
LETTER Communicated by Christian Omlin

The Computational Power of Interactive Recurrent
Neural Networks

Jérémie Cabessa
jcabessa@nhrg.org
Hava T. Siegelmann
hava@cs.umass.edu
BINDS Lab, Computer Science Department, University of Massachusetts Amherst,
Amherst, MA 01003-9264, U.S.A.

In classical computation, rational- and real-weighted recurrent neural
networks were shown to be respectively equivalent to and strictly more
powerful than the standard Turing machine model. Here, we study the
computational power of recurrent neural networks in a more biologically
oriented computational framework, capturing the aspects of sequential
interactivity and persistence of memory. In this context, we prove that so-
called interactive rational- and real-weighted neural networks show the
same computational powers as interactive Turing machines and interac-
tive Turing machines with advice, respectively. A mathematical character-
ization of each of these computational powers is also provided. It follows
from these results that interactive real-weighted neural networks can per-
form uncountably many more translations of information than interactive
Turing machines, making them capable of super-Turing capabilities.

1 Introduction

Understanding the computational and dynamical capabilities of neural net-
works is an issue of central importance. In this context, much interest has
been focused on comparing the computational power of diverse theoretical
neural models and abstract computing devices.

The approach was initiated by McCulloch and Pitts (1943), who pro-
posed a modelization of the nervous system as a finite interconnection of
logical devices. Neural networks were then considered as discrete abstract
machines, and the issue of their computational capabilities was investigated
from the automata-theoretic perspective. In this context, Kleene (1956) and
Minsky (1967) proved that rational-weighted recurrent neural networks
equipped with Boolean activation functions are computationally equiva-
lent to classical finite state automata. Later, Siegelmann and Sontag (1995)
showed that extending the activation functions of the cells from Boolean
to linear-sigmoid actually drastically increases the computational power of
the networks from finite state automata up to Turing capabilities. Kilian

Neural Computation 24, 996–1019 (2012) c© 2012 Massachusetts Institute of Technology

Computational Power of Interactive Recurrent Neural Networks 997

and Siegelmann (1996) then generalized the Turing universality of neural
networks to a broader class of sigmoidal activation functions. The compu-
tational equivalence between so-called rational recurrent neural networks
and Turing machines has now become a standard result in the field.

Siegelmann and Sontag (1994) achieved a further breakthrough by
considering the computational power of recurrent neural networks from the
perspective of analog computation (Siegelmann, 1999). They introduced the
concept of an analog recurrent neural network as a classical linear-sigmoid
neural net equipped with real- instead of rational-weighted synaptic con-
nections. This analog information processing model turns out to be capable
of capturing the nonlinear dynamical properties that are most relevant to
brain dynamics, such as Cantor-like encoding and rich chaotic behaviors
(Tsuda, 2001, 2009; Yamaguti, Kuroda, Fukushima, Tsukada, & Tsuda, 2011).
Moreover, many dynamical and idealized chaotic systems that cannot be
described by the universal Turing machine are also well captured within
this analog framework (Siegelmann, 1995). In this context, Siegelmann and
Sontag (1994) notably proved that the computational capabilities of analog
recurrent neural networks turn out to stand beyond the Turing limits. These
results support the idea that some dynamical and computational features
of neurobiological systems might be beyond the scope of standard artificial
models of computation.

However, until now, the issue of the computational capabilities of neu-
ral networks has always been considered from the strict perspective of
Turing-like classical computation (Turing, 1936): a network is considered
as an abstract machine that receives a finite input stream from its environ-
ment, processes this input, and then provides a corresponding finite output
stream as the answer, without any consideration of the internal or external
changes that might happen during previous computations. But this clas-
sical computational approach is inherently restrictive and has now been
argued to “no longer fully correspond to the current notion of computing
in modern systems” especially when it refers to bio-inspired complex in-
formation processing systems (van Leeuwen & Wiedermann, 2001a, 2008).
Indeed, in the brain (or in organic life in general), information is processed
in an interactive way, where previous experience must affect the perception
of future inputs and older memories themselves may change with response
to new inputs. Hence, neural networks should be conceived as performing
sequential interactions or communications with their environments and be
provided with memory that remains active throughout the whole compu-
tational process rather than proceeding in a closed-box amnesic classical
fashion. Accordingly, we propose to study the computational power of
recurrent neural networks from the rising perspective of interactive com-
putation (Goldin, Smolka, & Wegner, 2006).

In this letter, we consider a basic paradigm of computation capturing the
aspects of sequential interactivity and persistence of memory, and we study
the computational power of recurrent neural networks in this context. Our

998 J. Cabessa and H. Siegelmann

framework is in line with previous ones suggested, for instance, by Goldin,
Smolka, Attie, and Sonderegger (2004) and van Leeuwen and Wiedermann
(2006), but focused on biological computational considerations. In section 2,
we state some preliminary definitions. In section 3, we present the inter-
active computational paradigm that we consider. In sections 4 and 5, we
define the concept of an interactive recurrent neural network and further
show that under our interactive computational scenario, the rational- and
real-weighted neural networks show the same computational powers as
interactive Turing machines and interactive Turing machines with advice,
respectively. Moreover, we provide a mathematical characterization of each
of these computational powers. It follows from these results that in the
interactive just as in the classical framework, analog (i.e., real-weighted)
neural networks are capable of super-Turing computational capabilities.
Sections 6 and 7 are devoted to the proofs of these results. Finally, section 8
provides some concluding remarks.

2 Preliminaries

Before entering into further considerations, we introduce the following
definitions and notations. Given some finite alphabet �, we let �∗, �+, �n,
and �ω denote, respectively, the sets of finite words, nonempty finite words,
finite words of length n, and infinite words, all of them over alphabet �.
We also let �≤ω = �∗ ∪ �ω be the set of all possible words (finite or infinite)
over �. The empty word is denoted λ.

For any x ∈ �≤ω, the length of x is denoted by |x| and corresponds to the
number of letters contained in x. If x is nonempty, we let x(i) denote the
(i + 1)th letter of x, for any 0 ≤ i < |x|. The prefix x(0) · · · x(i) of x is denoted
by x[0:i] for any 0 ≤ i < |x|. For any x ∈ �∗ and y ∈ �≤ω, the fact that x is a
prefix (resp. strict prefix) of y is denoted by x ⊆ y (resp. x � y). If x ⊆ y, we
let y − x = y(|x|) · · · y(|y| − 1) be the suffix of y that is not common to x (we
have y − x = λ if x = y). Moreover, the concatenation of x and y is denoted
by x · y, or sometimes simply by xy. The word xn consists of n copies of x
concatenated together, with the convention that x0 = λ.

A function f : �∗ −→ �∗ is called monotone if the relation x ⊆ y implies
f (x) ⊆ f (y), for all x, y ∈ �∗. It is called recursive if it can be computed by
some Turing machine. Throughout this letter, any function ϕ : �ω −→ �≤ω

will be referred to as an ω-translation.

3 Interactive Computation

3.1 The Interactive Paradigm. Interactive computation refers to the com-
putational framework where systems may react or interact with each other
as well as with their environment during the computation (Goldin et al.,
2006). This paradigm was theorized in contrast to classical computation,
which proceeds in a closed-box fashion and was argued to “no longer

Computational Power of Interactive Recurrent Neural Networks 999

fully corresponds to the current notions of computing in modern systems”
(van Leeuwen & Wiedermann, 2008). Interactive computation also pro-
vides a particularly appropriate framework for the consideration of natural
and bio-inspired complex information processing systems (van Leeuwen &
Wiedermann, 2001a, 2008).

In fact, Goldin and Wegner (2008), as well as Wegner (1997, 1998), argued
that the intrinsic nature of interactivity shall alone lead to computations be-
yond the expressiveness of classical Turing machines. Goldin (2000) and
Goldin et al. (2004) then introduced the concept of a persistent Turing ma-
chine as a possible extension of the classical notion of Turing machine in
the interactive context. Van Leeuwen and Wiedermann (2001a), however,
consider that “interactivity alone is not sufficient to break the Turing bar-
rier.” They introduced the concepts of an interactive Turing machine and an
interactive Turing machine with advice as a generalization of their classical
counterparts in the interactive context and used them as a tool to ana-
lyze the computational power of other interactive systems. In this context,
they showed that several interactive models of computation are capable
of super-Turing computational capabilities (van Leeuwen & Wiedermann,
2001a, 2001b).

The general interactive computational paradigm consists of a step-by-
step exchange of information between a system and its environment. In
order to capture the unpredictability of next inputs at any time step, the
dynamically generated input streams need to be modeled by potentially in-
finite sequences of symbols (the case of finite sequences of symbols would
necessarily reduce to the classical computational framework) (Wegner, 1998;
van Leeuwen & Wiedermann, 2008). Hence, the interactive system receives
a potentially infinite input stream of signals bit by bit and produces a cor-
responding potentially infinite output stream of signals bit by bit. At every
time step, the current input bit might depend on intermediate outputs or
external sources, and the corresponding output bit depends on the current
input as well as on the current internal state of the system. It follows that
every output depends on the whole input history that has been processed
so far. In this sense, the memory of the system remains active throughout
the whole computational process.

Throughout this letter, we consider a basic interactive computational
scenario where at every time step, the environment first sends a nonempty
input bit to the system (full environment activity condition); the system next
updates its current state accordingly and then answers by either producing
a corresponding output bit or remaining silent. In other words, the system
is not obliged to provide corresponding output bits at every time step, but
might instead stay silent for a while (to express the need of some internal
computational phase before outputting a new bit) or even forever (to express
the case that it has died). Consequently, after infinitely many time steps, the
system will have received an infinite sequence of consecutive input bits
and translated it into a corresponding finite or infinite sequence of not

1000 J. Cabessa and H. Siegelmann

necessarily consecutive output bits. Accordingly, any interactive system S
realizes an ω-translation ϕS : {0, 1}ω −→ {0, 1}≤ω.

3.2 Interactive Turing Machines. The concept of an interactive Turing
machine was introduced by van Leeuwen and Wiedermann (2001a) as a
generalization of the standard Turing machine model in the context of
interactive computation.

An interactive Turing machine consists of an interactive abstract device
driven by a standard Turing machine program. It receives an infinite stream
of bits as input and produces a corresponding stream of bits as output step
by step. The input and output bits are processed by corresponding input
and output ports rather than tapes. Consequently, at every time step, the
machine can no more operate on the output bits that have already been
processed.1 Furthermore, according to our interactive scenario, it is as-
sumed that at every time step, the environment sends a nonsilent input bit
to the machine, and the machine might either answer by some correspond-
ing output bit or remain silent.

Formally, an interactive Turing machine (ITM) M is defined as a tuple
M = (Q, �, δ, q0), where Q is a finite set of states, � = {0, 1, λ, �} is the
alphabet of the machine, where � stands for the blank tape symbol, q0 ∈ Q
is the initial state, and

δ : Q × � × {0, 1} −→ Q × � × {←,→,−} × {0, 1, λ}

is the transition function of the machine. The relation δ(q, x, b) = (q′, x′, d, b′)
means that if the machine M is in state q, the cursor of the tape is scanning
the letter x ∈ {0, 1, �}, and the bit b ∈ {0, 1} is currently received at its input
port, then M will go in next state q′; it will make the cursor overwrite
symbol x by x′ ∈ {0, 1, �} and then move to direction d, and it will finally
output symbol b ∈ {0, 1, λ} at its output port, where λ represents the fact
that the machine is not outputting any bit at that time step.

According to this definition, for any infinite input stream s ∈ {0, 1}ω,
we define the corresponding output stream os ∈ {0, 1}≤ω of M as the finite
or infinite subsequence of (non-λ) output bits produced by M after hav-
ing processed input s. In this manner, any machine M naturally induces
an ω-translation ϕM : {0, 1}ω −→ {0, 1}≤ω defined by ϕM(s) = os, for each
s ∈ {0, 1}ω. Finally, an ω-translation ψ : {0, 1}ω −→ {0, 1}≤ω is said to be re-
alizable by some interactive Turing machine iff there exists an ITM M such
that ϕM = ψ .

Van Leeuwen and Wiedermann (2001a) also introduced the concept of an
interactive machine with advice as a relevant nonuniform computational

1In fact, allowing the machine to erase its previous output bits would lead to the
consideration of much more complicated ω-translations.

Computational Power of Interactive Recurrent Neural Networks 1001

model in the context of interactive computation. Interactive Turing ma-
chines with advice are strictly more powerful than their classical coun-
terpart (i.e., interactive Turing machines without advice) (van Leeuwen &
Wiedermann, 2001b, proposition 5; van Leeuwen & Wiedermann, 2001a,
lemma 1), and they were shown to be computationally equivalent to sev-
eral other nonuniform models of interactive computation, like sequences of
interactive finite automata, site machines, and Web Turing machines (van
Leeuwen & Wiedermann, 2001a).

An interactive Turing machine with advice (ITM/A) M consists of an in-
teractive Turing machine provided with an advice mechanism. The mecha-
nism comes in the form of an advice function, which consists of a mapping α

from N to {0, 1}∗. Moreover, the machine M uses two auxiliary special tapes,
an advice input tape and an advice output tape, as well as a designated ad-
vice state. During its computation, M can write the binary representation
of an integer m on its input tape, one bit at a time. Yet at time step n, the
number m is not allowed to exceed n. Then at any chosen time, the machine
can enter its designated advice state and have the string α(m) be written
on the advice output tape in one time step, replacing the previous content
of the tape. The machine can repeat this process as many times as it wants
during its infinite computation.

Once again, according to our interactive scenario, any ITM/A M induces
an ω-translation ϕM : {0, 1}ω −→ {0, 1}≤ω which maps every infinite input
stream s to its corresponding finite or infinite output stream os produced by
M. Finally, an ω-translation ψ : {0, 1}ω −→ {0, 1}≤ω is said to be realizable
by some interactive Turing machine with advice iff there exists an ITM/A
M such that ϕM = ψ .

4 Interactive Recurrent Neural Networks

We consider a natural extension in the interactive framework of the classical
model of recurrent neural network, as presented for instance in Siegelmann
and Sontag (1994, 1995) and Siegelmann (1995, 1999). We will provide a char-
acterization of the expressive powers of both rational- and real-weighted
interactive recurrent neural networks.

A recurrent neural network (RNN) consists of a synchronous network
of neurons (or processors) related together in a general architecture—not
necessarily loop free or symmetric. The network contains a finite number of
neurons (x j)

N
j=1, as well as M parallel input lines carrying the input stream

transmitted by the environment into M of the N neurons, and P designated
output neurons among the N whose role is to communicate the output of the
network to the environment. At each time step, the activation value of every
neuron is updated by applying a linear-sigmoid function to some weighted
affine combination of values of other neurons or inputs at a previous time
step.

1002 J. Cabessa and H. Siegelmann

Formally, given the activation values of the internal and input neurons
(x j)

N
j=1 and (uj)

N
j=1 at time t, the activation value of each neuron xi at time

t + 1 is then updated by

xi(t + 1) = σ

⎛
⎝

N∑
j=1

ai j · x j(t) +
M∑
j=1

bi j · uj(t) + ci

⎞
⎠, i = 1, . . . , N, (4.1)

where all aij, bij, and ci are numbers describing the weighted synaptic con-
nections and weighted bias of the network, and σ is the classical saturated-
linear activation function defined by

σ (x) =

⎧⎪⎨
⎪⎩

0 if x < 0

x if 0 ≤ x ≤ 1.

1 if x > 1

A rational recurrent neural network (RNN[Q]) denotes a recurrent neural
net whose synaptic weights are rational numbers. A real (or analog) recur-
rent neural network (RNN[R]) is a network whose synaptic weights are real.
Since rational numbers are real, note that any RNN[Q] is also a RNN[R] by
definition. The converse is obviously not true. In fact, it has been proven that
RNN[Q] are Turing equivalent and that RNN[R]s are strictly more power-
ful than RNN[Q]s and, hence, also than Turing machines (Siegelmann &
Sontag, 1994, 1995).

In order to stay consistent with our interactive scenario, we define the
notion of an interactive recurrent neural network (IRNN), which adheres
to a rigid encoding of the way input and output are interactively processed
between the environment and the network.

First, we assume that any IRNN is provided with a single input line u
whose role is to transmit to the network the infinite input stream of bits sent
by the environment. More precisely, at each time step t ≥ 0, the input line u
admits an activation value u(t) belonging to {0, 1} (the full environment ac-
tivity conditions forces that u(t) never equals λ). Furthermore, we suppose
that any IRNN is equipped with two binary output lines, a data line yd and
a validation line yv.2 The role of the data line is to carry the output stream
of the network, while the role of the validation line is to describe when
the data line is active and when it is silent. Accordingly, the output stream
transmitted by the network to the environment will be defined as the (finite
or infinite) subsequence of successive data bits that occur simultaneously
with positive validation bits.

2The binary requirement of the output lines yd and yv means that the network is
designed such that for every input and every time step t, one has yd(t) ∈ {0, 1} and
y

v
(t) ∈ {0, 1}.

Computational Power of Interactive Recurrent Neural Networks 1003

Note that the convention of using two output lines allows us to have
all output signals be binary and hence stay close to the framework that
Siegelmann and Sontag (1994) developed. Yet one could have used a single
output processor y satisfying y(t) ∈ {−1, 0, 1} for every t ≥ 0, where y(t) = 0
means that no signal is present at time t, while y(t) = {−1, 1} means that
y is transmitting one of the two possible values at time t. The forthcoming
results do not depend on the output encoding that we consider.

An interactive rational recurrent neural network (IRNN[Q]) denotes an
IRNN whose synaptic weights are all rational numbers and an interac-
tive real (or analog) recurrent neural network (IRNN[R]), an IRNN whose
synaptic weights are all real.

If N is a rational- or real-weighted IRNN with initial activation values
xi(0) = 0 for i = 1, . . . , N, then any infinite input stream,

s = s(0)s(1)s(2) · · · ∈ {0, 1}ω,

transmitted to input line u induces, via equation 4.1, a corresponding pair
of infinite streams:

(
yd(0)yd(1)yd(2) · · · , yv(0)yv(1)yv(2) · · ·) ∈ {0, 1}ω × {0, 1}ω.

The output stream of N according to input s is then given by the finite or
infinite subsequence os of successive data bits that occur simultaneously
with positive validation bits:

os = 〈yd(i) : i ∈ N and yv(i) = 1〉 ∈ {0, 1}≤ω.

Hence, any IRNN N naturally induces an ω-translation ϕN : {0, 1}ω −→
{0, 1}≤ω defined by ϕN (s) = os for each s ∈ {0, 1}ω. Finally, an ω-translation
ψ : {0, 1}ω −→ {0, 1}≤ω is said to be realizable by some IRNN iff there exists
some IRNN N such that ϕN = ψ .

5 The Computational Power of Interactive Recurrent
Neural Networks

This section states the main results of the letter. A complete characteriza-
tion of the computational powers of IRNN[Q]s and IRNN[R]s is provided.
More precisely, we show that IRNN[Q]s and IRNN[R]s are computation-
ally equivalent to ITMs and ITM/As, respectively. Furthermore, we provide
a precise mathematical characterization of the ω-translations realized by
IRNN[Q]s and IRNN[R]s. From these results, it follows that IRNN[R]s are
strictly more powerful than ITMs, showing that the super-Turing compu-
tational capabilities of analog recurrent neural networks also hold in the
framework of interactive computation (Siegelmann & Sontag, 1995).

1004 J. Cabessa and H. Siegelmann

5.1 The Classical Case. For clarity, we first recall the main results con-
cerning the computational powers of recurrent neural networks in the case
of classical computation. In this context, classical rational-weighted recur-
rent neural networks were proven to be computationally equivalent to
Turing machines (Siegelmann & Sontag, 1995). Indeed, on the one hand,
any function determined by equation 4.1 and involving rational weights is
necessarily recursive, and thus can be computed by some Turing machine.
And on the other hand, it was shown that any Turing machine can be sim-
ulated in linear time by some rational recurrent neural network. The result
can be expressed as follows:

Theorem 1. Let L ⊆ {0, 1}+ be some language. Then L is decidable by some
RNN[Q] if and only if L is decidable by some TM (i.e., iff L is recursive).

Moreover, classical real-weighted recurrent neural networks were shown
to be strictly more powerful than rational recurrent networks, and hence
also than Turing machines. More precisely, they turn out to be capable of de-
ciding all possible languages in an exponential time of computation. When
restricted to polynomial time of computation, the networks decide precisely
the complexity class of languages P/poly, that is, the set of all languages
decidable in polynomial time by some Turing machine with polynomially
long advice (Siegelmann & Sontag, 1994). Note that since P/poly strictly in-
cludes the class P and contains nonrecursive languages, it follows that the
real networks are already capable of super-Turing computational power
from the polynomial time of computation. These results are summarized in
the following theorem:

Theorem 2. Let L ⊆ {0, 1}+ be some language. Then L is decidable in expo-
nential time by some RNN[R]. Moreover, L is decidable in polynomial time by
some RNN[R] iff L is decidable in polynomial time by some Turing machine with
polynomially long advice (i.e., iff L ∈ P/poly).

5.2 The Interactive Case. Similar to the classical framework, the main
tools involved in the characterization of the computational powers of inter-
active neural networks are the concepts of an interactive Turing machine
and an interactive Turing machine with advice. Yet in order to provide
a mathematical description of that computational power, the following
important relationship between monotone functions and ω-translations
also needs to be introduced. More precisely, we note that any mono-
tone function f : {0, 1}∗ −→ {0, 1}∗ induces in the limit an ω-translation
fω : {0, 1}ω −→ {0, 1}≤ω defined by

fω(x) = lim
i≥0

f (x[0:i]),

Computational Power of Interactive Recurrent Neural Networks 1005

where limi≥0 f (x[0:i]) denotes the smallest finite word that contains each
word of { f (x[0:i]) : i ≥ 0} as a finite prefix if limi→∞ | f (x[0:i])| < ∞, and
limi≥0 f (x[0:i]) denotes the unique infinite word that contains each word
of { f (x[0:i]) : i ≥ 0} as a finite prefix if limi→∞ | f (x[0:i])| = ∞ (whenever
infinite, the word limi≥0 f (x[0:i]) is also generally denoted by

⋃
i≥0 f (x[0:i]);

Kechris, 1995). Note that the monotonicity of f ensures that the value fω(x)

is well defined for all x ∈ {0, 1}ω. Intuitively, the value fω(x) corresponds to
the finite or infinite word that is ultimately approached by the sequence of
growing prefixes 〈 f (x[0:i]) : i ≥ 0〉.

According to these definitions, in this letter, an ω-translation ψ :
{0, 1}ω −→ {0, 1}≤ω will be called continuous3 if there exists a monotone
function f : {0, 1}∗ −→ {0, 1}∗ such that fω = ψ ; it will be called recursive
continuous if there exists a monotone and recursive function f : {0, 1}∗ −→
{0, 1}∗ such that fω = ψ .

We now come up to the computational power of interactive recurrent
neural networks. More precisely, the following result shows that IRNN[Q]s
and ITMs have equivalent computational capabilities. The two models of
computation actually realize the class of all ω-translations that can be ob-
tained as limits of monotone recursive functions:

Theorem 3. IRNN[Q]s and ITMs have the same computational power. More
precisely, for any ω-translation ψ : {0, 1}ω −→ {0, 1}≤ω, the following conditions
are equivalent:

A. ψ is realizable by some IRNN[Q].
B. ψ is realizable by some ITM.
C. ψ is recursive continuous.

Proof. The proof is a direct consequence of propositions 1 and 2 of section 6.

The next result describes the computational power of interactive real-
weighted recurrent neural networks. It states that IRNN[R]s and ITM/As
have an equivalent computational power and realize precisely the class
of all ω-translations that can be obtained as limits of monotone but not
necessarily recursive functions:

Theorem 4. IRNN[R]s and ITM/As have the same computational power. More
precisely, for any ω-translation ψ : {0, 1}ω −→ {0, 1}≤ω, the following conditions
are equivalent:

A. ψ is realizable by some IRNN[R].
B. ψ is realizable by some ITM/A.
C. ψ is continuous.

3The choice of this name comes from the fact that continuous functions over the Cantor
space C = {0, 1}ω can be precisely characterized as limits of monotone functions. We chose
to extend this term in the broader context here of functions from {0, 1}ω to {0, 1}≤ω that
can also be expressed as limits of monotone functions.

1006 J. Cabessa and H. Siegelmann

Proof. The proof is a direct consequence of propositions 3 and 4 in section 7.

Finally, it follows from the two preceding results that as for the case of
classical computation, analog recurrent neural networks also have super-
Turing computational capabilities in our context of interactive computation:

Theorem 5. IRNN[R]s are strictly more powerful than ITMs. More precisely,
IRNN[R]s can realize uncountably many more ω-translations than ITMs.

Proof. We first recall that ℵ0 and 2ℵ0 denote the cardinalities of the sets
of natural and real numbers, respectively, and that the difference set ob-
tained by removing the natural numbers from the real numbers still has
cardinality 2ℵ0 . Any ω-translation ψ realized by some ITM can obviously
also be realized by some ITM/A, and hence also by some IRNN[R]. It fol-
lows that IRNN[R]s are at least as powerful as ITMs. Moreover, since there
are 2ℵ0 monotone functions from {0, 1}∗ into {0, 1}∗ but only ℵ0 recursive
monotone functions from {0, 1}∗ into {0, 1}∗, there are also 2ℵ0 continuous
ω-translations whereas only ℵ0 recursive continuous ω-translations. There-
fore, theorems 4C and 3C show that IRNN[R]s can realize 2ℵ0 many more
ω-translations than ITMs.

Theorems 3 and 4 furnish a complete characterization of the compu-
tational powers of IRNN[Q]s and IRNN[R]s according to our interactive
paradigm of computation. Theorem 5 shows further that IRNN[R]s are
actually super-Turing.

More precisely, the equivalence between conditions A and B of theorem 3
provides a proper generalization in our interactive context of the classical
equivalence between RNN[Q]s and TMs stated in theorem 1. The equiva-
lence between conditions B and C of theorem 3 corresponds to the trans-
lation in the present computational context of the results of van Leeuwen
and Wiedermann (2006, theorems 7 and 8) concerning the characterization
of partial and total interactive ω-translations from {0, 1}ω to {0, 1}ω in terms
of limits of monotone recursive functions. Furthermore, the equivalence
between conditions A and B of theorem 4 provides some kind of interactive
counterpart to the equivalence in polynomial time of computation between
RNN[R]s and TM/poly(A)s stated in theorem 2. In this case, the consid-
eration of polynomial time of computation is no longer relevant since the
systems perform a never-ending sequential interactive exchange of infor-
mation. Condition C of theorem 4 provides a new precise mathematical
characterization of the computational power of ITM/A and IRNN[R]s.

Besides, following the approach of van Leeuwen and Wiedermann
(2006), we could also have conceived interactive computing devices as
performing partial ω-translations from {0, 1}ω to {0, 1}ω rather than total
ω-translations from {0, 1}ω to {0, 1}≤ω. The partial ω-translation ϕD realized
by some interactive device D would be simply defined by ϕD(s) = os if os ∈
{0, 1}ω and ϕD(s) undefined if os ∈ {0, 1}∗, where os ∈ {0, 1}≤ω corresponds

Computational Power of Interactive Recurrent Neural Networks 1007

to the output produced by D when receiving input s ∈ {0, 1}ω. In this
case, the computational equivalences between IRNN[Q]s and ITMs, as well
as between IRNN[R]s and ITM/As, would remain valid, and hence the
super-Turing capabilities of the IRNN[R]s will hold true. Moreover, the
partial ω-translations performed by ITM/As would correspond precisely
to the partial functions ϕ : {0, 1}ω −→ {0, 1}ω such that dom(ϕ) ∈ �0

2 and
ϕ|dom(ϕ) : dom(ϕ) ⊆ {0, 1}ω −→ {0, 1}ω is continuous in the classical sense
(see Kechris, 1995, for a precise definition of �0

2-sets and continuous func-
tions in the Cantor space {0, 1}ω).

6 IRNN[Q]s and ITMs

This section is devoted to the proof of theorem 3. The following proposition
establishes the equivalence between conditions B and C of theorem 3:

Proposition 1. Let ψ be some ω-translation. Then ψ is realizable by some ITM
iff ψ is recursive continuous.

Proof. Let ϕM be an ω-translation realized by some ITM M. We show
that ϕM is recursive continuous. For this purpose, consider the function
f : {0, 1}∗ −→ {0, 1}∗, which maps every finite word u to the unique corre-
sponding finite word produced by M after |u| steps of computation when
u · x is provided as input bit by bit for any suffix x ∈ {0, 1}ω. In other words,
f (u) = output string produced by M after |u| time steps of computation on
input u · x, for any x ∈ {0, 1}ω.

In order to see that f is well defined, we remark that the definition of f is
independent of the choice of x. In fact, by definition of our interactive sce-
nario, after the first |u| time steps of computation, the machine M working
on input u · x has received only the |u| first bits of u · x, namely, u which
shows that its current output string is so far absolutely not influenced by
the suffix x. Hence, the function f is well defined.

Now, sinceM is driven by the program of a TM, the function f can be com-
puted by the classical TM M′, which, on any finite input u ∈ {0, 1}∗, works
exactly like M during the |u| first steps of computations and then halts. It
follows that f is recursive. Moreover, if u ⊆ v, then since the definition of f
is independent of the suffix x and since u · (v − u) = v, the values f (u) and
f (v) can be seen as the output strings produced by M after, respectively,
|u| and |v| time steps of computation over the same input u · (v − u) · x, for
some x ∈ {0, 1}ω. Since |u| ≤ |v|, one necessarily has f (u) ⊆ f (v). Therefore,
f is monotone.

We now prove that ϕM = fω. Given some input stream s ∈ {0, 1}ω,
we consider in turn the two possible cases where either ϕM(s) ∈ {0, 1}ω
or ϕM(s) ∈ {0, 1}∗. First, suppose that ϕM(s) ∈ {0, 1}ω. This means that
the sequence of partial output strings produced by M on input s after
i time steps of computation is strictly increasing as i grows to infinity,

1008 J. Cabessa and H. Siegelmann

that is, limi→∞ | f (s[0:i])| = ∞. Moreover, for any i ≥ 0, the word f (s[0:i])
corresponds to the output stream produced by M after i + 1 time steps
of computation over the input s[0:i] · (s − s[0:i]) = s. Yet since the output
stream produced by M over the input s is by definition ϕM(s), it fol-
lows that f (s[0:i]) is a prefix of ϕM(s) for all i ≥ 0. Hence, the two prop-
erties limi→∞ | f (s[0:i])| = ∞ and f (s[0:i]) ⊆ ϕM(s) ∈ {0, 1}ω for all i ≥ 0
ensure that ϕM(s) is the unique infinite word that contains each word
of { f (s[0:i]) : i ≥ 0} as a finite prefix, which is to say, by definition, that
ϕM(s) = limi≥0 f (s[0:i]) = fω(s). Second, suppose that ϕM(s) ∈ {0, 1}∗. This
means that the sequence of partial output strings produced by M on
input s after i time steps of computation becomes stationary from time
step j onward, that is, limi→∞ | f (s[0:i])| < ∞. Hence, the entire finite out-
put stream ϕM(s) must necessarily have been produced after a finite
amount of time, and thus ϕM(s) ∈ { f (s[0:i]) : i ≥ 0}. Moreover, as argued
in the previous case, f (s[0:i]) is a prefix of ϕM(s) for all i ≥ 0. Hence,
the three properties limi→∞ | f (s[0:i])| < ∞, ϕM(s) ∈ { f (s[0:i]) : i ≥ 0}, and
f (s[0:i]) ⊆ ϕM(s) ∈ {0, 1}∗ for all i ≥ 0 ensure that ϕM(s) is the smallest
finite word that contains each word of { f (s[0:i]) : i ≥ 0} as a finite prefix,
which is to say by definition that ϕM(s) = limi≥0 f (s[0:i]) = fω(s). There-
fore, ϕM(s) = fω(s) for any s ∈ {0, 1}ω, that is, ϕM = fω, which means that
ϕM is recursive continuous.

Conversely, let ψ be a recursive continuous ω-translation. We show that
ψ is realizable by some ITM M. Since ψ is recursive continuous, there exists
a monotone recursive function f : {0, 1}∗ −→ {0, 1}∗ such that fω = ψ . Now,
consider the following procedure 1:

http://www.mitpressjournals.org/action/showImage?doi=10.1162/NECO_a_00263&iName=master.img-000.jpg&w=309&h=203

Computational Power of Interactive Recurrent Neural Networks 1009

Since f is recursive, procedure 1 consists of a never-ending succession
of only recursive steps. Hence, there indeed exists some ITM M that per-
forms procedure 1 in the following way. The machine M keeps outputting
λ symbols while simulating any internal nonoutputting instructions of
procedure 1 and then outputs the current word v−u bit by bit every time it
reaches the instruction “output v−u bit by bit.” Therefore, on any infinite
input string s ∈ {0, 1}ω, procedure 1 and the machine M will produce the
very same sequences of nonsilent output bits os ∈ {0, 1}≤ω after infinitely
many time steps.

We now prove that ϕM = ψ . Note that for any input stream s ∈ {0, 1}ω,
the finite word that has been output by M at the end of each instruction
output v−u bit by bit corresponds precisely to the finite word f (s[0:i])
currently stored in the variable v. Hence, after infinitely many time steps, the
finite or infinite word ϕM(s) output by M contains all words of { f (s[0:i]) :
i ≥ 0} as a finite prefix. Moreover, if ϕM(s) is finite, its value necessarily
corresponds to some current content of the variable v, that is, to some
finite word f (s[0: j]) for some j ≥ 0. Hence, irrespective of whether ϕM(s)
is finite or infinite, one always has ϕM(s) = limi≥0 f (s[0:i]) = fω(s), for any
s ∈ {0, 1}ω. Therefore, ϕM = fω = ψ , meaning that ψ is realized by M.

The following result establishes the equivalence between conditions A
and C of theorem 3:

Proposition 2. Let ψ be some ω-translation. Then ψ is realizable by some
IRNN[Q] iff ψ is recursive continuous.

Proof. Let ϕN be an ω-translation realized by some IRNN[Q] N . We show
that ϕN is recursive continuous. For this purpose, consider the function
f : {0, 1}∗ −→ {0, 1}∗, which maps every finite word u to the unique cor-
responding finite word output by N after |u| steps of computation when
u · x is provided as input bit by bit, for any x ∈ {0, 1}ω. First, since N is an
IRNN[Q], the function f can be computed by some RNN[Q] N ′, which, on
every input u, would behave exactly like N during the |u| steps of compu-
tation and then stops. Hence, the equivalence between RNN[Q]s and TMs
ensures that f is recursive (Siegelmann & Sontag, 1995). Moreover, by simi-
lar arguments as in the proof of proposition 1, the interactive deterministic
behavior of N ensures that f is monotone and that ϕN = fω. Therefore, ϕN
is recursive continuous.

Conversely, let ψ : {0, 1}ω −→ {0, 1}≤ω be recursive continuous. We show
that ψ is realizable by some IRNN[Q] N . Since ψ is recursive continuous,
there exists a monotone recursive function f : {0, 1}∗ −→ {0, 1}∗ such that
fω = ψ . Now, we describe an infinite procedure that, for any infinite word
s = s(0)s(1)s(2) · · · provided bit by bit, eventually produces a correspond-
ing pair of infinite words (ps, qs). The procedure uses the successive values
of f (s[0:i]) in order to build the corresponding sequences ps and qs block by

1010 J. Cabessa and H. Siegelmann

block. More precisely, at stage i + 1, the procedure computes f (s[0:i + 1]).
By monotonicity of f, the word f (s[0:i + 1]) extends f (s[0:i]). If this ex-
tension is strict, the procedure concatenates this extension to the current
value of ps and concatenates a block of 1’s of the same length to the cur-
rent value of qs. Otherwise the procedure simply concatenates a 0 to the
current values of ps and qs. Here we give an illustration and pseudo-code
of this procedure:

s 0 1 1 0 1 1 0 · · ·
f (s[0:i]) λ λ 10 10 10 101 101100 · · ·

ps 0 0 10 0 0 1 100 · · ·
qs 0 0 11 0 0 1 111 · · ·

Since f is recursive, procedure 2 consists of a succession of recursive
computational steps:

Hence, according to the equivalence between RNN[Q]s and TMs, there
indeed exists some IRNN[Q] N that performs procedure 2 in the following
way: the network N keeps outputting pairs of (0, 0)s every time it simu-
lates some internal nonoutputting recursive computational instruction of
procedure 2, and then outputs the current pair (v − u, 1|v−u|) bit by bit every
time it reaches up the instructions ps ← ps · (v − u) and qs ← qs · 1|v−u|.

http://www.mitpressjournals.org/action/showImage?doi=10.1162/NECO_a_00263&iName=master.img-001.jpg&w=309&h=234

Computational Power of Interactive Recurrent Neural Networks 1011

We finally prove that ϕN = ψ . A similar argument as in the proof of
proposition 1 shows that ϕN (s) = limi≥0 f (s[0:i]) = fω(s), for any s ∈ {0, 1}ω.
Therefore, ϕN = fω = ψ , meaning that ψ is realized by N .

7 IRNN[R]s and ITM/As

This section is devoted to the proof of theorem 4. The following proposition
establishes the equivalence between conditions B and C of theorem 4:

Proposition 3. Let ψ be some ω-translation. Then ψ is realizable by some ITM/A
iff ψ is continuous.

Proof. The proof resembles that of proposition 1. First, let ϕM be an ω-
translation realized by some TM/A M. We show that ϕM is continuous.
For this purpose, consider the function f : {0, 1}∗ −→ {0, 1}∗, which maps
every finite word u to the unique corresponding finite word output by M
after |u| steps of computation when u · x is provided as input bit by bit, for
any x ∈ {0, 1}ω. By similar arguments as in the proof of proposition 1, the
interactive deterministic behavior of N ensures that f is monotone and that
ϕM = fω. Therefore, ϕM is continuous.

Conversely, let ψ be a continuous ω-translation. We show that ψ is re-
alizable by some ITM/A M. The key idea is the following. Since ψ is con-
tinuous, there exists a monotone function f : {0, 1}∗ −→ {0, 1}∗ such that
fω = ψ . Hence, we consider the ITM/A M, which contains a precise de-
scription of f in its advice and simulates the behavior of f step by step. The
ω-translation ϕM eventually induced by M will then satisfy ϕM = fω = ψ ,
showing that ψ is indeed realized by M.

More precisely, for each i ≥ 0, let (zi, j)
2i

j=1 be the lexicographic enumera-
tion of the words of {0, 1}i, and let α′ : N −→ {0, 1, �}∗ be the function that
maps every integer i to the concatenation of all successive values f (zi, j)

separated by �’s. For instance, α′(2) = � f (00)� f (01)� f (10)� f (11)�. Further-
more, let α : N −→ {0, 1}∗ be the advice function that maps every integer i to
some suitable recursive binary encoding of α′(i), and consider the following
procedure 3, which precisely uses the advice function α:

http://www.mitpressjournals.org/action/showImage?doi=10.1162/NECO_a_00263&iName=master.img-002.jpg&w=309&h=111

1012 J. Cabessa and H. Siegelmann

Note that procedure 3 consists of a never-ending succession of recur-
sive steps and extrarecursive advice calls. Hence, there indeed exists some
ITM/A M that performs procedure 3 in the following way: the machine M
keeps outputting λ symbols while simulating any internal nonoutputting
computational instructions of procedure 3 and then outputs the current
word v−u bit by bit every time it reaches up the instruction “output v−u
bit by bit.”

We now prove that ϕM = ψ . A similar argument as in the proof of
proposition 1 shows that ϕM(s) = limi≥0 f (s[0:i]) = fω(s), for any s ∈
{0, 1}ω. Therefore, ϕM = fω = ψ , meaning that ψ is realized by M.

We now proceed to the equivalence between conditions A and C of
theorem 4. The proof is conceptually similar to that of proposition 3 but
requires more work to be achieved. More precisely, in order to prove that
any continuous ω-translation ψ can be realized by some IRNN[R], we first
consider a monotone function f that precisely implies ψ in the limit, such that
fω = ψ ; then recursively encode f into some real number r(f); and finally
prove the existence of an IRNN[R] N , which, thanks to the synaptic weight
r(f), is able to simulate the behavior of f step by step. The ω-translation ϕN
eventually induced by N will then satisfy ϕN = fω = ψ , showing that ψ is
indeed realized by N . The encoding and decoding approach is inspired by
the method that Siegelmann and Sontag (1994) described.

First, we need to show that any function f : {0, 1}∗ −→ {0, 1}∗ can be
suitably encoded by some real number r(f). For this purpose, for any finite
word z ∈ {0, 1}∗, let �z� ∈ {1, 3, 5}+ be the word obtained by doubling and
adding 1 to each successive bit of z if z �= λ, and being equal to 5 if z = λ—for
instance, �0100� = 1311. Accordingly, each value f (z) ∈ {0, 1}∗ of f can be
associated with the finite word � f (z)� ∈ {1, 3, 5}+. Each finite word � f (z)�
can then be encoded by the rational number r(f (z)) ∈ [0, 1] given by the
interpretation of � f (z)� in base 8, namely,

r(f (z)) =
| f (z)|−1∑

i=0

� f (z)�(i)
8i+1 .

http://www.mitpressjournals.org/action/showImage?doi=10.1162/NECO_a_00263&iName=master.img-003.jpg&w=309&h=85

Computational Power of Interactive Recurrent Neural Networks 1013

Similarly, the whole function f can be associated with the infinite word
� f� ∈ {1, 3, 5, 7}ω defined by

� f� = 7 � f (0)� 7 � f (1)� 7 � f (00)� 7 � f (01)� 7 � f (10)� 7

� f (11)� 7 � f (000)� 7 · · · ,

where the successive values of f are listed in lexicographic order of their
arguments and separated by 7’s. The infinite word � f� can then be en-
coded by the real number r(f) ∈ [0, 1] given by the interpretation of � f� in
base 8:

r(f) =
∞∑

i=0

� f�(i)
8i+1 .

The real r(f) provides a nonambiguous encoding of the function f (see
Siegelmann & Sontag, 1994, for more details about such encoding).

An analogous result to Siegelmann and Sontag (1994, lemma 3.2) shows
that for any function f : {0, 1}∗ −→ {0, 1}∗, there exists a corresponding
(noninteractive) RNN[R] N f , which, given a suitable encoding of any finite
word z ∈ {0, 1}∗ as input, is able to retrieve the rational encoding r(f (z)) as
output. We let (zi)i>0 denote the lexicographic enumeration of the words of
{0, 1}+:

Lemma 1. Let f : {0, 1}∗ −→ {0, 1}∗ be some function. Then there exists an
RNN[R] N f containing one continuous input cell, one continuous output cell,
and a synaptic real weight equal to r(f), and such that, starting from the zero
initial state, and given the input signal (1 − 2−k)0ω, produces an output of the
form 0∗r(f (zk))0

ω.

Proof. We give a sketch of the proof (see Siegelmann & Sontag, 1994,
lemma 3.2, for more details). The idea is that the network N f first stores the
integer k in memory. Then N f decodes step by step the infinite sequence
� f� from its synaptic weight r(f) until reaching the (k + 1)th letter 7 of that
sequence. After that, N f knows that it has gone through the suitable block
� f (zk)� of the sequence � f� and proceeds to a reencoding of that last block
into the rational number r(f (zk)). The value r(f (zk)) is finally provided as
output. The technicality of the proof resides in showing that the decoding
and encoding procedures are indeed performable by such an RNN[R]. This
property results from the fact that both procedures are recursive, and any
recursive function can be simulated by some rational-weighted network,

1014 J. Cabessa and H. Siegelmann

as Siegelmann and Sontag (1995) show. Note that N f contains only r(f) as
nonrational weight.

The previous lemma enables us to prove the equivalence between con-
ditions A and C of theorem 4:

Proposition 4. Let ψ be some ω-translation. Then ψ is realizable by some
IRNN[R] iff ψ is continuous.

Proof. The proof resembles that of proposition 2. First, let ϕN be an ω-
translation realized by some IRNN[R] N . We show that ϕN is continuous.
For this purpose, consider the function f : {0, 1}∗ −→ {0, 1}∗, which maps
every finite word u to the unique corresponding finite word output by N
after |u| steps of computation when u · x is provided as input bit by bit, for
any x ∈ {0, 1}ω. By similar arguments as in the proof of proposition 1, the
interactive deterministic behavior of N ensures that f is monotone and that
ϕN = fω. Therefore, ϕN is continuous.

Conversely, let ψ : {0, 1}ω −→ {0, 1}≤ω be continuous. We show that ψ is
realizable by some IRNN[R] N . For this purpose, let f : {0, 1}∗ −→ {0, 1}∗
be a monotone function such that fω = ψ , and let N f be the corresponding
RNN[R] described in lemma 1. Once again, (zi)i>0 denotes the lexicographic
enumeration of the words of {0, 1}+, and num : {0, 1}+ −→ N is the function
that maps any nonempty word x to its corresponding numbering in the the
enumeration (zi)i>0, that is, num(x) = i iff x = zi.

Now we describe an infinite procedure very similar to that of the proof of
Proposition 2, which, for any infinite word s = s(0)s(1)s(2) · · · provided bit
by bit, eventually produces a corresponding pair of infinite words (ps, qs).
The procedure uses the successive values of f (s[0:i]) in order to build the
corresponding sequences ps and qs block by block. More precisely, at stage
i + 1, the procedure computes f (s[0:i + 1]) by involving the capabilities
of the RNN[R] N f . By the monotonicity of f, the word f (s[0:i + 1]) extends
f (s[0:i]). If this extension is strict, the procedure concatenates this extension
to the current value of ps and concatenates a block of 1’s of the same length
to the current value of qs. Otherwise the procedure simply concatenates
a 0 to the current values of ps and qs. Here we give an illustration and
pseudo-code of this procedure:

s 0 1 1 0 1 1 0 · · ·
f (s[0:i]) λ λ 10 10 10 101 101100 · · ·

ps 0 0 10 0 0 1 100 · · ·
qs 0 0 11 0 0 1 111 · · ·

Computational Power of Interactive Recurrent Neural Networks 1015

Note that procedure 4 consists of a succession of recursive computational
steps as well as extrarecursive calls to the RNN[R] N f provided by lemma 1:

Hence, there indeed exists some IRNN[R] N that contains N f as a
subnetwork and performs procedure 4 in the following way: The network
N keeps outputting pairs of (0, 0)s every time it simulates some internal
nonoutputting computational instruction of procedure 4 and then outputs
the current pair (v − u, 1|v−u|) bit by bit every time it reaches the instructions
“ps ← ps · (v − u)” and “qs ← qs · 1|v−u|.”

We finally prove that ϕN = ψ . A similar argument as in the proof of
proposition 1 shows that ϕN (s) = limi≥0 f (s[0:i]) = fω(s), for any s ∈ {0, 1}ω.
Therefore, ϕN = fω = ψ , meaning that ψ is realized by N .

8 Conclusion

This letter provides a study of the computational powers of recurrent neural
networks in a basic context of interactive and active memory computational

http://www.mitpressjournals.org/action/showImage?doi=10.1162/NECO_a_00263&iName=master.img-004.jpg&w=309&h=280

1016 J. Cabessa and H. Siegelmann

paradigm. More precisely, we proved that rational and analog interactive
neural networks have the same computational capabilities as interactive
Turing machine and interactive Turing machines with advice, respectively.
We also provided a precise characterization of each of these computational
powers. It follows from these results that in the interactive just as in the
classical framework, analog neural networks turn out to reveal super-Turing
computational capabilities.

Our characterization of the computational power of interactive recurrent
neural networks (see theorems 3, 4, and 5) is more than a simple interactive
generalization of the previous work by Siegelmann and Sontag (1994, 1995),
summarized by theorems 1 and 2 of this letter. Indeed, we believe that
the consideration of an interactive computational framework represents
an important step toward the modeling of a more biologically oriented
paradigm of information processing in neural networks.

Also, theorems 3, 4, and 5 do not appear to us as straightforward
generalizations of theorems 1 and 2, since the interactive situation contrasts
with the classical one on many significant aspects. From a technical point
of view, the mathematical tools involved in the modeling of the classical
and interactive computational frameworks are notably different. The
classical situation involves languages of finite binary strings, whereas the
interactive situation involves translations of infinite binary strings. The two
approaches clearly appeal to distinct kinds of reasoning. Only the encoding
and decoding procedures used in the proofs are similar. In addition, the
proof techniques themselves are different in spirit. In the classical situation,
the equivalence between the two computational models is obtained by sim-
ulating any device of one class by a device of the other class, and conversely.
In the interactive context, the equivalence is obtained by proving that
both models of computation realize the same class of ω-translations. This
alternative approach is used on purpose in order to obtain more complete
results in the sense that an additional purely mathematical characterization
of the computational powers of IRNN[Q]s, ITMs, IRNN[R]s, and ITM/As
is also provided in this way. Furthermore, as opposed to the classical
situation, a simple counting argument shows that IRNN[R]s do not actually
have unbounded computational power. Indeed, there are 22ℵ0 possible
ω-translations, whereas there are only 2ℵ0 IRNN[R]s, meaning that there
necessarily exist uncountably many ω-translations that cannot be realized
by some IRNN[R]. This feature actually makes the interactive results more
interesting than the classical ones since the model of IRNN[R]s never
becomes pathologically (unboundedly) powerful under some specific
condition.

This work can be extended in several directions. First, in the per-
spective of evolving interactive systems presented by van Leeuwen and
Wiedermann (2001a), it is envisioned to consider the concept of a interac-
tive recurrent neural network with synaptic plasticity as a neural network
whose synaptic weights would be able to evolve and change over time. It

Computational Power of Interactive Recurrent Neural Networks 1017

is conjectured that such networks would be equivalent to interactive ana-
log neural networks and interactive machines with advice, thus realizing
precisely the class of all continuous ω-translations. More generally, we also
envision extending the possibility of evolution to several important aspects
of the architecture of the networks, for example, the numbers of neurons (to
capture neural birth and death), and the connectivity. Ultimately the combi-
nation of all such evolving features would provide a better understanding
of the computational power of more and more biologically oriented models
of interactive neural networks.

A more general interactive paradigm could also be considered, where
not only the device but also the environment would be allowed to
stay silent during the computation. In such a framework, any interac-
tive device D would perform a no more functional yet relational ω-
translation of information RD ⊆ {0, 1}≤ω × {0, 1}≤ω (induced by the total
function ϕD : {0, 1, λ}ω −→ {0, 1, λ}ω achieved by the device D). A precise
understanding of either the function ϕD or the relation RD preformed
by ITMs and ITM/As would be of specific interest. We believe that the
computational equivalences between ITMs and IRNN[Q]s, as well as be-
tween ITM/As and IRNN[R]s, still hold in this case. However, a pre-
cise mathematical characterization of that computational power remains
unclear.

An even more general interactive framework could also be considered
where the machines would be able to keep control of the bits that have
already been output. In other words, at any time step of the computation,
the machine would be allowed to erase one or several bits that have previ-
ously been output in order to come back on its decision and replace them
by other bits. This approach could be justified from a machine learning per-
spective. Indeed, the erasing decision of the machine could be interpreted
as the possibility for the machine to reconsider and correct its previous
output behavior from the perspective of its current learning level. In such
a machine learning interactive framework, the considered machines would
certainly be able to compute ω-translations that are strictly more compli-
cated than continuous. A better comprehension of such functions could be of
interest.

Finally, we believe that the study of the computational power of more
realistic neural models involved in more biologically-oriented interactive
computational contexts might bring further insights to the understanding
of brain functioning in general.

Acknowledgments

We gratefully acknowledge research support from the Swiss National Sci-
ence Foundation under grant number PBLAP2-132975 and from the Office
of Naval Research under grant number N00014-09-1-0069.

1018 J. Cabessa and H. Siegelmann

References

Goldin, D. (2000). Persistent Turing machines as a model of interactive computation.
In K.-D. Schewe & B. Thalheim (Eds.), Foundations of information and knowledge
systems (pp. 116–135). Berlin: Springer.

Goldin, D., Smolka, S. A., Attie, P. C., & Sonderegger, E. L. (2004). Turing machines,
transition systems, and interaction. Inf. Comput., 194, 101–128.

Goldin, D., Smolka, S. A., & Wegner, P. (2006). Interactive computation: The new
paradigm. New York: Springer-Verlag.

Goldin, D., & Wegner, P. (2008). The interactive nature of computing: Refuting the
strong Church–Turing thesis. Minds Mach., 18, 17–38.

Kechris, A. S. (1995). Classical descriptive set theory. New York: Springer-Verlag.
Kilian, J., & Siegelmann, H. T. (1996). The dynamic universality of sigmoidal neural

networks. Inf. Comput., 128(1), 48–56.
Kleene, S. C. (1956). Representation of events in nerve nets and finite automata. In

C. E. Shannon & J. McCarthy (Eds.), Automata studies (pp. 3–42). Princeton, NJ:
Princeton University Press.

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in
nervous activity. Bulletin of Mathematical Biophysics, 5, 115–133.

Minsky, M. L. (1967). Computation: Finite and infinite machines. Upper Saddle River,
NJ: Prentice Hall.

Siegelmann, H. T. (1995). Computation beyond the Turing limit. Science, 268(5210),
545–548.

Siegelmann, H. T. (1999). Neural networks and analog computation: Beyond the Turing
limit. Cambridge, MA: Birkhauser.

Siegelmann, H. T., & Sontag, E. D. (1994). Analog computation via neural networks.
Theor. Comput. Sci., 131(2), 331–360.

Siegelmann, H. T., & Sontag, E. D. (1995). On the computational power of neural
nets. J. Comput. Syst. Sci., 50(1), 132–150.

Tsuda, I. (2001). Toward an interpretation of dynamic neural activity in terms of
chaotic dynamical systems. Behav. Brain Sci., 24(5), 793–847.

Tsuda, I. (2009). Hypotheses on the functional roles of chaotic transitory dynamics.
Chaos, 19, 015113-1–015113-10.

Turing, A. M. (1936). On computable numbers, with an application to the
Entscheidungsproblem. Proc. London Math. Soc., 2(42), 230–265.

van Leeuwen, J., & Wiedermann, J. (2001a). Beyond the Turing limit: Evolving in-
teractive systems. In L. Pacholski & P. Ružicka (Eds.), SOFSEM 2001: Theory and
practice of informatics (pp. 90–109). Berlin: Springer.

van Leeuwen, J., & Wiedermann, J. (2001b). The Turing machine paradigm in con-
temporary computing. In B. Engquist & W. Schmid (Eds.), Mathematics unlimited:
2001 and beyond (pp. 1139–1155). Berlin: Springer-Verlag.

van Leeuwen, J., & Wiedermann, J. (2006). A theory of interactive computation. In
D. Goldin, S. A. Smolka, & P. Wegner (Eds.), Interactive computation (pp. 119–142).
Berlin: Springer.

van Leeuwen, J., & Wiedermann, J. (2008). How we think of computing today. In A.
Beckmann, C. Dimitracopoulos, & B. Löwe (Eds.), Logic and theory of algorithms
(pp. 579–593). Berlin: Springer.

Computational Power of Interactive Recurrent Neural Networks 1019

Wegner, P. (1997). Why interaction is more powerful than algorithms. Commun. ACM,
40, 80–91.

Wegner, P. (1998). Interactive foundations of computing. Theor. Comput. Sci., 192,
315–351.

Yamaguti, Y., Kuroda, S., Fukushima, Y., Tsukada, M., & Tsuda, I. (2011). A math-
ematical model for Cantor coding in the hippocampus. Neural Networks, 24(1),
43–53.

Received June 15, 2011; accepted October 18, 2011.

This article has been cited by:

