
Evolving Recurrent Neural Networks are Super-Turing

Jérémie Cabessa
Computer Science Department

University of Massachusetts Amherst
jcabessa@cs.umass.edu

Hava T. Siegelmann
Computer Science Department

University of Massachusetts Amherst
hava@cs.umass.edu

Abstract— The computational power of recurrent neural
networks is intimately related to the nature of their synaptic
weights. In particular, neural networks with static rational
weights are known to be Turing equivalent, and recurrent
networks with static real weights were proved to be super-
Turing. Here, we study the computational power of a more
biologically-oriented model where the synaptic weights can
evolve rather than stay static. We prove that such evolving
networks gain a super-Turing computational power, equivalent
to that of static real-weighted networks, regardless of whether
their synaptic weights are rational or real. These results suggest
that evolution might play a crucial role in the computational
capabilities of neural networks.

I. INTRODUCTION

Neural networks’ most interesting feature is their ability
to change. Biological networks tune their synaptic strengths
constantly. This mechanism – referred to as synaptic plastic-
ity – is widely assumed to be intimately related to the storage
and encoding of memory traces in the central nervous system
[1], and synaptic plasticity provides the basis for most models
of learning and memory in neural networks [2]. Moreover,
this adaptive feature has also been translated to the artificial
neural network context and used as a machine learning tool
in many relevant applications [3].

As a first step towards the analysis of the computational
power of such evolving networks, we consider a model
of first-order recurrent neural networks provided with the
additional property of evolution of synaptic weights which
can update at any computational step. We prove that such
evolving networks gain a super-Turing computational power.

More precisely, recurrent neural networks with unchanging
rational weights were shown to be computationally equiva-
lent to Turing machines, and their real-weighted counterparts
are known to be super-Turing [4], [5], [6]. Here, we prove
that allowing for the additional possibility for the synaptic
weights to evolve also causes the corresponding networks to
gain super-Turing capabilities. In fact, the evolving networks
are capable of deciding all possible languages in exponential
time of computation, and when restricted to polynomial time
of computation, the networks decide precisely the complexity
class of languages P/poly. Moreover, such evolving networks
do not increase their computational power when translated
from the rational to the real-weighted context. Therefore,
both classes of rational and real-weighted evolving networks

This work was supported by the Swiss National Science Foundation
(SNSF) Grant No. PBLAP2-132975, and by the Office of Naval Research
(ONR) Grant No. N00014-09-1-0069.

are super-Turing, and equivalent to real-weighted static re-
current networks. The results suggest that evolution might
play a crucial role in the computational capabilities of neural
networks.

II. STATIC RECURRENT NEURAL NETWORKS

We consider the classical model of first-order recurrent
neural network presented in [4], [5], [6].

A recurrent neural network (RNN) consists of a syn-
chronous network of neurons (or processors) in a general
architecture – not necessarily loop free or symmetric –, made
up of a finite number of neurons (xj)N

j=1, as well as M
parallel input lines carrying the input stream into M of the
N neurons (in the Kalman-filter form), and P designated
neurons out of the N whose role is to communicate the
output of the network to the environment. At each time step,
the activation value of every neuron is updated by applying a
linear-sigmoid function to some weighted affine combination
of values of other neurons or inputs at previous time step.

Formally, given the activation values of the internal and
input neurons (xj)N

j=1 and (uj)N
j=1 at time t, the activation

value of each neuron xi at time t + 1 is then updated by the
following equation

xi(t + 1) = σ

 N∑
j=1

aij · xj(t) +
M∑

j=1

bij · uj(t) + ci

 , (1)

i = 1, . . . , N

where all aij , bij , and ci are numbers describing the weighted
synaptic connections and weighted bias of the network, and
σ is the classical saturated-linear activation function defined
by

σ(x) =

0 if x < 0,

x if 0 ≤ x ≤ 1,

1 if x > 1.

A rational recurrent neural network (RNN[Q]) denotes
a recurrent neural net whose all synaptic weights are ratio-
nal numbers. An real recurrent neural network (RNN[R])
is a network whose all synaptic weights are real. It has
been proved that RNN[Q] are Turing equivalent, and that
RNN[R]’s are strictly more powerful than RNN[Q]’s, and
hence also than Turing machines [4], [5].

The formal proofs of these results involve the consider-
ation of a specific model of formal network that performs

Proceedings of International Joint Conference on Neural Networks, San Jose, California, USA, July 31 – August 5, 2011

978-1-4244-9636-5/11/$26.00 ©2011 IEEE 3200

recognition and decision of formal languages, and thus al-
lows mathematical comparison with the languages computed
by Turing machines.

More precisely, the considered neural networks are
equipped with two binary input processors: a data line ud and
a validation line uv . The data line is used to carry the binary
incoming input string; it carries the binary signal as long as
it is present, and switches to value 0 when no more signal
is present. The validation line is used to indicated when the
data line is active; it takes value 1 as long as the incoming
input string is present, and switches to value 0 thereafter.

Similarly, the networks are equipped with two binary
output processors: a data line yd and a validation line yv .
The data line provides the decision answer of the network
concerning the current input string; it takes value 0 as long
as no answer is provided, then possibly outputs 0 or 1 in
order to accept or reject the current input, and next switches
to value 0 thereafter. The validation line indicates the only
moment when the data line is active; it takes value 1 at the
precise decision time step of the network, and takes value 0
otherwise.

These formal networks can perform recognition and de-
cision of formal languages1. Indeed, given some formal
network N and some input string u = u0 · · ·uk ∈ {0, 1}+,
we say that u is classified in time τ by N if given the input
streams

ud(0)ud(1)ud(2) · · · = u0 · · ·uk000 · · ·
uv(0)uv(1)uv(2) · · · = 1 · · · 1︸ ︷︷ ︸

k+1

000 · · ·

the network N produces the corresponding output streams

yd(0)yd(1)yd(2) · · · = 0 · · · 0︸ ︷︷ ︸
τ−1

ηu000 · · ·

yv(0)yv(1)yv(2) · · · = 0 · · · 0︸ ︷︷ ︸
τ−1

1000 · · ·

where ηu ∈ {0, 1}. The word u is said to be accepted or
rejected by N if ηu = 1 or ηu = 0, respectively. The set of
all words accepted by N is called the language recognized by
N . Moreover, for any proper complexity function f : N −→
N and any language L ⊆ {0, 1}+, we say that L is decided
by N in time f if and only if every word u ∈ {0, 1}+ is
classified by N in time τ ≤ f(|u|), and u ∈ L ⇔ ηu = 1.
Naturally, a given language L is then said to be decidable
by some network in time f if and only if there exists a RNN
that decides L in time f .

Rational-weighted recurrent neural networks were proved
to be computationally equivalent to Turing machines [5]. In-
deed, on the one hand, any function determined by Equation
(1) and involving rational weights is necessarily recursive,
and thus can be computed by some Turing machine, and on
the other hand, it was proved that any Turing machine can

1We recall that the space of all non-empty finite words of bits is denoted
by {0, 1}+, and for any n > 0, the set of all binary words of length
n is denoted by {0, 1}n. Moreover, any subset L ⊆ {0, 1}+ is called a
language.

be simulated in linear time by some rational recurrent neural
network. The result can be expressed as follows.

Theorem 1: Let L be some language. Then L is decidable
by some RNN[Q] if and only if L is decidable by some TM
(i.e. L is recursive).

Furthermore, real-weighted recurrent neural networks were
proved to be strictly more powerful than rational recurrent
networks, and hence also than Turing machines. More pre-
cisely, they turn out to be capable of deciding all possi-
ble languages in exponential time of computation. When
restricted to polynomial time of computation, the networks
decide precisely the complexity class of languages P/poly
[4].2 Note that since P/poly strictly includes the class P,
and even contains non-recursive languages [7], the networks
are capable of super-Turing computational power already
from polynomial time of computation. These results are
summarized in the following theorem.

Theorem 2: (a) For any language L, there exists some
RNN[R] that decides L in exponential time.

(b) Let L be some language. Then L ∈ P/poly if and only
if L is decidable in polynomial time by some RNN[R].

III. EVOLVING RECURRENT NEURAL NETWORKS

In the neural model governed by Equation (1), the number
of neurons, the connectivity patterns between the neurons,
and the strengths of the synaptic connections all remain
static over time. We will now consider first-order recur-
rent neural networks provided with evolving (or adaptive)
synaptic weights. This abstract neuronal model intends to
capture the important notion of synaptic plasticity observed
in various kind of neural networks. We will further prove
that evolving (rational and real) recurrent neural network are
computationally equivalent to (non-evolving) real recurrent
neural networks. Therefore, evolving nets might also achieve
super-Turing computational capabilities.

Formally, an evolving recurrent neural network (Ev-RNN)
is a first-order recurrent neural network whose dynamics is
governed by equations of the form

xi(t + 1) = σ

 N∑
j=1

aij(t) · xj(t) +
M∑

j=1

bij(t) · uj(t) + ci(t)

 ,

i = 1, . . . , N

where all aij(t), bij(t), and ci(t) are bounded and time
dependent synaptic weights, and σ is the classical saturated-
linear activation function. The boundness condition formally
states that there exist two real constants s and s′ such that
aij(t), bij(t), ci(t) ∈ [s, s′] for every t ≥ 0. The values s and
s′ represent two extremal synaptic strengths that the network
might never be able to overstep along its evolution.

An evolving rational recurrent neural network (Ev-
RNN[Q]) denotes an evolving recurrent neural net whose all

2The complexity class P/poly consists of the set of all languages decidable
in polynomial time by some Turing machine with polynomially long advice
(TM/poly(A)).

3201

synaptic weights are rational numbers. An evolving real re-
current neural network (Ev-RNN[R]) is an evolving network
whose all synaptic weights are real.

Given some Ev-RNN N , the description of the synaptic
weights of network N at time t will be denoted by N (t).
Moreover, we suppose that Ev-RNN’s satisfy the formal
input-output encoding presented in previous section. There-
fore, the notions of language recognition and decision can
be naturally transposed in the present case. Accordingly, we
will provide a precise characterization of the computational
power of Ev-RNN’s.

For this purpose, we need a result that will be involved in
the proof of forthcoming Lemma 3. The result is a straight-
forward generalization of the so-called “linear-precision suf-
fices lemma” [4, Lemma 4.1], which plays a crucial role
in the proof that RNN[R]’s compute in polynomial time
the class of languages P/poly. Before stating the result, the
following definition is required. Given some Ev-RNN[R]
N and some proper complexity function f , an f -truncated
family over N is a family of Ev-RNN[Q]’s {Nf(n) : n > 0}
such that: firstly, each net Nf(n) has the same processors
and connectivity patterns as N ; secondly, for each n > 0,
the rational synaptic weights of Nf(n)(t) are precisely those
of N (t) truncated after C · f(n) bits, for some constant C
(independent of n); thirdly, when computing, the activation
values of Nf(n) are all truncated after C · f(n) bits at every
time step. We then have the following result.

Lemma 1: Let N be some Ev-RNN[R] that computes in
time f . Then there exists an f -truncated family {Nf(n) :
n > 0} of Ev-RNN[Q]’s over N such that, for every input
u and every n > 0, the binary output processors of N and
Nf(n) have the very same activation values for all time steps
t ≤ f(n).
Proof:[sketch] The proof is a generalization of that of [4,
Lemma 4.1]. The idea is the following: since the evolving
synaptic weights of N are by definition bounded over time
by some constant W , then the truncation of the weights
and activation values of N after log(W) · f(n) bits would
indeed provide more and more precise approximation of
the real activation values of of N as f(n) increases, i.e.
as n increases (f is a proper complexity function, hence
monotone). Consequently, one can find a constant C related
to log(W) such that each “(C · f(n))-truncated network”
Nf(n) computes precisely like N up to time step f(n). �

IV. THE COMPUTATIONAL POWER OF EVOLVING
RECURRENT NEURAL NETWORKS

In this section, we first show that both rational and real
Ev-RNN’s are capable of deciding all possible languages in
exponential time of computation. We then prove that the
class of languages decided by rational and real Ev-RNN’s
in polynomial time corresponds precisely to the complexity
class P/poly. It will directly follow from Theorem 2 that
Ev-RNN[Q]’s, Ev-RNN[R]’s, and RNN[R]’s have equivalent
super-Turing computational powers both in polynomial time

as well as exponential time of computation. We make the
whole proof for the case of Ev-RNN[Q]’s. The same results
concerning Ev-RNN[R]’s will directly follow.

Proposition 1: For any language L ⊆ {0, 1}+, there
exists some Ev-RNN[Q] that decides L in exponential time.
Proof: The main idea of the proof is is illustrated in Figure
1. First of all, for every n > 0, we need to encode the
subset L ∩ {0, 1}n of words of lenght n of L into a
rational number qL,n. We proceed as follows. Given the
lexicographical enumeration w1, . . . , w2n of {0, 1}n, we first
encode the set L ∩ {0, 1}n into the finite word wL,n =
w1ε1w2ε2 · · ·w2nε2n , where εi is the L-characteristic bit
χL(wi) of wi given by εi = 1 if wi ∈ L and εi = 0 if
wi 6∈ L. Note that length(wL,n) = 2n · (n + 1). Then, we
consider the following rational number

qL,n =
2n·(n+1)∑

i=1

2 · wL,n(i) + 1
4i

.

Note that qL,n ∈]0, 1[for all n > 0. Also, the encoding
procedure ensures that qL,n 6= qL,n+1, since wL,n 6= wL,n+1,
for all n > 0. Moreover, it can be shown that the finite word
wL,n can be decoded from the value qL,n by some Turing
machine, or equivalently, by some rational recurrent neural
network [4], [5].

We provide the description of an Ev-RNN[Q] NL that
decides L in exponential time. The network NL actually
consists of one evolving and one non-evolving rational sub-
network connected together. More precisely, the evolving
rational-weighted part of NL is made up of a single des-
ignated processor xe. The neuron xe receives as sole incom-
ing synaptic connection a background activity of evolving
intensity ci(t). The synaptic weight ci(t) successively takes
the rational bounded values qL,1, qL,2, qL,3, . . ., by switching
from value qL,k to qL,k+1 after every K time steps, for some
suitable constant K > 0 to be described.

Moreover, the non-evolving rational-weighted part of NL

is designed in order to perform the following recursive
procedure: for any finite input u provided bit by bit, the sub-
network first stores in its memory the successive incoming
bits u(0), u(1), . . . of u, and simultaneously counts the
number of bits of u as well as the number of successive
distinct values qL,1, qL,2, qL,3, . . . taken by the activation
values of the neuron xe. After the input has finished being
processed, the sub-network knows the length n of u. It then
waits for the n-th value qL,n to appear, then stores the value
qL,n in its memory in one time step when it occurs (this can
be done whatever the complexity of qL,n), next decodes the
finite word wL,n from the value qL,n, and finally outputs the
L-characteristic bit χL(u) of u written in the word wL,n.
Note that a constant time of K time steps between any qL,i

and qL,i+1 can indeed be chosen in order to provide enough
time for the sub-network to successfully decide if the current
value qL,i has to be stored or not, and if yes, to be able to
store it before the next value qL,i+1 has occurred. Note also
that the equivalence between Turing machines and rational
recurrent neural networks ensures that the above recursive

3202

procedure can indeed be performed by some non-evolving
rational recurrent neural sub-network [5].

The network NL clearly decides the language L, since it
finally outputs the L-characteristic bit of the incoming input.
Moreover, since the word wL,n has length 2n · (n + 1), the
decoding procedure of wL,n works in time O(2n), for any
input of length n. All other tasks take no more than O(2n)
time steps. Therefore, the network NL decides the language
L in exponential time. �

We now prove that the class of languages decidable by
Ev-RNN[Q]’s in polynomial time corresponds precisely to
the complexity class of languages P/poly.

Lemma 2: Let L ⊆ {0, 1}+ be some language. If L ∈
P/poly, then there exists an Ev-RNN[Q] that decides L in
polynomial time.
Proof: The present proof resembles the proof of Proposition
1. The main idea of the proof is illustrated in Figure 2. First
of all, since L ∈ P/poly, there exists a Turing machine with
polynomially long advice (TM/poly(A)) M that decides L in
polynomial time. Let α : N −→ {0, 1}+ be the polynomially
long advice function of M, and for each n > 0, consider
the following rational number

qα(n) =
length(α(n))∑

i=1

2 · α(n)(i) + 1
4i

.

We can assume without loss of generality that the advice
function of M satisfies α(n) 6= α(n + 1) for all n > 0, and
thus the encoding procedure ensures that qα(n) 6= qα(n+1)

for all n > 0. Moreover, qα(n) ∈]0, 1[for all n > 0, and the
finite word α(n) can be decoded from the value qα(n) in a
recursive manner [4], [5].

We now provide the description of an Ev-RNN[Q] NL that
decides L in polynomial time. Once again, the network NL

consists of one evolving and one non-evolving rational sub-
network connected together. The evolving rational-weighted
part of NL is made up of a single designated processor xe.
The neuron xe receives as sole incoming synaptic connec-
tion a background activity of evolving intensity ci(t). The
synaptic weight ci(t) successively takes the rational bounded
values qα(1), qα(2), qα(3), . . ., by switching from value qα(k)

to qα(k+1) after every K time steps, for some large enough
constant K > 0.

Moreover, the non-evolving rational-weighted part of NL

is designed in order to perform the following recursive
procedure: for any finite input u provided bit by bit, the sub-
network first stores in its memory the successive incoming
bits u(0), u(1), . . . of u, and simultaneously counts the num-
ber of bits of u as well as the number of successive distinct
values qα(1), qα(2), qα(3), . . . taken by the activation values of
the neuron xe. After the input has finished being processed,
the sub-network knows the length n of u. It then waits for
the n-th synaptic value qα(n) to occur, then stores qα(n) in its
memory in one time step when it appears, next decodes the
finite word α(n) from the value qα(n), simulates the behavior

of the TM/poly(A) M on u with α(n) written on its advice
tape, and finally outputs the answer of that computation. Note
that the equivalence between Turing machines and rational
recurrent neural networks ensures that the above recursive
procedure can indeed be performed by some non-evolving
rational recurrent neural sub-network [5].

Since NL outputs the same answer as M and M decides
the language L, it follows that NL clearly also decides
L. Besides, since the advice is polynomial, the decoding
procedure of the advice word performed by NL can be done
in polynomial time in the input size. Moreover, since M
decides L in polynomial time, the simulating task of M by
NL is also done in polynomial time in the input size [5].
Consequently, NL decides L in polynomial time. �

Lemma 3: Let L ⊆ {0, 1}+ be some language. If there
exists an Ev-RNN[Q] that decides L in polynomial time,
then L ∈ P/poly.
Proof: The main idea of the proof is illustrated in Figure
3. Suppose that L is decided by some Ev-RNN[Q] N in
polynomial time p. Since N is by definition also an Ev-
RNN[R], Lemma 1 applies and shows the existence of a p-
truncated family of Ev-RNN[Q]’s over N . Hence, for every
n, there exists an Ev-RNN[Q] Np(n) such that: firstly, the
network Np(n) has the same processors and connectivity
pattern as N ; secondly, for every t ≤ p(n), each rational
synaptic weight of Np(n)(t) can be represented by some
sequence of bits of length at most C ·p(n), for some constant
C independent of n; thirdly, on every input of lenght n,
if one restricts the activation values of Np(n) to be all
truncated after C ·p(n) bits at every time step, then the output
processors of Np(n) and N still have the very same activation
values for all time steps t ≤ p(n).

We now prove that L can also be decided in poly-
nomial time by some TM/poly(A) M. First of all, con-
sider the oracle function α : N −→ {0, 1}+ given by
α(i) = Encoding(〈Np(i)(t) : 0 ≤ t ≤ p(i)〉), where
Encoding(〈Np(i)(t) : 0 ≤ t ≤ p(i)〉) denotes some suitable
recursive encoding of the sequence of successive descriptions
of the network Np(i) up to time step p(i). Note that α(i)
consists of the encoding of p(i) successive descriptions of the
network Np(i), where each of this description has synaptic
weights representable by at most C · p(i) bits. Therefore,
the length of α(i) belongs to O(p(i)2), and thus is still
polynomial in i.

Now, consider the TM/poly(A) M that uses α as advice
function, and which, on every input u of length n, first calls
the advice word α(n), then decodes this sequence in order
to simulate the truncated network Np(n) on input u up to
time step p(n) and in such a way that all activation values
of Np(n) are only computed up to C ·p(n) bits at every time
step. Note that each simulation step of of Np(n) by M is
performed in polynomial time in n, since the decoding of
the current configuration of Np(n) from α(n) is polynomial
in n, and the computation and representations of the next
activation values of Np(n) from its current activation values

3203

and synaptic weights are also polynomial in n. Consequently,
the p(n) simulation steps of of Np(n) by M are performed
in polynomial time in n.

Now, since any u of lenght n is classified by N in time
p(n), Lemma 1 ensures that u is also classified by Np(n)

in time p(n), and the behavior of M ensures that u is also
classified by M in p(n) simulation steps of Np(n), each of
which being polynomial in n. Hence, any word u of length
n is classified by the TM/poly(A) M in polynomial time in
n, and the classification answers of M, Np(n), and N are
the very same. Since N decides the language L, so does
M. Therefore L ∈ P/poly, which concludes the proof. �

Lemmas 2 and 3 directly induce the following charac-
terization of the computational power of Ev-RNN[Q]’s in
polynomial time.

Proposition 2: Let L ⊆ {0, 1}+ be some language. Then
L is decidable by some Ev-RNN[Q] in polynomial time if
and only if L ∈ P/poly

Now, propositions 1 and 2 show that Ev-RNN[Q]’s are
capable of super-Turing computational capabilities both in
polynomial as well as in exponential time of computation.
Since (non-evolving) RNN[Q]’s were only capable of Turing
capabilities, these features suggests that evolution might play
a crucial role in the computational capabilities of neural net-
works. The results are summarized in the following theorem.

Theorem 3: (a) For any language L, there exists some
Ev-RNN[Q] that decides L in exponential time.

(b) Let L be some language. Then L ∈ P/poly if and
only if L is decidable in polynomial time by some
Ev-RNN[Q].

Furthermore, since any Ev-RNN[Q] is also by definition
an Ev-RNN[R], it follows that Proposition 1 and Lemma
2 can directly be generalized in the case of Ev-RNN[R]’s.
Also, since Lemma 1 is originally stated for the case of Ev-
RNN[R]’s, it follows that Lemma 3 can also be generalized
in the context of Ev-RNN[R]’s. Therefore, propositions 1
and 2 also hold for the case of Ev-RNN[R]’s, meaning
that rational and real evolving recurrent neural networks
have an equivalent super-Turing computational power both
in polynomial as well as in exponential time of computation.
Finally, theorems 2 and 3 show that this computational power
is the same as that of RNN[R]’s, as stated by the following
result.

Theorem 4: RNN[R]’s, Ev-RNN[Q]’s, and Ev-
RNN[R]’s have equivalent super-Turing computational
powers both in polynomial as well as in exponential time of
computation.

V. CONCLUSION

We proved that evolving recurrent neural networks are
super-Turing. They are capable of deciding all possible lan-
guages in exponential time of computation, and they decide
in polynomial time of computation the complexity class of
languages P/poly. It follows that evolving rational networks,
evolving real networks, and static real networks have the very

same super-Turing computational powers both in polynomial
as well as exponential time of computation. They are all
strictly more powerful than rational static networks, which
are Turing equivalent. These results indicate that evolution
might play a crucial role in the computational capabilities of
neural networks.

Of specific interest is the rational-weighted case, where
the evolving property really brings up an additional super-
Turing computational power to the networks. These capabil-
ities arise from the theoretical possibility to consider non-
recursive evolving patters of the synaptic weights. Indeed,
the consideration of restricted evolving patterns driven by
recursive procedures would necessarily constrain the cor-
responding networks to Turing computational capabilities.
Therefore, according to our model, the existence of super-
Turing capabilities of the networks depends on the possibility
of having non-recursive evolving patterns in nature. More-
over, it has been shown that the super-Turing computational
powers revealed by the consideration of, on the one hand,
static real synaptic weights, and on the other hand, evolving
rational synaptic weights turn out to be equivalent. This fact
can be explained as follows: on the one side, the whole
evolution of a rational-weighted synaptic connection can
indeed be encoded into a single static real synaptic weight;
one the other side, any static real synaptic weight can be
approximated by a converging evolving sequence of more
and more precise rational weights.

In the real-weighted case, the evolving property doesn’t
bring any additional computational power, since the static
networks were already super-Turing. This feature can be
explained by the fact that any infinite sequence of evolving
real weights can be encoded to a single static real weight.
This feature reflects the fundamental difference between
rational and real numbers: limit points of rational sequences
are not necessarily rational, whereas limit points of real
sequences are always real.

Furthermore, the fact that Ev-RNN[Q]’s are strictly
stronger than RNN[Q]’s but still not stronger than RNN[R]’s
provides a further evidence in supportive the Thesis of
Analog Computation [4], [8]. This thesis is analogous to the
Church-Turing thesis, but in the realm of analog computation.
It state that no reasonable abstract analog device can be more
powerful than RNN[R]’s.

The present work can be extended significantly. As a first
step, we intend to study other specific evolving paradigms
of weighted-connections. For instance, the consideration of
an input dependent evolving framework could be of specific
interest, for it would bring us closer to the important concept
of adaptability of networks. More generally, we also envision
to extend the possibility of evolution to other important
aspects of the architectures of the networks, like the number
of neurons (to capture neural birth and death), etc. Ultimately,
the combination of all such evolving features would provide
a better understanding of the computational power of more
and more biologically-oriented models of neural networks.

3204

retrieve L ∩ {0, 1}n from qL,n

xe

check if u ∈ L ∩ {0, 1}n

compute n := length(u)

ud

uv

input u

validation yv

yd output χL(u)

validation

qL,1, qL,2, . . . , qL,n, . . .

Fig. 1. Illustration of the network NL described in the proof of Proposition 1.

xe

retrieve advice string α(n) from qα(n)

simulateM with advice α(n)

compute n := length(u)

ud

uv

input u

validation yv

yd outputM(u)

validation

qα(1), qα(2), . . . , qα(n), . . .

Fig. 2. Illustration of the network NL described in the proof of Lemma 2.

p(n)-truncated evolving network that
computes like N up to time step p(n)

p(1)-truncated evolving network that
computes like N up to time step p(1)

p(2)-truncated evolving network that
computes like N up to time step p(2)

Np(1)

Np(2)

Np(n)

evolving network that
decides L in poly time p

N …
…

Lemma 1

input: u of length n

program that simulates
network Np(n) on u

…
…

TM/poly(A)M

advice: Encoding(Np(n))

Fig. 3. Illustration of the proof idea of Lemma 3.

3205

REFERENCES

[1] S. J. Martin, P. D. Grimwood, and R. G. M. Morris, “Synaptic Plasticity
and Memory: An Evaluation of the Hypothesis,” Annual Review of
Neuroscience, vol. 23, pp. 649–711, 2000.

[2] L. F. Abbott and S. B. Nelson, “Synaptic plasticity: taming the beast,”
Nature Neuroscience, vol. 3, pp. 1178–1183, 2000.

[3] B. Widrow and M. Lehr, “30 years of adaptive neural networks:
perceptron, madaline, and backpropagation,” Proceedings of the IEEE,
vol. 78, no. 9, pp. 1415–1442, Sep. 1990.

[4] H. T. Siegelmann and E. D. Sontag, “Analog computation via neural
networks,” Theor. Comput. Sci., vol. 131, no. 2, pp. 331–360, 1994.

[5] ——, “On the computational power of neural nets,” J. Comput. Syst.
Sci., vol. 50, no. 1, pp. 132–150, 1995.

[6] H. T. Siegelmann, Neural networks and analog computation: beyond the
Turing limit. Cambridge, MA, USA: Birkhauser Boston Inc., 1999.

[7] O. Goldreich, Introduction to Complexity Theory: Lecture notes. Un-
published lecture notes, 1999.

[8] H. T. Siegelmann, “Computation beyond the Turing limit,” Science, vol.
268, no. 5210, pp. 545–548, 1995.

3206

