided with those visited by N ′, and
expressed the performance of the network by dividing this
value by the total number of states visited by N ′.

V. RESULTS

We showed that the network of synfire rings N ′ correctly
emulates the finite automaton A, as explained in Section
III. Four successive steps of the dynamics of N ′ are shown
in Figure 7. The activity of N ′ fed with a particular input
sequence is displayed as a raster plot in Figure 6.

One upshot of our construction with respect to Minsky’s
is its robustness: the strongly-interconnected nature of synfire

rings and the redundancy of connections ensures that the emu-
lation of the automaton by the network is correctly performed,
even if a significant number of connections are removed.

The results are displayed in Table III and IV. Concerning
inter-ring connections, for values of the connection removal
coefficient below 0.60, no difference caused by the removal
of connections could be observed. Moreover, up to very
high values of the coefficients, the networks with removed
connections were able to achieve the same activation patterns
as the original network, showing the high robustness of our
construction.

Concerning intra-ring connections, signs of malfunctioning
of the networks with removed connections started to appear
for values of the connection removal coefficient around 0.25,
with then the performance decreasing to low values when
the coefficient was increased. This reflects the fact that the
robustness of the construction depends strongly on the dense
internal connectivity of the synfire-ring structures.

Fig. 6. Raster plot of the activity of network N ′ simulating automaton A
of Figure 1. The row labelled as “Input” shows the activity, from top to
bottom, of the input and cells u0, u1 and start. The following blocks of rows
show the activity of the six synfire rings. The network is activated with the
input sequence (1, 0)T (0, 1)T (1, 0)T (1, 0)T (1, 0)T corresponding to input
abaaa of the automaton. Note that, for the network to activate correctly, it
is necessary to provide input signals that are sufficiently spaced in time, in
order for the two-step transition from one synfire ring to the next to complete.
The time steps from t = 7 to t = 10 correspond to the two-step transition
displayed in Figure 7. After the network received the last input signal in
the sequence (input (1, 0)T at time t = 27), it remains permanently with the
synfire ring Ra,3 activated, since the activity of synfire rings is self-sustained.
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Fig. 7. The two-step transition. Four time steps of activity of the network of Figure 5. The transition from one synfire ring to another (two-step transition)
is illustrated. In the four successive snapshots, the inter-ring connections (grey in Figure 5) and the inhibitory connections originating from the triangular
structures (red in Figure 5) have been omitted for readability. The big solid grey and red arrows are meant as a reminder of their presence. At time t = 7 (and
in the time steps leading to it), the network has a stable activity where only one synfire ring is active, namely Ra,1. At the said time step, the input pattern
(u0, u1) = (1, 0), corresponding to input a of the automaton, is received. The input signal combined with the synfire ring action causes the activation of
the initial layer of the synfire ring Rb,3 at time t = 8. Note that at this point, two synfire rings are simultaneously active. The triangular structure has the
function of inhibiting the ring that was previously active. In fact, at time t = 9, the activity of Rb,3 activates the two cells in its triangular structure. The
red cell projects inhibitory synapses towards all the other synfire rings, causing the inhibition of the synfire ring Ra,1 at time t = 10. At the same time,
the blue cell of the triangular structure inhibits the red cell at time t = 10, switching off its inhibitory synapses and completing the two-step transition. This
brings the network to another stable state of self-sustained activity with only one active synfire ring, namely Rb,3.

VI. CONCLUSION

We introduced a novel paradigm of neural computation
based on synfire rings, i.e., synfire chains that loop back in
on themselves. We showed that any finite state automaton can
be emulated by a Boolean recurrent neural network consisting
of such synfire rings. The construction turns out to be robust

with respect to the removal of synaptic connections.

The robustness of our construction relies on the large
number of connections involved in our architecture. The trade-
off is a greater computational cost in comparison to other
works [3]–[19]. On the other hand, the time complexity of
our simulation process is linear. But our interest lies beyond
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complexity issues. We intend to show that a robust paradigm
of neural computation based on sustained activities of cell
assemblies is indeed possible.

Our results support the evidence that synfire chains play a
significant role in the processing and coding of information in
neural networks [44], [45]. They are also in line with recent
findings showing that self-organizing networks spontaneously
develop an abundance of synfire rings in their structure [49].

For future work, we plan to extend the present consider-
ations towards a Turing complete paradigm of computation
based on networks of synfire rings.

TABLE III
ROBUSTNESS OF THE CONSTRUCTION WHEN INTER-RING CONNECTIONS

ARE REMOVED.

Connection removal
coefficient

Average number
of steps Performance

0.50 12.00 100.0%
0.55 12.00 100.0%
0.60 12.00 100.0%
0.65 11.45 95.4%
0.70 11.20 93.3%
0.75 10.30 85.8%
0.80 7.58 63.1%
0.85 6.85 57.1%
0.90 4.17 34.8%
0.95 3.75 31.2%

TABLE IV
ROBUSTNESS OF THE CONSTRUCTION WHEN INTRA-RING CONNECTIONS

ARE REMOVED.

Connection removal
coefficient

Average number
of steps Performance

0.00 12.00 100.0%
0.05 12.00 100.0%
0.10 12.00 100.0%
0.15 12.00 100.0%
0.20 12.00 100.0%
0.25 11.78 98.1%
0.30 11.72 97.7%
0.35 10.35 86.2%
0.40 10.05 83.8%
0.45 7.58 63.1%
0.50 6.70 55.8%
0.55 4.62 38.5%
0.60 3.05 25.4%
0.65 2.15 17.9%
0.70 1.57 13.1%
0.75 1.40 11.7%
0.80 1.12 9.4%
0.85 1.10 9.2%
0.90 1.02 8.5%
0.95 1.00 8.3%
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