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Abstract 11

In neural computation, the essential information is generally encoded into the neurons 12

via their spiking configurations, activation values or (attractor) dynamics. The synapses 13

and their associated plasticity mechanisms are, by contrast, mainly used to process 14

this information and implement the crucial learning features. Here, we propose a novel 15

Turing complete paradigm of neural computation where the essential information is 16

encoded into discrete synaptic states, and the updating of this information achieved 17

via synaptic plasticity mechanisms. More specifically, we prove that any 2-counter 18

machine—and hence any Turing machine—can be simulated by a rational-weighted 19

recurrent neural network employing spike-timing-dependent plasticity (STDP) rules. 20

The computational states and counter values of the machine are encoded into discrete 21

synaptic strengths. The transitions between those synaptic weights are then achieved 22

via STDP. These considerations show that a Turing complete synaptic-based paradigm 23

of neural computation is theoretically possible and potentially exploitable. They support 24

the idea that synapses are not only crucially involved in information processing and 25

learning features, but also in the encoding of essential information. This approach 26

represents a paradigm shift in the field of neural computation. 27

Introduction 28

How does the brain compute? How do biological neural networks encode and process 29

information? What are the computational capabilities of neural networks? Can neural 30

networks implement abstract models of computation? Understanding the computational 31

and dynamical capabilities of neural systems is a crucial issue with significant implications 32

in computational and system neuroscience, artificial intelligence, machine learning, bio- 33

inspired computing, robotics, but also theoretical computer science and philosophy. 34
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In 1943, McCulloch and Pitts proposed the concept of an artificial neural network 35

(ANN) as an interconnection of neuron-like logical units [1]. This computational model 36

significantly contributed to the development of two research directions: (1) Neural 37

Computation, which studies the processing and coding of information as well as as the 38

computational capabilities of various kinds of artificial and biological neural models; (2) 39

Machine Learning, which concerns the development and utilization of neural network 40

algorithms in Artificial Intelligence (AI). 41

The proposed study lies within the first of these two approaches. In this context, the 42

computational capabilities of diverse kinds of neural networks have been shown to range 43

from the finite automaton degree [1–3] up to the Turing [4] or even to the super-Turing 44

levels [5–7] (see [8] for a survey of complexity theoretic results). In short, Boolean 45

recurrent neural networks are computationally equivalent fo finite state automata; analog 46

neural networks with rational synaptic weights are Turing complete; and analog neural 47

nets with real synaptic weights as well as evolving neural nets are capable of super-Turing 48

capabilities (cf. Table 1). These theoretical results have later been improved, motivated 49

by the possibility to implement finite state machines on electronic hardwares (see for 50

instance [9–13]). Around the same time, the computational power of spiking neural 51

networks (instead of sigmoidal ones) has also been extensively studied [14, 15]. More 52

recently, the study of P systems—parallel abstract models of computation inspired 53

from the membrane structure of biological cells—has become a highly active field of 54

research [16–18]. 55

Boolean Sigmoid

Static Static Bi-valued Evolving Evolving

Q
FSA TM TM/poly(A) TM/poly(A)

REG P P/poly P/poly

R
FSA TM/poly(A) TM/poly(A) TM/poly(A)

REG P/poly P/poly P/poly

Table 1. Computational power of various models of recurrent neural networks. FSA, TM and
TM/poly(A) stand for finite state automata, Turing machines and Turing machines with
polynomial advice (which are super-Turing), respectively. REG, P and P/poly are the
complexity classes decided in polynomial time by these three models of computation. The
results in the case of classical computation can be found in [1–7,19–24]. Results in alternative
infinite computational frameworks have also been obtained [25–35].

Concerning the second direction, Turing himself brilliantly anticipated the two 56

concepts of learning and training that would later become central to machine learning [36]. 57

These ideas were realized with the introduction of the perceptron [37], which gave 58

rise to the algorithmic conception of learning [38–40]. Despite some early limitation 59

issues [41], the development of artificial neural networks has steadily progressed since 60

then. Nowadays, artificial neural networks represent a most powerful class of algorithms 61

in machine learning, thanks to their highly efficient training capabilities. In particular, 62

deep learning methods—multilayer neural networks that can learn in supervised and/or 63

unsupervised manners—have achieved impressive results in numerous different areas 64

(see [42] for a brilliant survey and the references therein). 65
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These approaches share a common and certainly sensible conception of neural com- 66

putation that could be qualified as a neuron-based computational framework. According 67

to this conception, the essential information is encoded into the neurons, via their 68

spiking configurations, activation values or (attractor) dynamics. The synapses and 69

their associated plasticity mechanisms are, by contrast, essentially used to process this 70

information and implement the crucial learning features. For instance, in the simulation 71

of abstract machines by neural networks, the computational states of the machines are 72

encoded into activation values or spiking patterns of neurons [8]. Similarly, in most if not 73

all deep learning algorithms, the input, output and intermediate information is encoded 74

into activation values of input, output and hidden (layers of) neurons, respectively [42]. 75

But what if the synaptic states would also play a crucial role in the encoding of informa- 76

tion? What if the role of the synapses would not only be confined to the processing of 77

information and learning processes, as crucial as these features might be? In short, what 78

about a synaptic-based computational framework? 79

In biology, the various mechanisms of synaptic plasticity provide “the basis for 80

most models of learning, memory and development in neural circuits” [43]. Spike- 81

timing-dependent plasticity (STDP) refers to the biological Hebbian-like learning process 82

according to which the synapses’ strengths are adjusted based on the relative timings 83

of the presynaptic and postsynaptic spikes [38,44,45]. It is widely believed that STDP 84

“underlies several learning and information storage processes in the brain, as well as the 85

development and refinement of neuronal circuits during brain development” (see [46] 86

and the references therein). In particular, fundamental neuronal structures like synfire 87

chains [47–51] (pools of successive layers of neurons strongly connected from one stratum 88

to the next by excitatory connections), synfire rings [52] (looping synfire chains) and 89

polychronous groups [53] (groups of neurons capable of generating time-locked repro- 90

ducible spike-timing patterns), have all been observed to emerge in self-organizing neural 91

networks employing various STDP mechanisms [52–55]. On another level, regarding 92

STDP mechnisms, it has been shown that synapses might change their strengths by 93

jumping between discrete mechanistic states, rather than by simply moving up and down 94

in a continuum of efficacy [56]. 95

Based on these considerations, we propose a novel Turing complete synaptic-based 96

paradigm of neural computation. In this framework, the essential information is encoded 97

into discrete synaptic states instead of neuronal spiking patterns, activation values or 98

dynamics. The updating of this information is then achieved via synaptic plasticity mech- 99

anisms. More specifically, we prove that any 2-counter machine—and hence any Turing 100

machine—can be simulated by a rational-weighted recurrent neural network subjected 101

to STDP. The computational states and counter values of the machine are encoded 102

into discrete synaptic strengths. The transitions between those synaptic weights are 103

achieved via STDP. These results show that a Turing complete synaptic-based paradigm 104

of computation is theoretically possible and potentially exploitable. They support the 105

idea that synapses are not only crucially involved in information processing and learning 106

features, but also in the encoding of essential information in the brain. This approach 107
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represents a paradigm shift in the field of neural computation. 108

The possible impacts of these results are both practical and theoretical. In the 109

field of neuromorphic computing, our synaptic-based paradigm of neural computation 110

might lead to the realization of novel analog neuronal computers implemented on VLSI 111

technologies. Regarding AI, our approach might lead to the development of new machine 112

learning algorithms. On a conceptual level, the study of neuro-inspired paradigms of 113

abstract computation might improve the understanding of both biological and artificial 114

intelligences. These aspects are discussed in the conclusion. 115

Materials and methods 116

Recurrent Neural Networks 117

A rational-weighted recurrent neural network (RNN) N consists of a synchronous network 118

of neurons connected together in a general architecture. The network is composed of M 119

input neurons (ui)
M
i=1 and N internal neurons (xi)

N
i=1. The dynamics of network N is 120

computed as follows: given the activation values of the input neurons (uj(t))
M
j=1 and 121

internal neurons (xj(t))
N
j=1 at time step t, the activation values of the internal neurons 122

(xi(t+ 1))Ni=1 at time step t+ 1 are given by the following equations: 123

xi(t+ 1) = f

 N∑
j=1

aij(t) · xj(t) +

M∑
j=1

bij(t) · uj(t) + ci(t)

 , for i = 1, . . . , N (1)

where aij(t), bij(t) ∈ Q are the rational weights of the synaptic connections from xj to

xi and uj to xi at time t, respectively, ci(t) ∈ Q is the rational bias of cell xi at time t,

and f is either the hard-threshold activation function θ or the linear sigmoid activation

function σ defined by

θ(x) =

0 if x < 1

1 if x ≥ 1
σ(x) =


0 if x < 0

x if 0 ≤ x ≤ 1

1 if x > 1.

A neuron is called Boolean or analog depending on whether its activation value is 124

computed by the function θ or σ, respectively. Input neurons (ui)
M
i=1 are all Boolean. 125

The input state and internal state of N at time t are the vectors

u(t) = (u1(t), . . . , uM (t))T ∈ BM

x(t) = (x1(t), . . . , xN (t))T ∈ QN

For any Boolean input stream u = u(0)u(1)u(2) · · · , the computation of N over input 126

u is the sequence of internal states N (u) = x(0)x(1)x(2) . . . , where x(0) = 0 and the 127

components of x(t) are given by Eq (1), for each t > 0. A simple recurrent neural 128

network is illustrated in Fig 1. 129
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Fig 1. A recurrent neural network. The network contains two input cells u1, u2 and three
internal cells x1, x2, x3. Excitatory and inhibitory connections are represented as red and blue
arrows, respectively. Cells u1, u2, x1, x2 are Boolean (activation function θ) whereas x3 is
analog (activation function σ). Over the Boolean input u = (1, 1)T (1, 0)T (0, 1)T , the network’s
computation is N (u) = (0, 0, 0)T (0, 1, 0)T (1, 0, 0)T (0, 1, 1)T (0, 0, 0.25)T (0, 0, 0.625)T · · · .

A spike-timing dependent plasticity (STDP) rule modifies the synaptic weights aij(t) 130

according to the spiking patterns of the presynaptic and postsynaptic cells xj and xi [45]. 131

Here, we consider two STDP rules. The first one is a classical generalized Hebbian 132

rule [38]. It allows the synaptic weights to vary across finitely many values comprised 133

between two bounds amin and amax (0 < amin < amax < 1). The rule is given as follows: 134

aij(t+ 1) =


amin, if R(t+ 1) < amin

amax, if R(t+ 1) > amax where

R(t+ 1), otherwise

(2)

R(t+ 1) := aij(t) + η ·
(
bxi(t+ 1)c · bxj(t)c − bxi(t)c · bxj(t+ 1)c

)
where bxc denotes the floor of x (the greatest integer less than or equal to x) and 135

η > 0 is the learning rate. Accordingly, the synaptic weight aij(t) is incremented 136

(resp. decremented) by η at time t+ 1 if the presynaptic cell xj spikes 1 time step before 137

(resp. after) the postsynaptic cell xi. The floor function is used to truncate the activation 138

values of analog neurons to their integer part, if needed. The synaptic weights enabled 139

by this rule is illustrated in Fig 2. In the sequel, this STDP rule will be used to encode 140

the transitions between the finitely many computational states of the machine to be 141

simulated. 142

The second rule is an adaptation to our context of a classical Hebbian rule. It allows 143

the synaptic weights to vary across the infinitely many values of the sequence 144

β =
(

1− 1

2k

)∞
k=0

= (0.0, 0.5, 0.75, 0.875, 0.9375, . . . )
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The rule is given as follows: 145

aij(t+ 1) =


aij(t) + 1

2
(1− aij(t)) if xi(t+ 1) · xj(t)− xi(t) · xj(t+ 1) = 1

max (aij(t)− (1− aij(t)), 0) if xi(t+ 1) · xj(t)− xi(t) · xj(t+ 1) = −1

aij(t) if xi(t+ 1) · xj(t)− xi(t) · xj(t+ 1) = 0

(3)

146

As for the previous one, the synaptic weight aij(t) is incremented (resp. decremented) at 147

time t+1 if the presynaptic cell xj spikes 1 time step before (resp. after) the postsynaptic 148

cell xi. But in this case, the synaptic weight varies across the infinitely many successive 149

values of the sequence β. For instance, if aij(t) = 1
2 + 1

4 + 1
8 = 0.875 is incremented 150

(resp. decremented) by the STDP rule, then aij(t + 1) = 1
2 + 1

4 + 1
8 + 1

16 = 0.9375 151

(resp. aij(t+ 1) = 1
2 + 1

4 = 0.75). Here, the floor functions are removed, since this rule 152

will only be applied to synaptic connections between Boolean neurons. The synaptic 153

weights enabled by this rule is illustrated in Fig 2. In the sequel, this STDP rule will be 154

used to encode the variations among the infinitely many possible counter values of the 155

machine to be simulated. 156
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Fig 2. Synaptic weights enabled by to the two STDP rules. The red curve displays
the finitely many possible synaptic weights enabled by the first STDP rule (Eq (2)), where
amin = 0.1, amax = 1 and η = 0.1. These are the successive values of the sequence
(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0). The blue curve displays the first elements of the
infinitely many synaptic weights enabled by the second STDP rule (Eq (3)). These are the
successive values of the sequence β = (0.0, 0.5, 0.75, 0.875, 0.9375, . . . ).

Finite State Automata 157

A deterministic finite state automaton (FSA) is a tuple A = (Q,Σ, δ, q0, F ), where: 158

• Q = {q0, . . . , qn−1} is a finite set of computational states; 159

• Σ is an alphabet of input symbols; 160

• δ : Q× Σ→ Q is a transition function; 161

• q0 ∈ Q is the initial state; 162
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• F ⊆ Q is the set of final states. 163

Each transition δ(q, a) = q′ signifies that if the automaton is state q ∈ Q and reads

input symbol a ∈ Σ, then it will move to state q′ ∈ Q. For any input w = a0a1 · · · ap ∈ Σ∗,

the computation of A over w is the finite sequence

A(w) =
(
(qi0 , a0, qi1), (qi1 , a1, qi2), . . . , (qip , ap, qip+1)

)
such that qi0 = q0 and δ(qik , ak) = qik+1

, for all k = 0, . . . , p. Such a computation is

usually denoted as

A(w) : q0
a0−→ qi1

a1−→ qi2 · · · qip
ap−→ qip+1

.

Input w is said to be accepted (resp. rejected) by automaton A if the last state qip+1
164

of computation A(w) belongs (resp. does not belong) to the set of final states F . The 165

set of all inputs accepted by A is the language recognized by A. Finite state automata 166

recognize the class of regular languages. A finite state automaton is generally represented 167

as a directed graph, as illustrated in Fig 3. 168

0

1

1

1

0

0

0, 1

0 1 2

3

Fig 3. A finite state automaton. The nodes and edges of the graph represent the states
and transitions of the automaton, respectively. Initial and final states are represented with an
incoming arrow and a double-circle, respectively. An edge from state q to q′ labelled by a
represents the transition relation δ(q, a) = q′. This automaton recognizes the language
{0m1n : m,n > 0}, i.e., the sequences of bits beginning with a strictly positive number of 0’s
and ending with a strictly positive number of 1’s.

Counter Machines 169

A counter machine is a finite state automaton provided with additional counters [57]. 170

The counters are used to store integers. They can be pushed (incremented by 1), popped 171

(decremented by 1) or kept unchanged. At each step, the machine determines its next 172

computational state according to its current input symbol, computational state and 173

counters’ states, i.e., if counters are zero or non-zero. 174

Formally, a deterministic k-counter machine (CM) is a tuple Ck = (Q,Σ, C,O, δ, q0, F ), 175

where: 176

• Q = {q0, . . . , qn−1} is a finite set of computational states; 177

• Σ is an alphabet of input symbols not containing the empty symbol ε (recall that 178

the empty symbol satisfies εw = wε = w, for any string w ∈ Σ∗); 179

March 16, 2020 7/39



• C = {⊥,>} is the set of counter states, where ⊥,> represent the zero and non-zero 180

states, respectively; 181

• N is the set of counter values (doesn’t need to be hold in the tuple Ck); 182

• O = {push, pop,−} is the set of counter operations; 183

• δ : Q× Σ ∪ {ε} × Ck → Q×Ok is a (partial) transition function; 184

• q0 ∈ Q is the initial state; 185

• F ⊆ Q is the set of final states. 186

The value and state of counter j are denoted by cj and c̄j , respectively, for j = 1, . . . , k. 187

(In the sequel, certain cells will also be denoted by cj ’s and c̄j ’s. The use of same notations 188

to designate counter’s values or states and specific cells will be clear from the context.) 189

The “bar function” (c 7→ c̄) retrieves the counter’s state from its value. It is naturally 190

defined by c̄j = ⊥ if cj = 0 and c̄j = > if cj > 0. The value of counter j after application 191

of operation oj ∈ O is denoted by oj(cj). The counter operations influence their values 192

in the following natural way: 193

• If oj = push, then oj(cj) = cj + 1; 194

• If oj = pop, then oj(cj) = max(cj − 1, 0); 195

• If oj = −, then oj(cj) = cj . 196

Each transition δ(q, a, c̄1, . . . , c̄k) = (q′, o1, . . . , ok) signifies that if the machine is 197

state q ∈ Q, reads the regular or empty input symbol a ∈ Σ ∪ {ε} and has its k counter 198

being in states c̄1, . . . , c̄k ∈ C, then it will move to state q′ ∈ Q and perform the k counter 199

operations o1, . . . , ok ∈ O. Depending on whether a ∈ Σ or a = ε, the corresponding 200

transition is called a regular transition or an ε-transition, respectively. We assume that 201

δ is a partial (rather than a total) function. Importantly, the determinism is expressed 202

by the fact that the machine can never face a choice between either a regular or an 203

ε-transition, i.e., for any q ∈ Q, any a ∈ Σ and any c̄1, . . . , c̄k ∈ C, if δ(q, a, c̄1, . . . , c̄k) is 204

defined, then δ(q, ε, c̄1, . . . , c̄k) is undefined [57]. 205

For any input w = a0a1 · · · ap ∈ Σ∗, the computation of a k-counter machine Ck over 206

input w can be described as follows. For each successive input symbol ai ∈ Σ, before 207

trying to process ai, the machine first tests if an ε-transition is possible. If this is the 208

case, it performs this transition. Otherwise, it tests if the regular transition associated 209

with ai is possible, and if so, performs it. The deterministic condition ensures that a 210

regular and an ε-transition are never possible at the same time. When no more transition 211

can be performed, the machine stops. 212

For any input w = a0a1 · · · ap ∈ Σ∗, the computation of Ck over w is the unique finite 213

or infinite sequence of states, symbols and counter values encountered by Ck while reading 214

the successive bits of w possibly interspersed with ε symbols. The formal definition 215

involves the following notions. 216
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An instantaneous description of Ck is a tuple (q, w, c1, . . . , ck) ∈ Q× Σ∗ × Nk. For 217

any empty or non-empty symbol a′ ∈ Σ ∪ {ε} and any w ∈ Σ∗, the relation “`” over the 218

set of instantaneous descriptions is defined as follows: 219

(q, a′w, c1, . . . , ck) ` (q′, w, c′1, . . . , c
′
k) iff δ(q, a′, c̄1, . . . , c̄k) = (q′, o1, . . . , ok)

and c′1 = o1(c1), . . . , c′k = ok(ck)

Note that depending on whether a′ = ε or a′ ∈ Σ, the relation “`” is determined by an 220

ε-transition or a regular transition, respectively. (Note also that when a′ = ε, one has 221

a′w = εw = w, and in this case, the relation “`” keeps w unchanged.) 222

For any input w = a0a1 · · · ap ∈ Σ∗, the determinism of Ck ensures that there is a

unique finite or infinite sequence of instantaneous descriptions

(
(qni , wi, c1,i, . . . , ck,i)

)l
i=0

, l ∈ N ∪ {∞}

such that (qn0 , w0, c1,0, . . . , ck,0) = (q0, w, 0, . . . , 0) is the initial instantaneous description, 223

and (qni , wi, c1,i, . . . , ck,i) ` (qni+1 , wi+1, c1,i+1, . . . , ck,i+1), for all i < l. Then, the 224

computation of Ck over w, denoted by Ck(w), is the finite or infinite sequence defined by 225

Ck(w) =
(
(qni , a

′
i, c1,i, . . . , ck,i)

)l
i=0

, l ∈ N ∪ {∞} (4)

where a′i = ε if wi = wi+1 (case of an ε-transition), and a′i is the first bit of wi otherwise 226

(case of a regular transition), for all i < l. Note that the computation over w can take 227

longer than |w| = p+ 1 steps, even be infinite, due to the use of ε-transitions. The input 228

w ∈ Σ∗ is said to be accepted by Ck if the computation of the machine over w is finite, 229

consumes all letters of w and stops in a state of F , i.e., if a′l = ε and qnl ∈ F . It is 230

rejected otherwise. The set of all inputs accepted by Ck is the language recognized by Ck. 231

It is known that 1-counter machines are strictly more powerful than finite state 232

automata, and k-counter machines are computationally equivalent to Turing machines 233

(Turing complete), for any k ≥ 2 [57]. However, the class of k-counter machines that do 234

not make use of ε-transitions is not Turing complete. For this reason, the simulation 235

of ε-transitions by our neural networks will be essential towards the achievement of 236

Turing-completeness. 237

A k-counter machine can also be represented as a directed graph, as illustrated 238

in Fig 4. The 2-counter machine of Fig 4 recognizes a language that is recursively 239

enumerable but not context-free, i.e., it can be recognized by some Turing machine, yet 240

by no pushdown automaton. Note that this 2-counter machine contains ε-transitions. 241

Results 242

We show that any k-counter machine can be simulated by a recurrent neural network 243

composed of Boolean and analog neurons, and using the two STDP rules described by 244

Eq (2)–(3). In this computational paradigm, the states and counter values of the machine 245
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0,⊤,⊤ → −,−
0,⊥,⊤ → −,−
0,⊥,⊥ → −,− 1,⊥,⊥ → −,−

1,⊥,⊤ → −,−
1,⊤,⊤ → −,−

0,⊥,⊥ → push, push
0,⊤,⊤ → push, push

1,⊥,⊥ → −,−

ǫ,⊥,⊥ → −,−

ǫ,⊥,⊥ → −,− 0,⊥,⊥ → −,−
1,⊥,⊥ → −,−

1,⊥,⊤ → −,−

ǫ,⊥,⊤ → −,−

0,⊤,⊤ → −,−

1,⊤,⊤ → −, pop

1,⊤,⊤ → −, pop

0,⊥,⊤ → pop,−

Fig 4. A 2-counter machine. The nodes and edges of the graph represent the states and
transitions of the machine, respectively. An edge from q to q′ labelled by a, c̄1, c̄2 → o1, o2
represent the transition δ(q, a, c̄1, c̄2) = (q′, o1, o2). In other words, if the machine is in
computational state q, reads input a and has counter states c̄1, c̄2, then it will move to
computational state q′ and performs counter operations o1, o2. This 2-counter machine
recognizes the language {0n1n0n : n > 0}, i.e., the sequences of bits beginning with a strictly
positive number of 0’s followed by the same number of 1’s and followed by the same number of
0’s again.

are encoded into specific synaptic weights of the network. The transitions between those 246

states and counter values are reflected by an evolution of the corresponding synaptic 247

weights. Since 2-counter machines are computationally equivalent to Turing machines, 248

these results show that the proposed STDP-based recurrent neural networks are Turing 249

complete. 250

Construction 251

We provide an algorithmic construction which takes the description of a k-counter 252

machine Ck as input and provides a recurrent neural network N that simulates Ck as 253

output. The network N is constructed by assembling several modules together: an input 254

encoding module, an input transmission module, a state module, k counter modules and 255

several detection modules. These modules are described in detail in the sequel. The 256

global behaviour of N can be summarized as follows. 257
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1. The computational state and k counter values of Ck are encoded into specific synap- 258

tic weights belonging to the state module and counter modules of N , respectively. 259

2. At the beginning of the simulation, N receives its input stream via successive 260

activations of its input cells belonging to the input encoding module. Meanwhile, 261

this module encodes the whole input stream into a single rational number, and 262

stores this number into the activation value of a sigmoid neuron. 263

3. Then, each time the so-called tic cell of the input encoding module is activated, N 264

triggers the simulation of one computational step of Ck. 265

(a) First, it attempts to simulate an ε-transition of Ck by activating the cell uε of 266

the input transmission module. If such a transition is possible in Ck, then N 267

simulates it. 268

(b) Otherwise, a signal is sent back the input encoding module. This module then 269

retrieves the last input bit a stored in its memory, and attempts to simulate 270

the regular transition of Ck associated with a by activating the cell ua of 271

the input transmission module. If such a transition is possible in Ck, then N 272

simulates it. 273

4. The network N simulates a transition of Ck as follows: first, it retrieves the current 274

computational state and k counter values of Ck encoded into k+ 1 synaptic weights 275

by means of its detection modules. Based on this information, it sends specific 276

signals to the state module and counter modules. These signals update specific 277

synaptic weights of these modules in such a way to encode the new computational 278

state and counter values of Ck. 279

The general architecture of N is illustrated in Fig 5. The general functionalities of the 280

modules are summarized in Table 2. The following sections are devoted to the detailed 281

description of the modules, as well as to the proof of correctness of the construction. 282

Module Role

input encoding • Store the successive input bits into a “stack”.
• Implement a “tic mechanism” which triggers the simulation of one
computational step of the machine.

input processing • Transmit the successive input bits to the network.

state • Encode the successive computational states of the machine into an
evolving synaptic weight.
• Simulate the change in computational states of the machine
throughout the computation.

counter • Encode the successive counter values of the machine into evolving
synaptic weights.
• Simulate the change in the counter values of the machine throughout
the computation.

detection • Retrieve the current computational and counter states of the machine.
• Use this information to simulate the next transition of the machine.

Table 2. Modules composing the STDP-based recurrent neural network that simulates a
k-counter machine.
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Fig 5. STDP-based recurrent neural network simulating a k-counter machine.
The network is obtained by the construction given in Algorithm 1. It is composed of 1 input
encoding module. 1 input transmission module, 1 state module, k counter modules, and at
most |Q| · |Σ ∪ {ε}| · 2k = 6nk detection modules, all interconnected together in a precise way.
According to this construction, the computational state and counter values of the machine are
encoded into specific synaptic weights of the state and counter modules, respectively (red
dashed arrow). The synaptic connections provoking changes in these specific weights are
depicted in boldface.

Stack encoding. In the sequel, each binary input stream will be piled up into a 283

“binary stack”. In this way, the input stream can be stored by the network, and then 284

processed bit by bit at successive time steps interspersed by constant intervals. The 285

construction of the stack is achieved by “pushing” the successive incoming bits into 286

it. The stack is encoded as a rational number stored in the activation value of one (or 287

several) analog neurons. The pushing and popping stack operations can be simulated by 288

simple analog neural circuits [4]. We now present these notions in detail. 289

A binary stack whose elements from top to bottom are γ1, γ2, . . . , γp ∈ {0, 1} is 290

represented by the finite string γ = γ1γ2 · · · γp ∈ {0, 1}∗. The stack γ whose top element 291

has been popped is denoted by pop(γ) = γ2 · · · γp, and the stack obtained by pushing 292

element α ∈ {0, 1} into γ is denoted by push(α, γ) = αγ1γ2 . . . γp (α is now the top 293

element). For instance, if γ = 0110, then pop(γ) = 110, push(0, γ) = 00110 and 294

push(1, γ) = 10110. 295

In our context, any stack γ = γ1γ2 · · · γp ∈ {0, 1}∗ is encoded by the rational number 296

r̄γ :=
∑n
i=1

2γi+1
4i ∈ [0, 1] [4]. Hence, the top element γ1 of γ can be retrieved by the 297

operation top(γ) = σ(4r̄γ − 2) ∈ {0, 1}, where σ is the linear sigmoid function defined 298

previously. The encodings of push(0, γ) and push(1, γ) are given by σ(
r̄γ
4 + 1

4 ) and 299

σ(
r̄γ
4 + 3

4 ), respectively. The encoding of pop(γ) is given by σ(4r̄γ − 2top(γ)− 1). As an 300
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illustration, the stack γ = 0110 is encoded by r̄γ = 1
4 + 3

16 + 3
64 + 1

256 . The top element of 301

γ is top(γ) = σ(1 + 3
4 + 3

16 + 1
64 − 2) = 0. The encodings of push(0, γ) and push(1, γ) are 302

1
4 + 1

16 + 3
64 + 3

256 + 1
1024 and 3

4 + 1
16 + 3

64 + 3
256 + 1

1024 , which represents the stacks 00110 and 303

10110, respectively. The encoding of pop(γ) is σ(1 + 3
4 + 3

16 + 1
64 −2 ·0−1) = 3

4 + 3
16 + 1

64 , 304

which represents to the stack 110. These four operations can be implemented by simple 305

neural circuits. 306

Input encoding module. The input encoding module is used for two purposes: pile 307

up the successive input bits into a stack, and implement a “tic mechanism” which triggers 308

the simulation of one computational step of the counter machine by the network. These 309

two processes are described in detail below. This module (the most intricate one) has 310

been designed on the basis of the previous considerations about stack encoding, involving 311

neural circuits that implement the “pop”, “top” and “pop” operations. It is composed 312

of 31 cells in0, in1, end, tic, c1, . . . , c20, d1, . . . , d7, some of which being Boolean and 313

others analog, as illustrated in Fig 6. It is connected to the input transmission module 314

and the detection modules described below. 315

The three Boolean cells in0, in1 and end are input cells of the network. They are 316

used to transmit the successive inputs bits to the network. The transmission of input 0 317

or 1 is represented by a spike of cell in0 or in1, respectively. At the end of the input 318

stream, cell end spikes to indicate that all inputs have been processed. 319

The activity of this module, illustrated in Fig 7, can be described as follows. Suppose 320

that the input stream a1 · · · ap is transmitted to the network. While the bits a1, . . . , ap 321

are being received, the module builds the stack γ = a1 · · · ap, and stores its encoding 322

r̄γ into the activation values of an analog neuron. To achieve this, the module first 323

pushes every incoming input ai into a stack γ′ (first ‘push’ circuit in Fig 6). Since 324

pushed elements are by definition added on the top of the stack, γ′ consists of elements 325

a1, . . . , ap in reverse order, i.e., γ′ = ap · · · a1. The encoding r̄γ′ of stack γ′ is stored 326

in cell c1. Then, the module pops the elements of γ′ from top to bottom (first ‘pop’ 327

circuit in Fig 6), and pushed them into another stack γ (second ‘push’ circuit in Fig 6). 328

After completion of this process, γ consists of elements a1, . . . , ap in the right order, i.e., 329

γ = a1 · · · ap. The encoding r̄γ of stack γ is stored in cell c14. 330

The Boolean cell tic is also an input cell. Each activation this cell triggers the 331

simulation of one computational step of the counter machine by the network. When the 332

tic cell spikes, it sends a signal to cell uε of the next input transmission module. The 333

activation of uε attempts to launch the simulation of an ε-transition of the machine. If, 334

according to the current computational and counter states of the machine, an ε-transition 335

is possible, then the network simulates it via its other modules, and at the same time, 336

sends an inhibitory signal to c15. Otherwise, after some delay (‘delays’ circuit in Fig 6), 337

cell c15 is activated. This cell triggers a sub-circuit that pops the current stack γ (second 338

‘pop’ circuit in Fig 6) and transmits its top element a ∈ {0, 1} to cell ua of the next input 339

transmission module. Then, the activation of ua launches the simulation of a regular 340

transition of the machine associated with input symbol a, via the other modules of the 341
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network. 342

The module is composed of several sub-circuits that implement the top(), push() and 343

pop() operations described previously, as shown in Fig 6. An input encoding module is 344

denoted as input encoding module(). 345

Fig 6. Input encoding module. This module piles up the successive incoming input bits
into a stack and implement the “tic mechanism”, which triggers the simulation of one
computational step of the counter machine. It is composed of 31 Boolean and analog cells
(depicted in white/blue and grey, respectively) in0, in1, end, tic, c1, . . . , c20, d1, . . . , d7. First of
all, at successive time steps, cell in0 or in1 spikes depending on whether input 0 or 1 is
received. Then, cell end spikes to indicate that all input bits have been processed. Meanwhile,
the successive bits are pushed into a stack γ′ whose encoding is hold by c1 (first ‘push’ circuit).
After all bits have been pushed, γ′ contains all input bits in reverse order. Subsequently,
c2, . . . , c7 pop every element of γ′ (first ‘pop’ circuit). Cell c8 or c9 spikes iff the popped
element is a 0 or a 1, respectively. Afterwards, cells c10, c11 push these elements back into a
new stack, in order to build the reversed stack γ (second ‘push’ circuit). The encoding of γ is
transferred to and hold by c12 and c13 at alternating time steps (‘copy’ circuit), and then hold
by c14 at every time step. After completion of this process, γ contains all input bits in the
original order. Besides this, each time the tic cells spikes, it triggers the simulation of one
computational step of the counter machine by the network. First, it attempts to simulatate an
ε-transition by activating cell uε of the next module. If this simulation step fails, cell c15 is
activated after some delay (‘delays’ circuit), which represents a signal telling that the top
element of stack γ, instead of ε, has to be given as next input symbol. In this case,
c14, c16, c17, c18 pop γ (second ‘pop’ circuit) and transmit its top element, 0 or 1, to cell c19 or
c20, respectively. Cell c19 or c20 then activates cell u0 or u1 of the next module, respectively,
triggering the simulation of a regular transition.

Input transmission module. The input transmission module is used to transmit to 346

the network the successive input bits sent by the previous input encoding module. The 347

module simply consists of 3 Boolean input cells u0, u1, uε followed by 3 layers of Boolean 348

delay cells, as illustrated in Fig 8. It is connected to the input encoding module described 349
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Fig 7. Example of activity of the input encoding module. The lower graph is a raster
plot displaying the cells’ activities. Activation values between 0 and 1 (of sigmoid neurons) are
not represented, only spikes are. In this simulation, the input stream 001101 and the “end of
input” signal are transmitted via cells in0, in1, end at successive time steps 0, 1, 2, . . . , 7 (blue
pattern). The successive input bits are first piled up in reverse order into a stack γ′ whose
encoding is stored as the activation value of c1, and then piled up again in the right order into
a stack γ whose encoding is stored as the activation value of c14. The activation values of c1
and c14 over time are represented by the orange and red curves in the upper graph, respectively.
Then, the tic cell spikes every 15 time steps from t = 20 onwards (blue pattern). Each such
spike triggers the sub-circuit that pops stack γ and outputs its top element, 0 or 1, by
activating cell c19 or c20 10 time steps later, respectively. We see that the successive input bits,
namely 0, 0, 1, 1, 0, 1, 0 (blue pattern), are correctly output by cells c19 or c20 (red pattern).

above, and to the state module, counter modules and detection modules described below. 350

The activation of cell u0, u1 or uε simulates the reading of input symbol 0, 1 or ε by 351

the counter machine, respectively. Each time such a cell is activated, the information 352

propagates along the delay cells of the corresponding row. An input transmission module 353

is denoted as input transmission module(). 354

State module. In our model, the successive computational states of the counter 355

machine are encoded as rational numbers, and stored as successive weights of a designated 356

synapse ws(t) (subscript s refers to ‘state’). More precisely, the fact that the machine is 357

in state qk is encoded by the rational weight ws(t) = amin + k · η, for k = 0, . . . , n− 1, 358

where amin and η are parameters of the STDP rule given by Eq (2). Hence, the change 359

in computational state of the machine is simulated by incrementing or decrementing 360

ws(t) in a controlled manner. This process is achieved by letting ws(t) be subjected to 361
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Fig 8. Input transmission module. This module transmits the successive inputs bits to
the network. It is composed of three Boolean input cells u0, u1, uε (in blue) followed by 3
layers of Boolean delay cells connected in a parallel way via excitatory connections of weights 1.
The activation of cells u0, u1 or uε simulates the reading of input symbols 0, 1 or ε by the
counter machine, respectively.

the STDP rule of Eq (2), and by triggering specific spiking patterns of the presynaptic 362

and postsynaptic cells of ws(t). 363

The state module is designed to implement these features. It is composed of a Boolean 364

presynaptic cell pres connected to an analog postsynaptic cell posts by a synapse of 365

weight ws(t), as well as of 6(n− 1) Boolean cells c1, . . . , c3(n−1) and c̄1, . . . , c̄3(n−1) (for 366

some n to be specified), as illustrated in Fig 9. The synaptic weight ws(t) is subjected to 367

the STDP rule of Eq (2), and has an initial value of ws(0) = amin. The architecture of 368

the module ensures that the activation of cell c3k+1 or c̄3k+1 triggers successive specific 369

spiking patterns of pres and posts which, according to STDP (Eq (2)), increments or 370

decrements ws(t) by (n− 1− k) · η, for any 0 ≤ k ≤ n− 2, respectively (for instance, if 371

k = 0, then ws(t) is incremented or decremented by (n−1) ·η, whereas if k = n−2, then 372

ws(t) is only incremented or decremented by 1 · η). The module is linked to the input 373

transmission module described above and to the detection modules described below. 374

The activity of this module, illustrated in Fig 10, can be described as follows. Suppose 375

that at time step t, one has ws(t) = v and one wishes to increment (resp. decrement) 376

ws(t) by (n − 1 − k) · η, where η is the learning rate of the STDP rule of Eq (2) and 377

0 ≤ k ≤ n− 2. To achieve this, we activate the cell c3k+1 (resp. cell c̄3k+1) (a blue cell 378

of Fig 9). The activation of c3k+1 (resp. cell c̄3k+1) launches a chain of activations of 379

the next cells (red events in Fig 10), which, according to the connectivity of the module, 380

induces k successive pairs of spikes of pres followed by posts (resp. posts followed by 381

pres) (blue events in Fig 10). Thanks to the STDP rule of Eq (2), these spiking patterns 382

increment (resp. decrement) k times the value of ws(t) by an amount of η. A state 383

module with 6(n− 1) + 2 cells is denoted as state module(n− 1). 384

Counter module. In our model, the successive counter values of the machine are 385

encoded as rational numbers and stored as successive weights of designated synapses 386

wcj (t), for j = 1, . . . , k (subscript cj refers to ‘counter j’). More precisely, the fact that 387

counter j has a value of n ≥ 0 at time t is encoded by the synaptic weight wcj (t) having 388

the rational value rn :=
∑n
i=1

1
2i (with the convention that r0 := 0). Then, the “push” 389

(incrementing the counter by 1) and “pop” (decrementing the counter by 1) operations 390

are simulated by incrementing or decrementing wcj (t) appropriately. 391
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Fig 9. State module. This module is used to simulate the successive computational states of
the counter machine. It is composed of a Boolean cell pres connected to an analog cell posts
via a synaptic connection of weight ws(t) (dashed red arrow) subjected to the first STDP rule
given by Eq (2), as well as of 6n Boolean cells c1, . . . , c3(n−1) and c̄1, . . . , c̄3(n−1). The latter
cells project onto pres and posts via excitatory and inhibitory synapses. To increment
(resp. decrement) the value of ws(t) by (n− 1− k) · η (where η is the learning rate of the STDP
rule of Eq (2)), it suffices to activate the blue cell c3k+1 (resp. cell c̄3k+1), where 0 ≤ k ≤ n− 2.

The k counter modules are designed to implement these features. Each counter module 392

is composed of 12 Boolean cells push, pop, test,= 0, 6= 0, prec, postc, c1, c2, c3, c4, c5, as 393

illustrated in Fig 11. The presynaptic and postsynaptic cells prec and postc are connected 394

by a synapse of weight wc(t) subjected to the second STDP rule given by Eq (3) and 395

having an initial value of wc(0) = 0. Accordingly, the values of wc(t) may vary across the 396

elements of the infinite sequence β = (1− 1
2k

)∞k=0 = (0, 0.5, 0.75, 0.875, 0.9375, . . . ). The 397

module is connected to the input transmission module described above and to detection 398

modules described below. 399

The activity of this module, illustrated in Fig 12, can be described as follows. Each 400

activation of the push (resp. pop) cell (blue events in Fig 12) propagates into the circuit 401

and results 2 time steps later in successive spikes of the prec and postc cells (resp. postc 402

and prec cells), which, thanks to the STDP rule of Eq (3), increment (resp. decrement) 403
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Fig 10. Example of activity of the state module. The lower graph is a raster plot
displaying the cells’ activities. When cell c1 (resp. c̄1) spikes, it launches a chain of activations
of the next cells c2, . . . , c9 (resp. c̄2, . . . , c̄9). These activations (red events) induce spiking
patterns of the cells pres and posts (blue events), which thanks to the STDP rule of Eq (2),
increment (resp. decrement) the synaptic weight ws(t) by steps of η (η = 0.1 here). The value
of ws(t) over time is represented in the upper plot (red curve).

the value of wc(t) (red curve in Fig 12). The activation of the test cell (blue events in 404

Fig 12) results 4 time steps later in the spike of the Boolean cell ‘= 0’ or ‘ 6= 0’ (red 405

events in Fig 12), depending on whether wc(t) = 0 or wc(t) 6= 0, respectively. During this 406

process, the value of wc(t) is first incremented (2 time steps later) and then decremented 407

(2 time steps later again) back to its original value. In other words, the testing procedure 408

induces a back and forth fluctuation of wc(t), without finally modifying it from its initial 409

value (this fluctuation is unfortunately unavoidable). A counter module is denoted as 410

counter module(). 411

Detection modules. Detection modules are used to retrieve—or detect—the current 412

computational and counter states of the machine being simulated. This information 413

is then employed to simulate the next transition of the machine. More precisely, each 414

input symbol a ∈ Σ ∪ {ε}, computational state q ∈ Q and counter states c̄1, . . . , c̄k ∈ C 415

of the machine are associated with a corresponding detection module. This module is 416

activated if and only if the current input bit processed by the network is precisely a, the 417

current synaptic weights ws(t) corresponds to the encoding of the computational state q, 418

and the current synaptic weights wc1(t), . . . , wck(t) are the encodings of counter values 419

with corresponding counter states c̄1, . . . , c̄k. Afterwards, the detection module sends 420

suitable activations to the state and counter modules so as to simulate the next transition 421

δ(q, a, c̄1, . . . , c̄k) = (q′, o1, . . . , ok) of the machine. Formally, a detection module detects 422

if the activation value of cell posts of the state module is equal to a certain value v, 423

together with the fact that k signals from cells = 0 or 6= 0 of the k counter modules are 424
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Fig 11. Counter module. This module is used to simulate one counter of a k-counter
machine. It is composed of 12 Boolean cells: push, pop, test, = 0, 6= 0, prec, postc (in blue), c1,
c2, c3, c4, c5. The presynaptic and postsynaptic cells prec and postc are connected by a
synapse of weight wc(t) (dashed red arrow) subjected to the second STDP rule given by Eq (3).
The activation of the push or pop cell increments or decrements the value of wc(t), respectively.
The activation of the test cell results in the activation of the cell ‘= 0’ or ‘6= 0’, depending on
whether w(t) = 0 or w(t) 6= 0, respectively.

correctly received. The module is composed of 4 Boolean cells connected in a feedforward 425

manner, as illustrated in Fig 13. It is connected to the input transmission module, the 426

state module and the counter modules described above. 427

The activity of this module, illustrated in Fig 14, can be described as follows. Suppose 428

that at time step t, cell c1 is spiking and cell posts has an activation value of v (with 429

0 ≤ v ≤ 1). Then, at time t + 1, both c2 and c3 spike (since they receive signals of 430

intensity 1). At next time t + 2, two signals of intensities 1
k+2 are transmitted to c4. 431

Suppose that at this same time step, c4 also receives k signals from the counter modules. 432

Then, c4 receives k + 2 signals of intensities 1
k+2 , and hence spikes at time t+ 3 (case 433

1 of Fig 14). By contrast, if at time step t, c1 is spiking and posts has an activation 434

value of v′ > v (resp. v′ < v), then at time t+ 1 only c2 (resp. c3) spikes. Hence, at time 435

t+ 2, c4 receives less than k + 2 signals of intensities 1
k+2 , and thus stays quiet (cases 3 436

and 4 of Fig 14). Consequently, the ‘detection cell’ c4 (blue cell of Fig 13) spikes if and 437

only if posts has an exact activation value of v and c4 receives exactly k signals from its 438

afferent connections. A detection module involving weights 1− v, 1 + v, 1
k+2 is denoted 439

as detection module(v, k). 440

Assembling the modules. Any given k-counter machine Ck = (Q,Σ, C,O, δ, 0, F ) 441

(where Σ = {0, 1} and Q = {0, . . . , n − 1}) can be simulated by a recurrent neural 442

network N subjected to the STDP rules given by Eq (2)–(3). The network is obtained 443
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Fig 12. Example of activity of the counter module. The lower graph is a raster plot
displaying the cells’ activities. Cells push, push, test, pop, test, pop, pop, test are activated at
successive time steps 0, 10, 20, 30, 40, 50, 60, 70 (blue pattern). The upper curve shows the
fluctuation of the synaptic weight wc(t), which encodes the change in the counter value over
time. Note that the activations of the push and pop cells correctly increment and decrement
the value of wc(t), respectively. At time 60, when wc(t) = 0 (counter is zero), the pop signal
has no more effect on its value. Moreover, test queries are performed at times 20, 40 and 70
and their answers given by the activities of cells ‘= 0’ and ‘6= 0’ (red pattern) at time 24, 44
and 74, respectively. Note that cells ‘= 0’ and ‘ 6= 0’ provide correct answers to whether the
value of wc(t) is 0 or not. Finally, note that whenever wc(t) 6= 0, each testing procedure induces
a fluctuation of wc(t) (peaks of the red curve), without finally modifying its initial value.

Fig 13. Detection module. This module is used to detect if the activation value of posts is
equal to v together with the fact that k signals from the counter modules are correctly received.
If these conditions are fulfilled, the ‘detection cell’ c4 spikes, which triggers the simulation of
the next transition of the machine. It is composed of 4 Boolean cells c1, c2, c3, c4 connected in
a feedforward way.
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Fig 14. Examples of activity of the detection module. The detection module,
composed of the cells c1, c2, c3, c4, receives activations from the state module via the cell posts,
as well as from 2 counter modules via the cells ext1, ext2. The module detects whether the
activation value of posts is equal to v = 0.3 together with the fact that both ext1, ext2 have
been activated. In case 1, these conditions are fulfilled, and thus the ‘detection cell’ c4 spikes
(bold spike at t = 3). In all other cases, the required conditions are not fulfilled: either only one
external activation is received (ext2 has not spiked, case 2), or the activation value v of posts
satisfies v > 0.3 (thus c3 is not spiking, case 3) or v < 0.3 (thus c2 is not spiking, case 4). In
each case, the ‘detection cell’ c4 does not spike.

by a suitable assembling of the modules described above. The architecture of N is 444

illustrated in Fig 5, and its detailed construction is given by Algorithm 1. In short, 445

the network N is composed of 1 input encoding module (line 1), 1 input transmission 446

module (line 2), 1 state module (line 3), k counter modules (lines 4–6) and at most 447

|Q| · |Σ ∪ {ε}| · 2k = 3n2k detection modules (lines 7–11). The modules are connected 448

together according to the patterns described in lines 12–47. This makes a total of O(n2k) 449

cells and O(nk2k) synapses, which, since the number of counters k is fixed, corresponds 450

to O(n) cells and O(n) synapses. A recurrent neural networks obtained via Algorithm 1 451

is referred to as an STDP-based RNN. 452

Turing completeness 453

We now prove that any k-counter machine is correctly simulated by its corresponding 454

STDP-based RNN given by Algorithm 1. Since 2-counter machines are Turing complete, 455

then so is the class of STDP-based RNNs. Towards this purpose, the following definitions 456

need to be introduced. 457

Let N be an STDP-based RNN. The input cells of N are the cells in0, in1, end, tic of 458

the input encoding module (cf. Figure 6, four blue cells of the first layer). Thus, inputs 459

of N are vectors in B4 whose successive components represent the spiking configurations 460

of cells in0, in1, end, and tic, respectively. In order to describe the input streams of N , 461

we consider the following vectors of B4: 462

0 :=

(
1
0
0
0

)
, 1 :=

(
0
1
0
0

)
, end :=

(
0
0
1
0

)
, tici :=

(
0
0
0
1

)
, for all i ≥ 0 and ∅ :=

(
0
0
0
0

)
.

According to these notations, the input stream 0011end∅∅tic corresponds to the 463
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Algorithm 1 Procedure which takes a k-counter machine as input and builds an
STDP-based RNN that simulates it.
Require: k-counter machine Ck = (Q,Σ, C,O, δ, 0, F ), where Σ = {0, 1} and Q = {0, . . . , n− 1}

// note: computational states are represented as integers
// *** INSTANTIATION OF THE MODULES ***

1: IN1← input encoding module() // input encoding module
2: IN2← input transmission module() // input transmission module
3: ST← state module(n− 1) // state module (where n = |Q|)
4: for all j = 1, . . . , k do
5: C(j)← counter module() // k counter modules
6: end for
7: for all tuple (i, a, c̄1, . . . , c̄k) ∈ Q× Σ ∪ {ε} × Ck do
8: if δ(i, a, c̄1, . . . , c̄k) is defined then
9: DET(i, a, c̄1, . . . , c̄k)← detection module(amin + i · η, k) // detection modules

10: end if
11: end for

// *** CONNECTION BETWEEN MODULES ***
12: connect c19 of IN1 to u0 of IN2: weight 1 // input encoding to input transmission
13: connect c20 of IN1 to u1 of IN2: weight 1
14: connect tic of IN1 to uε of IN2: weight 1
15: for all j = 1, . . . , k do // input transmission to counters
16: connect u0, u1, uε of IN2 to test of C(j): weight 1
17: end for
18: connect d2,0, d2,1, d2,ε of IN2 to pres of ST: weight 1 // input transmission to state

19: for all tuple (i, a, c̄1, . . . , c̄k) ∈ Q× Σ ∪ {ε} × Ck do
20: if δ(i, a, c̄1, . . . , c̄k) = (i′, o1, . . . , ok) then
21: connect d3,a of IN2 to c1 of DET(i, a, c̄1, . . . , c̄k): weight 1 // input transmission to detection
22: connect post of ST to c2 of DET(i, a, c̄1, . . . , c̄k): weight 1 // state to detection
23: connect post of ST to c3 of DET(i, a, c̄1, . . . , c̄k): weight −1
24: if a == ε then // detection to input encoding
25: connect c4 of DET(i, a, c̄1, . . . , c̄k) to c15 of IN1: weight −1
26: end if
27: if i′ − i > 0 then // detection to state
28: connect c4 of DET(i, a, c̄1, . . . , c̄k) to c3((n−1)−(i′−i))+1 of ST: weight 1

29: else if i′ − i < 0 then
30: connect c4 of DET(i, a, c̄1, . . . , c̄k) to c̄3((n−1)−(i′−i))+1 of ST: weight 1
31: end if
32: for all j = 1, . . . , k do // detection to counters
33: if oj == push then
34: connect c4 of DET(i, a, c̄1, . . . , c̄k) to cell push of C(j): weight 1
35: else if oj == pop then
36: connect c4 of DET(i, a, c̄1, . . . , c̄k) to cell pop of C(j): weight 1
37: end if
38: end for
39: end if
40: for all j = 1, . . . , k do // counters to detection
41: if c̄j == ⊥ then
42: connect ‘= 0’ of C(j) to c4 of DET(i, a, c̄1, . . . , c̄k): weight 1

k+2

43: else if c̄j == > then
44: connect ‘ 6= 0’ of C(j) to c4 of DET(i, a, c̄1, . . . , c̄k): weight 1

k+2

45: end if
46: end for
47: end for

following sequence of vectors provided at successive time steps 464(
1
0
0
0

)(
1
0
0
0

)(
0
1
0
0

)(
0
1
0
0

)(
0
0
1
0

)(
0
0
0
0

)(
0
0
0
0

)(
0
0
0
1

)
i.e., to the successive spikes of cells in0, in0, in1, in1, end, followed by two times steps 465

during which all cells are quiet, followed by a last spike of the cell tic. 466

For any binary input w = a0 · · · ap ∈ Σ∗, let uw ∈ (B4)∗ be the corresponding input

stream of N defined by

uw = a0 · · ·apend∅ · · ·∅︸ ︷︷ ︸
K′p+1

tic0 ∅ · · ·∅︸ ︷︷ ︸
K

tic1 ∅ · · ·∅︸ ︷︷ ︸
K

tic2 · · ·
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where ai = 0 if ai = 0 and ai = 1 if a1 = 0, for i = 0, . . . , p. In other words, the input 467

stream uw consists of successive spike from cells in0 and in1 (inputs a0 · · ·ap), followed 468

by one spike from cell end (input end), followed by K ′p+1 time steps during which 469

nothing happens (inputs ∅ · · ·∅), followed by successive spikes from cell tic, interspersed 470

by constant intervals of K time steps during which nothing happens (input blocks 471

tici∅ · · ·∅). The value of K ′p+1 is chosen such that, at time step p+ 2 +K ′, the p+ 1 472

successive bits of uw are correctly stored into cell c14 of the input encoding module. The 473

value of K is chosen such that, after each spike of the tic cell, the updating of the state 474

and counter modules can be achieved within K time steps. Taking K ′p+1 ≥ 3(p+ 1) + 4 475

and K ≥ 17 + 3(n− 1) (where n = |Q|) satisfies these requirements. Note that K ′p+1 476

depends on the input length, while K is constant (for a given counter machine). An input 477

stream of this form is depicted by the 4 bottom lines of Fig 15 (in this case K ′p+1 = 23 478

and K = 29). Besides, for each i ≥ 0, let ti be the time step at which tici occurs. For 479

instance, in Fig 15, one has t0 = 30, t1 = 60, t2 = 90, t3 = 120, . . . . Let also 480

ws,i := ws(ti − 1)

wc1,i := wc1(ti − 1), . . . , wck,i := wck(ti − 1)

be the synaptic weights ws(t), wc1(t), . . . , wck(t) of the state and counter modules at

time step ti − 1 (i.e., 1 time step before tici has occurred), with the assumption that

(ws,0, wc1,0, . . . , wck,0) = (amin, 0, . . . , 0).

For example, in Fig 15, the values of ws(t), wc1(t), wc2(t) over time are represented by the

upper red and orange curves (pay attention to the different left-hand and right-hand scales

associated to these curves): one has (ws,0, wc1,0, wc2,0) = (0.1, 0, 0), (ws,1, wc1,1, wc2,1) =

(0.3, 0, 0), (ws,2, wc1,2, wc2,2) = (0.3, 0.5, 0.5), (ws,3, wc1,3, wc2,3) = (0.3, 0.75, 0.75), etc.

Furthermore, let a′′i ∈ Σ ∪ {ε} ∪ {∅} be defined by

a′′i =


a if cell c4 of one and only one detection module DET(q, a, c̄1, . . . , c̄k)

spikes between ti and ti+1, for some q ∈ Q, a ∈ Σ ∪ {ε}, c̄1, . . . , c̄k ∈ C
∅ otherwise

In other words, a′′i is the input symbol (possibly ε) processed by N between ti and ti+1. 481

For instance, in Fig 15, the successive input bits processed by the network are displayed 482

by the spiking patterns of the cells uε, u0, u1: one has a′′0 = ε (only uε spikes between t0 483

and t1), a′′1 = 0 (both uε and then u0 spike between t1 and t2, but only u0 leads to the 484

activation of a detection module, even if this is not represented), a′′2 = 0 (u0 spikes after 485

uε between t2 and t3), a′′3 = 1 (u1 spikes after uε between t3 and t4), etc. 486

Now, for any input stream uw, the computation of N over uw is the sequence 487

N (uw) =
(
(ws,i, a

′′
i , wc1,i , . . . , wck,i)

)l2
i=0

, l2 ∈ N ∪ {∞} (5)
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where l2 = min{ti : a′′i = ∅, i ≥ 0}. In other words, the computation of N over uw is 488

the sequence of successive values of ws(t), a
′′
i , wc1(t), . . . , wck(t), which are supposed to 489

encode the successive states, input symbols and counter values of the machine to be 490

simulated, respectively. 491

According to these considerations, we say that Ck is simulated in real time by N , or 492

equivalently that N simulates Ck in real time, if and only if, for any input w ∈ Σ∗ with 493

corresponding input stream uw ∈ (B4)∗, the computations of Ck over w (Eq (4)) and of 494

N over uw (Eq (5)) 495

Ck(w) =
(
(ni, a

′
i, c1,i, . . . , ck,i)

)l1
i=0

N (uw) =
(
(ws,i, a

′′
i , wc1,i , . . . , wck,i)

)l2
i=0

satisfy the following conditions:

ws,i = amin + ni · η state condition (6)

a′′i = a′i symbol condition (7)

wcj,i = rcj,i for all j = 1, . . . , k counter values condition (8)

for all i = 0, . . . , l1, which implicitly implies that l2 ≥ l1 (recall that r0 := 0 and 496

rn :=
∑n
i=1

1
2i , for all n > 0). In other words, Ck is simulated by N iff, on every input, 497

the computations of Ck is perfectly reflected by that of N : the sequence of input symbols 498

processed by Ck and N coincide (Condition (7)), and the successive computational 499

states and counter values of Ck are properly encoded into the successive synaptic weights 500

of ws(t), wc1(t), . . . , wck(t) of N , respectively (Conditions (6) and (8)). According to 501

these considerations, each state ni ∈ N and counter value cj,i ∈ N of Ck is encoded 502

by the synaptic value ws(ti − 1) = amin + ni · η ∈ Q and wcj (ti − 1) = rcj,i ∈ Q, for 503

j = 1, . . . , k, respectively. The real time aspect of the simulation is ensured by the fact 504

that the successive time steps (ti)i≥0 involved in the computation N (w) are separated 505

by a constant number of time steps K > 0. This means that the transitions of Ck are 506

simulated by N in fixed amount of time. 507

We now show that, in this precise sense, any k-counter machine is correctly simulated 508

its corresponding STDP-based recurrent neural network. 509

Theorem 1. Let Ck be a k-counter machine and N be the STDP-based RNN given by 510

Algorithm 1 applied on Ck. Then, Ck is simulated in real time by N . 511

Proof. Let w = a0 · · · ap ∈ Σ∗ be some input and uw ∈ (B4)∗ be its corresponding input 512

stream. Consider the two computations of Ck on w (Eq (4)) and of N on uw (Eq (5)), 513

respectively: 514

Ck(w) =
(
(ni, a

′
i, c1,i, . . . , ck,i)

)l1
i=0

N (uw) =
(
(ws,i, a

′′
i , wc1,i , . . . , wck,i)

)l2
i=0

.

We prove by induction on i that Ck(w) and N (uw) satisfy Conditions (6)–(8), for all 515
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i = 0, . . . , l1. 516

By definition, the first elements of Ck(w) and N (uw) are 517

(n0, a
′
0, c1,0, . . . , ck,0) = (0, a′0, 0, . . . , 0)

(ws,0, a
′′
0 , wc1,0, . . . , wck,0) = (amin, a

′′
0 , 0, . . . , 0).

Hence, Conditions (6) and (8) are satisfied for i = 0, i.e., 518

ws,0 = amin + n0 · η and wcj,0 = rcj,0 for all j = 1, . . . , k. (9)

We now prove Condition (7) for i = 0. Towards this purpose, the following observa- 519

tions are needed. By construction and according to the value of Kp+1, at time t0−1, cell 520

c14 of the input encoding module IN1 holds the encoding of the whole input w = a0 · · · ap 521

(the latter being considered as a stack). The top element of this stack is a0. Besides, 522

according to Relations (9) and Algorithm 1 (lines 22–23 and 40–46), only the detection 523

modules DET(n0, a, c̄1,0, . . . , c̄k,0), where a ∈ Σ ∪ {ε}, are susceptible have their cell 524

c4 activated between t0 and t1 (indeed, only these modules are capable of “detecting” 525

the current synaptic value amin + n0 · η and counters states c1,0, . . . , ck,0 involved in 526

Relations (9)). 527

Now, consider the symbol a′0 ∈ Σ ∪ {ε}. Then either a′0 ∈ Σ or a′0 = ε. As a 528

first case, suppose that a′0 ∈ Σ. Since a′0 6= ε and a′0 is the first symbol processed by 529

Ck during its computation over input w = a0 · · · ap (cf. Eq (4)), one necessarily has 530

a′0 = a0. Thus, δ(n0, a
′
0, c̄1,0, . . . , c̄k,0) = δ(n0, a0, c̄1,0, . . . , c̄k,0), and the determinism of 531

Ck ensures that δ(n0, ε, c̄1,0, . . . , c̄k,0) is undefined. According to Algorithm 1 (lines 7–11), 532

the module DET(n0, a0, c̄1,0, . . . , c̄k,0) is instanciated, whereas DET(n0, ε, c̄1,0, . . . , c̄k,0) 533

is not. Hence, the dynamics of N between t0 and t1 goes as follows. At time t0, the 534

cell tic of IN1 sends a signal to uε of IN2 (Algorithm 1, line 14) which propagates 535

to the detection modules associated to symbol ε (Algorithm 1, line 21). Since the 536

module DET(n0, ε, c̄1,0, . . . , c̄k,0) does not exist, it can certainly not be activated, and 537

thus, the cell c15 of IN1 will not be inhibited in return (Algorithm 1, line 24–26). The 538

spike of c15 will then trigger the sub-circuit of IN1 that pops the top element of the 539

stack currently encoded in c14, namely, the symbol a0. This triggers the activation 540

of c19 or c20 of IN1 depending on whether a0 = 0 or a0 = 1. This activity then 541

propagates to cells ua0 and next d3,a0 of IN2 (Algorithm 1, lines 12–13). It propagates 542

further to the detection modules of the form DET(·, a0, ·, . . . , ·), and in particular to 543

DET(n0, a0, c̄1,0, . . . , c̄k,0) (Algorithm 1, line 21). According to Relations (9), the cell c4 544

of DET(n0, a0, c̄1,0, . . . , c̄k,0), and of this module only, will be activated, since it is the 545

only module of this form capable of detecting the current weight ws(t) = amin + η · n0 546

as well as the current counter states c̄1,0, . . . , c̄k,0 (Algorithm 1, lines 22–23 and 40–46). 547

This amounts to saying that the symbol a′′0 processed by N between t0 and t1 is equal to 548

a0. Therefore, a′′0 = a0 = a′0. This shows that in this case, Condition (7) holds for i = 0. 549

As a second case, suppose that a′0 = ε. It follows that δ(n0, a
′
0, c̄1,0, . . . , c̄k,0) = 550
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δ(n0, ε, c̄1,0, . . . , c̄k,0), and by Algorithm 1 (lines 7–11), the module DET(n0, ε, c̄1,0, . . . , c̄k,0) 551

is instanciated. Consequently, the dynamics of N between t0 and t1 goes as follows. At 552

time t0, the cell tic of IN1 sends a signal to uε of IN2 (Algorithm 1, line 14) which prop- 553

agates to the module DET(n0, ε, c̄1,0, . . . , c̄k,0) (Algorithm 1, line 21). By Relations (9), 554

the cell c4 of this detection module, and of only this one, will be activated (Algorithm 1, 555

lines 22–23 and 40–46). This amounts to saying that a′′0 = ε = a′0. Therefore, in this 556

case also, Condition (7) holds for i = 0. 557

For the induction step, let m < l1, and suppose that Conditions (6)–(8) are satisfied 558

for all i ≤ m. Let also o1,m+1, . . . , ok,m+1 ∈ O be the counter operations such that 559

δ(nm, a
′
m, c̄1,m, . . . , c̄k,m) = (nm+1, o1,m+1, . . . , ok,m+1). (10)

By definition of the sequence Ck(w), a′m ∈ Σ ∪ {ε} and the counter operations satisfy 560

c1,m+1 = o1,m+1(c1,m), . . . , ck,m+1 = ok,m+1(ck,m). (11)

By the induction hypothesis (Condition (7)), a′′m = a′m. The definition of a′′m ensures 561

that the cell c4 of one and only one detection module DET(q, a′′m, c̄1, . . . , c̄k) is activated 562

between time steps tm and tm+1, for some q ∈ Q and some c̄1, . . . , c̄k ∈ C. But by the 563

induction hypotheses (Conditions (6) and (8)), at time step tm − 1, one has 564

ws,m = amin + nm · η (12)

wcj ,m = rcj,m , for all j = 1, . . . , k. (13)

Hence, Relations (12)–(13) and Algorithm 1 (lines 22–23 and 40–46) ensure that the 565

module DET(nm, a
′′
m, c̄1,m, . . . , c̄k,m), and only this one, has its cell c4 activated between 566

time steps tm and tm+1. By Relation (10), the cell c4 of this detection module is 567

connected to cell 568

c3((n−1)−(nm+1−nm))+1 if nm+1 − nm > 0 or

c̄3((n−1)−(nm+1−nm))+1 if nm+1 − nm < 0

of the state module ST (Algorithm 1, lines 27–31). Hence, the activation of this detection

module between tm and tm+1 induces subsequent spiking patterns of the state module

which, by construction, increments (if nm+1−nm > 0) or decrements (if nm+1−nm < 0)

the synaptic weight ws(t) by |nm+1−nm| ·η, and hence, changes it from its current value

amin+nm ·η (cf. Eq (12)) to the new value amin+nm ·η+(nm+1−nm)·η = amin+nm+1 ·η.

Note that each spiking pattern takes 3 time steps, and hence, the updating of ws(t)

takes at most 3(n − 1) time steps, where n is the number of states of Ck (the longest

update being when |nm+1 − nm| = n− 1, which takes 3(n− 1) time steps). Therefore,

at time tm+1 − 1, one has

ws,m+1 = amin + nm+1 · η.
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This shows that Condition (6) is satisfied for i = m+ 1. 569

Similarly, by Relation (10), the cell c4 of the module DET(nm, a
′′
m, c̄1,m, . . . , c̄k,m)

is connected to cells push or pop of the counter module C(j) depending on whether

oj,m+1 == push or oj,m+1 == pop, respectively, for j = 1, . . . , k (Algorithm 1, lines

32–38). Hence, the activation of the detection module DET(nm, a
′′
m, c̄1,m, . . . , c̄k,m)

between tm and tm+1 induces subsequent activations of the counter modules which,

by construction, change the synaptic weights wcj (t) from their current value rcj,m to

roj,m+1(cj,m), for j = 1, . . . , k. Note that the updating of each wcj (t) takes only 3 time

steps. Consequently, at time tm+1 − 1, one has

wcj,m+1
= roj,m+1(cj,m), for j = 1, . . . , k

By Relation (11), these equations can be rewritten as

wcj,m+1 = rcj,m+1 , for j = 1, . . . , k.

This shows that Condition (8) is satisfied for i = m+ 1. 570

We now show that Condition (7) holds for i = m+ 1. By the induction hypothesis, 571

one has (a′i)
m
i=0 = (a′′i )mi=0. We must prove that a′m+1 = a′′m+1. By definition, elements 572

from (a′i)
m
i=0 and (a′′i )mi=0 belong to Σ ∪ {ε}. Let (a′ij )

p1
j=0 (with p1 ≤ m) and (a′′ij )

p2
j=0 573

(with p2 ≤ m) be the subsequences formed by the non-empty symbols of (a′i)
m
i=0 and 574

(a′′i )mi=0, respectively. The induction hypothesis ensures that p1 = p2 = p′ and 575

(a′ij )
p′

j=0 = (a′′ij )
p′

j=0. (14)

Moreover, by definition again, (a′i)
m
i=0 is the sequence of empty and non-empty symbols 576

processed by Ck during the m+ 1 first steps of its computation over input w = a0 · · · ap 577

(cf. Eq (4)). Hence, the subsequence of its non-empty symbols (a′ij )
p′

j=0 corresponds 578

precisely to the p′ + 1 successive letters of w, i.e., 579

(a′ij )
p′

j=0 = (ai)
p′

i=0. (15)

The fact that ε symbols of (a′i)
m
i=0 vanish within concatenation together with Relation (15) 580

yield the following equalities 581

a′0 · · · a′m = a′i0 · · · a′ip′ = a0 · · · ap′ . (16)

Also, Relations (14) and (15) directly imply 582

(a′′ij )
p′

j=0 = (ai)
p′

i=0. (17)

Besides, as already mentioned, at time t0−1, cell c14 of module IN1 holds the encoding 583

of input w = a0 · · · ap (considered as a stack). Between times t0 and tm+1 − 1, the 584

elements of (a′′i )mi=0 are successively processed by N (cf. Eq (5)). During this time interval, 585
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the successive non-empty symbols of (a′′i )mi=0, i.e., the elements of (a′′ij )
p′

j=0 = (ai)
p′

i=0 586

(cf. Relation (17)), are successively popped from w = a0 · · · ap and the remaining string 587

stored in cell c14. Consequently, at time tm+1 − 1, cell c14 holds the encoding of the 588

remaining string ap′+1 · · · ap, and thus, its top element is ap′+1. 589

From this point onwards, the proof of Relation (7) for the case i = 0 can be adapted 590

to the present situation. In short, consider a′m+1 ∈ Σ ∪ {ε}. Then either a′m+1 ∈ Σ 591

or a′m+1 = ε. Note that in case a′m+1 ∈ Σ, Relation (16) ensures that a′m+1 = ap′+1. 592

Taking this fact into account and replacing variables a0, a
′
0, a
′′
0 , n0, c̄1,0, . . . , c̄k,0 of the 593

previous argument by am+1, a
′
m+1, a

′′
m+1, nm+1, c̄1,m+1, . . . , c̄k,m+1, respectively, leads to 594

a′′m+1 = a′m+1. Therefore, Condition (7) holds for i = m+ 1. 595

Finally, we show that STDP-based RNNs are Turing complete. Let N be an STDP- 596

based RNN. Let also acc, rej ∈ Q be two specific values for ws(t). For any binary input 597

w = a0 · · · ap ∈ Σ∗, we say that w is accepted (resp. rejected) by N if the sequence N (uw) 598

is finite, and its last element (ws,l2 , a
′′
l2
, wc1,l2 , . . . , wck,l2 ) satisfies a′′l2 = ε and ws,l2 = acc 599

(resp. ws,l2 = rej). The language recognized by N , denoted by L(N ), is the set of inputs 600

accepted by N . A language L ⊆ Σ∗ is recognizable by some STDP-based RNN if there 601

exists some STDP-based RNN N such that L(N ) = L. 602

Corollary 1. Let L ⊆ Σ∗ be some language. The language L is recognizable by some 603

Turing machine if and only if L is recognizable by some STDP-based RNN. 604

Proof. Suppose that L is recognizable by some STDP-based RNN N . The construction 605

described in Algorithm 1 ensures that N can be simulated by some Turing machine M. 606

Hence, L is recognizable by some Turing machine M. Conversely, suppose that L is 607

recognizable by some Turing machineM. Then L is also recognizable by some 2-counter 608

machine C2 [57]. By Theorem 1, L is recognizable by some STDP-based RNN N . 609

Simulations 610

We now illustrate the correctness of our construction by means of computer simulations. 611

First, let us recall that the 2-counter machine of Fig 4 recognizes the recursively 612

enumerable (but non context-free and non regular) language {0n1n0n : n > 0}, i.e., 613

the sequences of bits beginning with a strictly positive number of 0’s followed by the 614

same number of 1’s and followed again by the same number of 0’s. For instance, inputs 615

w1 = 001100 and w2 = 0011101 are respectively accepted and rejected by the machine. 616

Based on the previous considerations, we implemented an STDP-based RNN simulating 617

this 2-counter machine. The network contains 390 cells connected together according to 618

the construction given by Algorithm 1. We also set amin = η = 0.1 in the STDP rule 619

of Eq (2). Two computations of this network over an accepting and a rejecting input 620

stream are illustrated in Fig 15 and Fig 16. These simulations illustrate the correctness 621

of the construction described in Algorithm 1. 622
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More specifically, the computation of the network over the input stream

uw1
= 001100 end ∅ · · ·∅︸ ︷︷ ︸

K′6 = 23

tic0 ∅ · · ·∅︸ ︷︷ ︸
K = 29

tic1 ∅ · · ·∅︸ ︷︷ ︸
K = 29

tic2 · · ·

which corresponds to the encoding of w1 = 001100, is displayed in Fig 15. In this 623

case, taking K = 17 + 3(5 − 1) = 29 suffices for the correctness of the simulation 624

(since the largest possible state update, in terms of the states’ indices, is a change 625

from q5 to q1). The lower raster plot displays the spiking activities of some of the cells 626

of the network belonging to the input encoding module (in0, in1, end, tic), the input 627

transmission module (u0, u1, uε), the state module (press, posts) and the two counter 628

modules (push, pop, test, preck , postck ,= 0, 6= 0, for k = 1, 2). 629

From time step t = 0 to t = 6, the encoding of the input stream 001100 is transmitted 630

to the network via activations of cells in0, in1 and end (blue pattern). Between t = 6 631

and t = 30, the input pattern is encoded into activation values of sigmoid cells in the 632

input encoding module, as illustrated in Fig 7. From t = 30 onwards, the tic cell is 633

activated every 30 time steps in order to trigger the successive computational steps of the 634

network. Each spike of the tic cell induces a subsequent spike of uε one time step later. 635

At this moment, the network tries to simulate an ε-transition of the counter machine. 636

If such a transition is possible, the network performs it: this is the case at time steps 637

t = 31, 181. Otherwise, the input encoding module retrieves the next input bit to be 638

processed, and activates the corresponding cell u0 or u1 (blue pattern): this is the case 639

at time steps t = 71, 101, 131, 161, 221, 251. In Fig 15 (cells u0, u1, uε), we can see that 640

on this input stream, the network processes the sequence of input symbols ε0011ε00. 641

Every time the network receives an input symbol (ε, 0 or 1), it simulates one transition 642

of the counter machine associated to this input. The successive computational states of 643

the machine are encoded into the successive values taken by ws(t) (cf. Fig 15, red curve 644

in the upper graph). The changes in these synaptic weights are induced by the spiking 645

patterns of cells pres and posts (red patterns). The successive counter states of the 646

machine, i.e., ‘zero’ or ‘non-zero’, are given by the activations of cells ‘= 0’ or ‘ 6= 0’ of 647

the counter modules, respectively (black patterns). The consecutive counter operations 648

are given by the activations of cells push, pop and test (black patterns). The successive 649

counter values of the machine are encoded into the successive values taken by wc1(t) and 650

wc2(t) (orange curves of the upper graph). The changes in these synaptic weights are 651

induced by the spiking pattern of cells precj and postcj , for j = 1, 2 (orange patterns). 652

The pics along these curves are caused by the testing procedures which increment and 653

decrement back the values of the synapses without finally modifying their current values 654

(cf. description of the counter module). 655

The computation of the network over input stream uw1
can be described by the

successive synaptic weights (ws(t), wc1(t), wc2(t)) at time steps t = 30k, for 1 ≤ k ≤ 10.
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In this case, one has(
ws(t)
wc1 (t)

wc2 (t)

)
=
(

0.1
0.0
0.0

)(
0.3
0.0
0.0

)(
0.3
0.5
0.5

)(
0.3
0.75
0.75

)(
0.6
0.75
0.5

)(
0.6
0.75
0.0

)(
0.4
0.75
0.0

)(
0.4
0.5
0.0

)(
0.4
0.0
0.0

)(
0.5
0.0
0.0

)
.

Recall that state n and counter value x of Ck are encoded by the synaptic weights

ws(t) = amin + n · η and wc(t) = rx in N , respectively. Accordingly, the previous values

correspond to the encodings of the following states and counter values (q, c1, c2) of the

counter machine:(
q
c1
c2

)
=
(

0
0
0

)(
2
0
0

)(
2
1
1

)(
2
2
2

)(
5
2
1

)(
5
2
0

)(
3
2
0

)(
3
1
0

)(
3
0
0

)(
4
0
0

)
.

These are the correct computational states and counter values encountered by the 656

machine along the computation of input w1 = 001100 (cf. Fig 4). Therefore, the network 657

simulates the counter machine correctly. The fact that the computations of the machine 658

and the network terminate in state 4 and with ws(t) = 0.5 = 0.1 + 4 · η, respectively, 659

means that inputs w1 and uw1
are accepted by both systems. 660

As another example, the computation of the network over the input stream

uw2
= 0011101end∅ · · ·∅︸ ︷︷ ︸

23

tic0 ∅ · · ·∅︸ ︷︷ ︸
29

tic1 ∅ · · ·∅︸ ︷︷ ︸
29

tic2 · · ·

which corresponds to the encoding of w2 = 0011101, is displayed in Fig 16 (cells u0, u1, uε).

We see that on this input stream, the network processes the sequence of input symbols

ε0011ε101. The successive synaptic weights (ws(t), wc1(t), wc2(t)) at time steps t = 30k,

for 1 ≤ k ≤ 10 are(
ws(t)
wc1 (t)

wc2 (t)

)
=
(

0.1
0.0
0.0

)(
0.3
0.0
0.0

)(
0.3
0.5
0.5

)(
0.3
0.75
0.75

)(
0.6
0.75
0.5

)(
0.6
0.75
0.0

)(
0.4
0.75
0.0

)(
0.2
0.75
0.0

)(
0.2
0.75
0.0

)(
0.2
0.75
0.0

)
.

These values correspond to the encodings of the following states and counter values

(q, c1, c2) of the counter machine:(
q
c1
c2

)
=
(

0
0
0

)(
2
0
0

)(
2
1
1

)(
2
2
2

)(
5
2
1

)(
5
2
0

)(
3
2
0

)(
1
2
0

)(
1
2
0

)(
1
2
0

)
.

These are the correct computational states and counter values encountered by the 661

machine working over input w2 = 0011101 (cf. Fig 4). Therefore, the network simulates 662

the counter machine correctly. The fact that the computations of the machine and the 663

network terminate in state 1 and with ws(t) = 0.2 = 0.1 + 1 · η, respectively, means that 664

inputs w1 and uw1
are rejected by both systems. 665

Discussion 666

We proposed a novel Turing complete paradigm of neural computation where the essential 667

information is encoded into discrete synaptic levels rather than into spiking configurations, 668
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Fig 15. Simulation 1. Computation of the STDP-based RNN simulating the 2-counter
machine of Fig 4 over input 001100. The lower graph is a raster plot displaying the spiking
patterns of some of the cells of the network belonging to the input encoding module (cells
in0, in1, end, tic), the input transmission module (cells u0, u1, uε), the state module (cells
press, posts) and the two counter modules (cells push, pop, test, preck , postck ,= 0, 6= 0, for
k = 1, 2). The upper graph displays the evolution of the synaptic weights ws(t) (red curve) and
wc1(t), wc2(t) (orange curves) over time. The red curve is displayed relatively to the left-hand
scale (ranging from 0 to 1). The two orange curves are are displayed relatively to the upper
and lower right-hand scales, respectively (both ranging from 0 to 1). The evolution of ws(t)
and wc1(t), wc2(t) (red and orange curves) represent the encodings of the successive states and
counter values of the 2-counter machine, respectively.

activation values or (attractor) dynamics of neurons. More specifically, we showed that 669

any 2-counter machine—and thus any Turing machine—can be simulated by a recurrent 670

neural network subjected to two kinds of spike-timing-dependent plasticity (STDP) 671

mechanisms. The finitely many computational states and infinitely many counter values 672

of the machine are encoded into finitely and infinitely many synaptic levels, respectively. 673

The transitions between states and counter values are achieved via the two STDP rules. 674

In short, the network operates as follows. First, the input stream is encoded and stored 675

into the activation value of a specific analog neuron. Then, every time a tic input 676

signal is received, the network tries to simulate an ε-transition of the machine. If such a 677

transition is possible, the network simulates it. Otherwise, the network retrieves from its 678

memory the next input bit to be processed, and simulates a regular transition associated 679

with this input. These results have been illustrated by means of computer simulations. 680

An STDP-based recurrent neural network simulating a specific 2-counter machine has 681

been implemented and its dynamics analyzed. 682

We emphasize once again that the possibility to simulate ε-transitions is (unfortu- 683

nately) necessary to the achievement of Turing completeness. Indeed, it is well-known 684

that the class of k-counter machines that do not make use of ε-transitions is not Turing 685
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Fig 16. Simulation 2. Computation of the STDP-based RNN simulating the 2-counter
machine of Fig 4 over input 0011101.

complete, for any k > 0. For instance, the language L = {w#w : w ∈ {0, 1}∗} (the strings 686

of bits separated by a symbol # whose prefix and suffix are the same), is recursively 687

enumerable, but cannot be recognized by a k-counter machine without ε-transitions. The 688

input encoding module, as intricate as it is, ensures the implementation of this feature. It 689

encodes and stores the incoming input stream so as to be able to subsequently intersperse 690

the successive regular transitions (associated to regular input symbols) with ε-transitions 691

(associated to ε symbols). By contrast, a k-counter machine without ε-transitions could 692

be simulated by an STDP-based neural network working in an online fashion. The 693

successive input symbols would be processed as they arrive, and a regular transition be 694

simulated for each successive symbol. An STDP-based neural net (as described in Fig 5) 695

without input encoding module could simulate a k-counter machine without ε-transitions. 696

One would just need to add sufficiently many delay layers to its input transmission 697

module in order to have enough time to emulate each regular transition. 698

In the present context, the STDP-based RNNs are capable of simulating Turing 699

machines working in the accepting mode (i.e., machines that provide accepting or rejecting 700

decisions of their inputs by halting in an accepting or a rejecting state, respectively). But 701

it would be possible to adapt the construction to simulate Turing machines working also 702

in the generative mode (i.e., machines that write the successive words of a language on 703

their output tape, in an enumerative way). To this end, we would need to simulate the 704

program and work tape of M by an STDP-based RNN N (as described in Theorem 1), 705

and the output tape of M by an additional neural circuit Nout plugged to N . Broadly 706

speaking, the simulation process could be achieved as follows: 707

• Every non-output move of M is simulated by the STDP-based RNN N in the 708
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usual way (cf. Theorem 1). 709

• Every time M is generating a new word w = a1 · · · an on its output tape, use the 710

circuit Nout to build step by step the encoding r̄w =
∑n
i=1

2ai+1
4i ∈ [0, 1] of w and 711

store this value in a designated neuron c (as described in the paragraph “Input 712

encoding module”). 713

• WhenM has finished generating w, use the circuit Nout to transfer the value r̄w of 714

c to another neuron c′, to set the activation value of c back to 0, and to output the 715

successive bits of w by popping the the stack r̄w stored in c′ (again, as described 716

in the paragraph “Input encoding module”). 717

In this way, the STDP-based RNNN plugged to the circuitNout could work as a language 718

generator: it outputs bit by bit the successive words of the language L generated by M. 719

The implementation of the circuit Nout is along the lines of what is described in the 720

paragraph “input encoding module”. 721

Concerning the complexity issue, our model uses O(n) neurons and O(n) synapses to 722

simulate a counter machine with n states. Moreover, the simulation works in real-time, 723

since every computational step of the counter machine can be simulated in a fixed amount 724

of 17 + 3(n− 1) time steps (17 time steps to transmit the next input bit up to the end of 725

the detection modules, and at most 3(n− 1) time steps to perform the state and counter 726

updates). In the context of rational-weighted sigmoidal neural networks, the seminal 727

result from Siegelmann and Sontag uses 886 Boolean and analog neurons to simulate 728

a universal Turing machine [4]. Recent results show that Turing completeness can be 729

achieved with a minimum of 3 analog neurons only, the other ones being Boolean [58]. 730

As for spiking neural P systems, Turing universality can be achieved with 3 or 4 neurons 731

only, but this comes at the price of exponential time and space overheads (see [59], Table 732

1). In our case, the complexity of Turing universality is expected to be investigated in 733

detail in a future work. 734

Regarding synaptic-based computation, a somehow related approach has already been 735

pursued in the P system framework with the consideration of spiking neural P systems 736

with rules on synapses [60]. In this case, synapses are considered as computational units 737

triggering exchanges of spikes between neurons. The proposed model is shown to be 738

Turing universal. It is claimed that “placing the spiking and forgetting rules on synapses 739

proves to be a powerful feature, both simpler proofs and smaller universal systems are 740

obtained in comparison with the case when the rules are placed in the neurons” [60]. In 741

this context however, the information remains encoded into the number of spikes hold 742

by the neurons, referred to as the “configuration” of the system. By contrast, in our 743

framework, the essential information—the computational states and counter values—is 744

encoded into discrete synaptic levels, and their updates achieved via synaptic plasticity 745

rules. 746

As already mentioned, it has been argued that in biological neural networks “synapses 747

change their strength by jumping between discrete mechanistic states rather than by 748

simply moving up and down in a continuum of efficacy” [56]. These considerations 749
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represent “a new paradigm for understanding the mechanistic underpinnings of synaptic 750

plasticity, and perhaps also the roles of such plasticity in higher brain functions” [56]. In 751

addition, “much work remains to be done to define and understand the mechanisms and 752

roles these states play” [56]. In our framework, the computational states and counter 753

values of the machine are encoded into discrete synaptic states. However, the input 754

stream to be processed is still encoded into the activation value of a specific analog 755

neuron. It would be interesting to develop a paradigm where this feature also is encoded 756

into synapses. Moreover, it would be interesting to extend the proposed paradigm of 757

computation to the consideration of more biological STDP rules. 758

It is worth noting that synaptic-based and neuron-based computational paradigms are 759

not opposite conceptions, but intertwined processes instead. Indeed, changes in synaptic 760

states are achieved via the elicitation of specific neuronal spiking patterns (which modify 761

the synaptic strengths via STDP). The main difference between these two conceptions is 762

whether the essential information is encoded and memorized into synaptic states or into 763

spiking configurations, activation values or (attractor) dynamics of neurons. 764

In biology, real brain circuits do certainly not operate by simulating abstract finite 765

state machines. And with our work, we do intend to argue in this sense. Rather, our 766

intention is to show that a bio-inspired Turing complete paradigm of abstract neural 767

computation—centered on the concept of synaptic plasticity—is not only theoretically 768

possible, but also potentially exploitable. The idea of representing and storing essential 769

information into discrete synaptic levels is, we believe, novel and worthy of consideration. 770

It represents a paradigm shift in the field of neural computation. 771

Finally, the impacts of the proposed approach are twofold. From a practical perspec- 772

tive, contemporary developments in neuromorphic computing provide the possibility to 773

implement neurobiological architectures on very-large-scale integration (VLSI) systems, 774

with the aim of mimicking neuronal circuits present in the nervous system [61,62]. The 775

implementation of our model on VLSI technologies would lead to the realization of new 776

kinds of analog neuronal computers. The computational and learning capabilities of 777

these neural systems could then be studied directly from the hardware point of view. 778

And the integrated circuits implementing our networks might be suitable for specific 779

applications. Besides, from a Machine Learning (ML) perspective, just as the dynamics 780

of biological neural nets inspired neuronal-based learning algorithms, in this case also, 781

the STDP-based recurrent neural networks might eventually lead to the development of 782

new ML algorithms. 783

From a theoretical point of view, we hope that the study of neuro-inspired paradigms 784

of abstract computation might contribute to the understanding of both biological and 785

artificial intelligences. We believe that similarly to the foundational work from Turing, 786

which played a crucial role in the practical realization of modern computers, further 787

theoretical considerations about neural- and natural-based models of computation shall 788

contribute to the emergence of novel computational technologies, and step by step, open 789

the way to the next computational generation. 790
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Supporting information 791

S1 Files. Python code. All python scripts generating the results of the paper are 792

provided in an attached zip folder files.zip. The description of the different files is 793

given in Read me.txt. 794
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