
Robust Optimal-Size Implementation
of Finite State Automata with Synfire

Ring-Based Neural Networks

Jérémie Cabessa1,2(B) and Jǐŕı Š́ıma2

1 Laboratory of Mathematical Economics and Applied Microeconomics,
University Paris 2 – Panthéon-Assas, 4, Rue Blaise Desgoffe, 75006 Paris, France

jeremie.cabessa@u-paris2.fr
2 Institute of Computer Science, Czech Academy of Sciences,

P. O. Box 5, 18207 Prague 8, Czech Republic
sima@cs.cas.cz

Abstract. Synfire rings are important neural circuits capable of con-
veying synchronous, temporally precise and self-sustained activities in a
robust manner. We describe a robust and optimal-size implementation
of finite state automata with neural networks composed of synfire rings.
More precisely, given any finite automaton, we build a corresponding
neural network partly composed of synfire rings and capable of simu-
lating it. The synfire ring activities encode the successive states of the
automaton throughout its computation. The robustness of the network
results from its architecture, which involves synfire rings and duplicated
core components. We finally show that the network’s size is asymptoti-
cally optimal: for an automaton with n states, the network has Θ(

√
n)

cells.

Keywords: Recurrent neural networks · Threshold circuits ·
Finite state automata · Synfire rings

1 Introduction

In theoretical neural computation, the computational capabilities of various neu-
ral models has been shown to range from the finite automaton degree, up to the
Turing, or even to the super-Turing levels (see the thorough survey [24]). In
summary, Boolean recurrent neural networks are computationally equivalent to
finite state automata [15,19]; sigmoidal rational-weighted neural networks are
Turing complete [22]; and sigmoidal real-weighted and evolving neural networks
are super-Turing powerful [5,21].

Supports from DARPA – Lifelong Learning Machines (L2M) program, cooperative
agreement No. HR0011-18-2-0023, as well as from the ICS CAS RVO: 67985807 and
the Czech Science Foundation, grant No. 19-05704S, are gratefully acknowledged.

c© Springer Nature Switzerland AG 2019
I. V. Tetko et al. (Eds.): ICANN 2019, LNCS 11727, pp. 806–818, 2019.
https://doi.org/10.1007/978-3-030-30487-4_62

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30487-4_62&domain=pdf
http://orcid.org/0000-0002-5394-5249
https://doi.org/10.1007/978-3-030-30487-4_62

Robust Optimal-Size Synfire Ring Automata 807

In the 90’s, the equivalence between Boolean neural networks and finite state
automata has been extensively studied, motivated by the possibility to imple-
ment abstract machines on parallel hardwares. In particular, it has been shown
that any deterministic automaton with n states can be implemented by a neural
network of optimal size containing Θ(

√
n) neurons [11,13]. The energy complex-

ity of this network construction can be minimized without changing its optimal
size [23]. Furthermore, any regular language described by a regular expression
of length � can be recognized by an optimal-size neural network having Θ(�)
units [25].

But the neural models involved in these studies fail to capture biological fea-
tures that are so essential to brain information processing. For instance, the com-
putational behaviors of those networks do certainly comply with the paradigms
of computation of biological neural systems: the computational states are rep-
resented by discrete (spiking) configurations of the networks, rather than by
sustained and temporally robust activities of cell assemblies. Also, the networks’
dynamics is not robust to the possibility of architectural failures.

In biology, the concept of synfire chains and synfire rings have been demon-
strated to play significant roles in the processing and coding of information in
the brain. Synfire chains are feedforward neural circuits whose every layer is
connected to the next by means of excitatory convergent/divergent synaptic
patterns [1,2,7,12,18]. According to this architecture, the neurons of each layer
tend to fire simultaneously, and the firing activity propagates through the suc-
cessive layers in a synchronized manner. Hence, synfire chains are able to convey
repeated complex spatiotemporal patterns of discharges in a robust and highly
temporally precise way. Synfire rings are looping synfire chains [16,26]. As an
additional dynamical feature, the ring shape gives rise to self-sustained activi-
ties, which correspond to attractor dynamics. Synfire chains and rings have been
shown to spontaneously emerge in self-organizing networks subjected to various
kinds of synaptic plasticity (see for instance [8,9,14,16,26]).

Based on these considerations, it has been shown that finite state automata
can be simulated by Boolean recurrent neural networks composed of synfire
rings [4]. The results have then been generalized to the more biological cases
of networks of Izhikevich spiking neurons [3], and even to Hodgkin-Huxley neu-
rons [6]. The obtained architecture is, to a certain extent, robust to synaptic
pruning as well as to the introduction of synaptic noises.

Here, we extend these results by describing a robust optimal-size implementa-
tion of finite state automata with synfire ring-based neural networks. The paper
is organized as follows. Section 2 introduces the concepts of Boolean neural net-
works and synfire rings. Section 3 recalls the definition of finite state automata,
presents the simulation result of finite automata by optimal-size threshold cir-
cuits [17], and describes the generalization of this construction to the context
of Boolean neural networks [11]. Section 4 contains our results. Given any finite
automaton, we build a robust and optimal-size neural network partly composed
of synfire rings capable of simulating it. The synfire ring activities encode the
successive states of the automaton throughout its computation. The robustness

808 J. Cabessa and J. Š́ıma

of the network results from its architecture, which is composed of synfire rings
and duplicated core components. Based on previous work [11,17], we show that
the network’s size is asymptotically optimal: for an automaton with n states, the
network has Θ(

√
n) cells. The implementation of this construction is deferred to

an extended journal version of this paper. Finally, Sect. 5 offers a brief conclusion.

2 Neural Networks and Synfire Rings

Boolean Neural Networks. A Boolean recurrent neural network (BRNN) N
consists of a synchronous network of Boolean cells related together in a general
architecture. The network is composed of M input neurons (ui)M

i=1 and N inter-
nal neurons (xi)N

i=1. The dynamics of network is computed as follows: given the
activation values of the input neurons (uj(t))M

j=1 and internal neurons (xj(t))N
j=1

at time step t, the activation values of the internal neurons (xi(t+1))N
i=1 at time

step t + 1 are given by the following equations:

xi(t + 1) = θ

⎛
⎝

N∑
j=1

aij · xj(t) +
M∑

j=1

bij · uj(t) + ci

⎞
⎠ , for i = 1, . . . , N (1)

where aij = w(xj , xi) and bij = w(uj , xi) are the weights of the synaptic con-
nections from xj to xi and from uj to xi, respectively, ci is the bias of cell xi,
and θ is the hard-threshold activation function defined by

θ(x) =

{
0 if x < 0
1 if x ≥ 0.

Neural networks can be exploited as acceptors of formal languages (here, we
consider languages over the alphabet {0, 1}) [20]. Towards this purpose, several
input/output protocols have been proposed in the literature. Here, a so-called
offline input/output is considered. The Boolean networks are provided with two
input cells called inp and val, as well as with a specific internal cell called out.
The neurons inp is used to transmit the input strings (words) to the network
in a sequential way, i.e., bit by bit. The neuron out outputs the decisions of the
network to accept or reject its inputs. The cell val is used to identify the time
steps at which new input bits are received.

Formally, suppose that the input (string) x = x0 · · · xm ∈ {0, 1}∗ is to be
processed by the BRNN N . Assume further that the successive bits of x are
presented to the network at successive time steps 0 < t0 < t1 < · · · < tm
separated by at least d ≥ 4 units of time, i.e., ti+1 − ti ≥ d for every i =
0, . . . ,m−1. The processing of input x is implemented as follows. The activations
values of inp, val are externally set to the following values

inp(t) =

{
xi if t = ti

0 otherwise
and val(t) =

{
1 if t = ti

0 otherwise

Robust Optimal-Size Synfire Ring Automata 809

for all t ≥ 0. Now, let t∗ = tm + d + 1. We say that x is accepted (resp. rejected)
by N iff out(t∗) = 1 (resp. out(t∗) = 0). The set of words accepted by N is
the language recognized by N , denoted by L(N). A language L is recognizable
by some BRNN if there exists some N such that L = L(N).

Synfire Rings. A synfire ring R of width w ≥ 1 and length � ≥ 2 is a specific
BRNN composed of � · w cells (xij)

w,�
i=1,j=1. For every j = 1, . . . , �, the cells

x1j , . . . , xwj is the j-th layer of R, and for every i = 1, . . . , w, the cells xi1, . . . , xi�

form the i-th level of R. For every i = 1, . . . , w − 1, each cell of the i-th layer
is connected to all cells of the (i + 1)-th layer with connections of weight 1.
Also, each cell of the �-th layer is connected to all cells of the 1-st layer with
connections of weight 1.

3 Finite State Automata and Boolean Neural Networks

Finite State Automata. A deterministic finite state automaton (DFSA) is a
tuple A = (Q,Σ, δ, q0, F), where Q = {q0, . . . , qn−1} is a finite set of states, Σ
is a finite alphabet of input symbols (here, Σ = {0, 1}), δ: Q × Σ −→ Q is the
transition function, q0 ∈ Q is the initial state and F ⊆ Q is the set of final states.
Each relation of the form δ(q, x) = q′ signifies that if the automaton is in state
q ∈ Q and reads input symbol x ∈ Σ, then it will move to state q′ ∈ Q.

For any input (string) x = x0x1 · · · xm ∈ Σ∗, the computation of A over x is
the finite sequence A(x) =

(
(qi0 , x0, qi1), (qi1 , x1, qi2), . . . , (qim , xm, qim+1)

)
such

that qi0 = q0 and δ(qik , xk) = qik+1 , for all k = 0, . . . , m. Such a computation is
usually denoted as

A(x) : q0
x0−→ qi1

x1−→ qi2 · · · qim
xm−−→ qim+1 .

The input x is said to be accepted by A iff qim+1 ∈ F . The set of all inputs
accepted by A is the language recognized by A. Finite state automata recognize
the class of regular languages. A finite state automaton is generally represented
as a directed graph: the nodes and labelled edges of the graph represent the
states and transitions of the automaton [10].

Note that if |Q| = n, then each state q ∈ Q can be encoded by a corresponding
Boolean vector q = (q1, . . . , qp) ∈ {0, 1}p, where p = �log n� + 1. The first p − 1
bits q1, . . . , qp−1 encode the “value” of q and the last bit qp encodes the “F -
membership” of q, i.e., qp = 1 iff q ∈ F . Accordingly, the transition function
δ : Q×{0, 1} −→ Q can naturally be encoded by the Boolean transition function
f δ : {0, 1} × {0, 1}p −→ {0, 1}p defined by f δ(x, q) = q′ iff δ(q, x) = q′ (for
the sake of consistency with the notations used in [23], we suppose that the
first argument of f δ represents an input bit of A, while the p remaining ones
represent the encoding of a state of A). In the sequel, the space {0, 1} × {0, 1}p

will be naturally identified with {0, 1}p+1.

Simulation of DFSA by Threshold Circuits. Using the method of threshold
circuit synthesis by Lupanov [17], any Boolean transition function f δ can be

810 J. Cabessa and J. Š́ıma

implemented by a four-layer threshold circuit C of asymptotically optimal size
Θ(

√
2p) = Θ(

√
n). The construction is fairly intricate and can be found in detail

in [23] (in a slightly different context). We now describe, layer by layer, the
threshold gates and connections of these circuit. The description of the weights
is not provided (due to space constraint) but can be found in [23]. For the sake
of consistency, we respect the notations used in [23]. This Lupanov circuit is
illustrated in Fig. 1.

Layer 0 (Inputs). Recall that the first argument of f δ represents the next
input bit x ∈ {0, 1} of A, while the remaining p ones encode the current state
q ∈ Q of A. The zeroth layer of C, denoted by l0, is composed of these p + 1
arguments, partitioned into three groups as follows:

l0 = {u1, . . . , up1} ∪ {v1, . . . , vp2} ∪ {z1, . . . , zp3}

where

p3 =
log(p + 1 − log p) − 2�
p1 =

⌊
p + 1 − log p − log(p + 1 − log p)

2

⌋

p2 = p + 1 − p3 − p1 .

These parameters are chosen such that, for sufficiently large p, the number of
units in C is asymptotically optimal.

Layer 1. The first layer l1 consists of the following set of 2p2 units:

l1 = {μb : b ∈ {0, 1}p2}.

Each input of the second group {v1, . . . , vp2} is connected to all units of this
layer.

Layer 2. The second layer l2 consists of the following set of p · 2p1+3 units:

l2 =
{
γϕa

kj , λϕa
kj , γψa

kj , λψa
kj : k ∈ {1 . . . , p}, j ∈ {0, . . . , 2p1 − 1}, a ∈ {0, 1}}

.

These units are organized into p blocks of 2p1+3 elements each parametrized by
index k ∈ {1 . . . , p}, and denoted as l21, . . . , l2p. Each input from the first group
{u1, . . . , up1} (including the next input bit to A) and each unit of the first layer
l1 are connected to all units of this layer.

Layer 3. The third layer l3 consists of a set of p · 2p3+1 units:

l3 =
{
πk,c ,
k,c : k ∈ {1 . . . , p}, c ∈ {0, 1}p3

}
.

These units are also organized into p blocks of 2p3+1 elements each parametrized
by index k ∈ {1 . . . , p}, denoted by l31, . . . , l3p. For each k = 1, . . . , p, each unit
of the group l2k is connected to all units of the group l3k. In addition, each input
of the third group {z1, . . . , zp3} is connected to all units of this layer.

Robust Optimal-Size Synfire Ring Automata 811

Fig. 1. Architecture of the threshold circuit C computing the Boolean transition func-
tion f δ. The picture is rotated by 90◦. The circuit is composed of an input layer l0 and
four layers l1, l2, l3, l4 of units (gates). An arrow connecting one unit to a block of units
means that the former unit is connected to all units of the block (one-to-all connec-
tions). An arrow connecting one block of units to one unit means that all units of the
block are connected to the latter unit (all-to-one connections). An arrow connecting
one block of units to another means that all units of the former block are connected
to all units of the latter (all-to-all connections).

812 J. Cabessa and J. Š́ıma

Layer 4. The fourth layer l4 is composed of the p following units:

l4 = {o1, . . . , op}.

For each k = 1, . . . , p, the unit ok computes the logical disjunction (OR gate)
of the outputs from the group l3k. In order to implement these p OR gates, all
weights associated to these units are equal to 1 whereas their biases equal −1.

Simulation of DFSA by Boolean Neural Networks. The Lupanov thresh-
old circuit C computing f δ can easily be transformed into a recurrent neural
network N simulating the automaton A [11]. This transformation is schemati-
cally illustrated and described in Fig. 2. According to this construction, the p+1
inputs forming the input layer of C correspond now to p+3 input and state cells
in N : one input cell inp, p state cells, and two additional validation and out-
put cell val and out in order to comply with the input/output protocol. The
activation values of these cells hold the consecutive encodings of the successive
input symbols and computational states of A. More specifically, if the input and
state cells have activation values (x, q) ∈ {0, 1}p+1 at time t, then the state
cells will have activation values q′ ∈ {0, 1}p at time t + 4, where q′ is such that
δ(q, x) = q′.

From these considerations, it follows that any finite state automaton with n
states can be implemented by an optimal-size recurrent neural net with Θ(

√
n)

cells [11].

4-layer threshold circuit

layer 2

layer 3

layer 4

layer 1

layer 0 inputs input & state cells

recurrent neural network

Fig. 2. Transformation of the 4-layer Lupanov threshold circuit C computing the
Boolean function f δ into the recurrent neural network N simulating the automaton A.
The fourth layers of C is removed in N ; the connections from the third to the fourth
layers in C (dashed arrow) are replaced by recurrent connections in N (dashed arrow);
the connections from the input layer to the second and third layers in C are replaced
by corresponding connections in N interspersed with delay cells (little circles), in order
to ensure that the input propagation in the network is correctly timed.

Robust Optimal-Size Synfire Ring Automata 813

4 Finite State Automata and Boolean Neural Networks
Composed of Synfire Rings

Based on the results of Sect. 3, we show that any finite state automaton with n
states can be implemented by a neural net composed of synfire rings containing
Θ(

√
n) cells. Compared to the construction of Sect. 3 and due to the addition of

synfire rings, the proposed architecture has the advantage of being not only of
asymptotic optimal-size, but also robust to possible failures of its constitutive
cells. The general idea of this construction can be summarized as follows:

• the “state cells” of the network N of Sect. 3 are replaced by specific synfire
rings: hence, the successive states of the automaton are now encoded by self-
sustained activities of synfire rings instead of activations of “state cells”;

• each level (not layer) of the synfire rings is connected to a copy of the network
N of Sect. 3 (i.e., a modified copy of the Lupanov circuit).

Let A = (Q,Σ, δ, q0, F) be a finite state automaton and C be the Lupanov
circuit computing f δ (Sect. 3). We provide the description of a synfire ring-based
neural network N SR simulating A. The network is illustrated in Fig. 3.

layer 0

layer 1

layer 2

layer 3

layer 4

Cw

layer 0

layer 1

layer 2

layer 3

layer 4

C1

layer 0

layer 1

layer 2

layer 3

layer 4

Cr

R1 Rs Rp
OR OR

OR

inp val out

Fig. 3. Recurrent neural network composed of synfire rings N SR simulating the
automaton A. The network is composed of an input, validation and output cell inp,
val and out, respectively, of p synfire rings R1, . . . , Rp of same widths w, and of w
modified copies C1, . . . , Cw of the Lupanov circuit C. For each r = 1, . . . , w, the r-th
levels of the respective rings R1, . . . , Rp are connected to the first, second and third
layers of Cr (solid arrows) as described in the text. For each r = 1, . . . , w also, the third
layer of Cr is recurrently connected to the r-th levels of all rings R1, . . . , Rp (dashed
arrows).

814 J. Cabessa and J. Š́ıma

The network N SR involves two input cells inp and val (as well as other cells
of this kind described later), one output cell out, and p synfire rings R1, . . . , Rp of
respective lengths �1, . . . , �p ≥ 2 and of fixed widths w ≥ 1. These rings will serve
to encode the successive states of automaton A. In addition, N SR also involves
of w copies of the circuit C, denoted by C1, . . . , Cw. For each r = 1, . . . , w, we let
the p last inputs and p outputs of Cr, i.e.,

u2, . . . , up1 , v1, . . . , vp2 , z1, . . . , zp3 and o1, . . . , op

be denoted by u′
r1, . . . , u

′
rp and or1, . . . , orp, respectively.

As a first step, for each r = 1, . . . , w, we remove the first layer of Cr. Then,
for every r = 1, . . . , w and s = 1, . . . , p, we replace each connection from input
u′

rs to some unit u in Cr by a corresponding fibre of connections from all cells
of the r-th level of Rs to u. Furthermore, for each r = 1, . . . , w, we remove the
fourth layer (OR gates) of Cr. Then, for every r = 1, . . . , w and s = 1, . . . , p, we
replace each connections from some unit u of the third layer of Cr to output ors

by a recurrent connection from u to the first cell (only!) of the r-th level of Rs.
In this way, each input u′

rs of Cr is represented by the r-th level of the ring Rs

(�s cells). Recall that the dynamics of each ring Rs ensures that at most one cell
is active within any of its level. Moreover, each output ors (OR gate) of Cr is
implemented by recurrent connections from the third layer of Cr to the first cell
(only) of the r-th level of the ring Rs.

The cells inp, val and out implement the input/output protocol of N SR.
The connectivity related to these cells is described in Fig. 4. Recall that the
activity of the last synfire ring Rp indicates whether the state currently encoded
by the activities of the other rings R1, . . . , Rp−1 belongs to the set of final states
F or not. This information is then transmitted from Rp to the output cell out
via connections of weights 1 and a bias of −1 (OR gate implementation).

In order to complete the construction, further modifications need to be
applied to the circuits Cr, for r = 1, . . . , w. These modifications are illustrated
in Fig. 4 also. First of all, each unit of the first, second and third layer of Cr are
provided with a sufficiently large negative bias −W which prevents them from
being activated. The validation cell val is connected to all units of the first layer
of Cr with weights W . In this way, each time the cell val spikes, it cancels the
negative biases of the first-layer units of Cr, and therefore releases their activi-
ties. In addition, two new cells inpr1 and valr1 are added to the first layer of Cr.
These cells copy the current activities of inp and val via connections of weights
w(inp, inpr1) = w(val, valr1) = 1. The cell inpr1 is connected to all units of
the second layer of Cr with the weights given in [23], and the cell valr1 is also
connected to all units of the second layer of Cr with weights W . Furthermore, a
new cell valr2 is added to the second layer of Cr, which just copies the current
activity valr1 by a connection of weight w(valr1, valr2) = 1. The cell valr2

is connected to all units in the third layer of Cr via connections of weights W .
Finally, connections with large negative weights −W ′ connect valr2 to all cells
of the r-th levels of R1, . . . , Rp. The weight −W ′ is chosen such that it suffices
to inhibit an activity propagating in a synfire ring.

Robust Optimal-Size Synfire Ring Automata 815

Cr

R1 Rs Rp

OR

1

1

1 W

W

W

layer 1 -W

layer 2 -W

layer 3 -W

inp val

inpr1 valr1

valr2

out

-1

1
1
1

Fig. 4. Illustration of the r-th modified Lupanov circuits involved in the construction
of the synfire ring-based network N SR. Biases of weights −W are added to every cells
of the first, second and third layers. Three cells inpr1, valr1, valr2 are also added. The
connection between those, and from those to the circuit’s layers are described in the
figure. In addition, recurrent connections of weights −W ′ from valr2 to the r-th levels
of all rings R1, . . . , Rp (in bold) serve to inhibit the rings (reinitialization), before
the latter are reactivated by the recurrent connections from the third layer to their
r-th levels (in bold). Finally, the cells inp, val and out implement the input/output
protocol as described in the text.

Correctness of the Construction. We now sketch the proof that the synfire
ring-based network N SR simulates the finite state automaton A correctly. Sup-
pose that the activities of the p synfire rings R1, . . . , Rp are currently encoding
the state q ∈ Q of automaton A. Suppose further that the input bit x ∈ {0, 1} is
received at time t. According to the input protocol, this means that inp(t) = x
and val(t) = 1. The network’s architecture ensures that, for any r = 1, . . . , w,
the combined activities of the r-th levels of R1, . . . , Rp together with the activa-
tion of val at time t will activate the first layer of Cr at time t + 1. The connec-
tions of Cr also ensure that inp(t) = inpr1(t+1) and val(t) = valr1(t+1) = 1.
Hence, the combined activities of the first layer of Cr together with the activa-
tion of valr1 at time t + 1 will activate the second layer of Cr at time t + 2. The
connections of Cr also ensure that valr1(t+1) = valr2(t+2) = 1. Consequently,
the combined activities of the second layer of Cr together with the activation of
valr2 at time t + 2 will activate the third layer of Cr at time t + 3. But at time

816 J. Cabessa and J. Š́ıma

t+2 also, valr2 sends strong inhibitions to the r-th levels of all rings R1, . . . , Rp.
Since this happens for all r ∈ {1, . . . , w} simultaneously, the rings R1, . . . , Rp

are shut down at time t + 3. Finally, the (special) recurrent activities from the
third layers of all circuits C1, . . . , Cw at time t + 3 ensure that the activities of
all rings R1, . . . , Rp are correctly updated at time t + 4. From the Lupanov’s
construction, it follows that, from time t + 4 onwards, the activities of the rings
R1, . . . , Rp encode the state q′ of A such that δ(q, x) = q′. Finally, the unit out
fires at the next time step t+5 iff q′ is a final state. In this sense, each transition
of A is correctly simulated by the network N SR.

If the automaton A contains n states, it has been shown that each Lupanov
circuit Cr (r = 1, . . . , w) involved in the construction has an optimal-size of
Θ(

√
n). Therefore, the network N SR has a size of Θ(w · √n) = Θ(

√
n), which is

also optimal.

5 Conclusion

We described a robust and optimal-size implementation of finite state automata
by means of neural networks composed of synfire rings. The robustness of the
network results from its architecture, which is composed of synfire rings and
duplicated core components. For an automaton with n states, the corresponding
network has an optimal size of Θ(

√
n) cells.

This study makes one step forward in the implementation of finite state
machines by biologically inspired neural networks. In an extended journal version
of this paper, the construction is expected to be implemented, and examples
of such synfire ring-based neural networks will be computationally simulated.
Furthermore, the construction is expected to be generalized in such a way that
only synfire rings are involved.

References

1. Abeles, M.: Corticonics: Neuronal Circuits of the Cerebral Cortex. Cambridge Uni-
versity Press, Cambridge (1991)

2. Abeles, M.: Time is precious. Science 304(5670), 523–524 (2004). https://doi.org/
10.1126/science.1097725

3. Cabessa, J., Horcholle-Bossavit, G., Quenet, B.: Neural computation with spik-
ing neural networks composed of synfire rings. In: Lintas, A., Rovetta, S.,
Verschure, P.F.M.J., Villa, A.E.P. (eds.) ICANN 2017. LNCS, vol. 10613, pp. 245–
253. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68600-4 29

4. Cabessa, J., Masulli, P.: Emulation of finite state automata with networks of synfire
rings. In: 2017 International Joint Conference on Neural Networks, IJCNN 2017,
Anchorage, AK, USA, May 14–19, 2017, pp. 4641–4648. IEEE (2017). https://doi.
org/10.1109/IJCNN.2017.7966445

5. Cabessa, J., Siegelmann, H.T.: The super-turing computational power of plastic
recurrent neural networks. Int. J. Neural Syst. 24(8), 1450029 (2014). https://doi.
org/10.1142/S0129065714500294

https://doi.org/10.1126/science.1097725
https://doi.org/10.1126/science.1097725
https://doi.org/10.1007/978-3-319-68600-4_29
https://doi.org/10.1109/IJCNN.2017.7966445
https://doi.org/10.1109/IJCNN.2017.7966445
https://doi.org/10.1142/S0129065714500294
https://doi.org/10.1142/S0129065714500294

Robust Optimal-Size Synfire Ring Automata 817

6. Cabessa, J., Tchaptchet, A.: Automata computation with Hodgkin-Huxley based
neural networks composed of synfire rings. In: 2018 International Joint Conference
on Neural Networks, IJCNN 2018, Rio de Janeiro, Brazil, July 8–13, 2018, pp. 1–8.
IEEE (2018). https://doi.org/10.1109/IJCNN.2018.8489700

7. Diesmann, M., Gewaltig, M.O., Aertsen, A.: Stable propagation of synchronous
spiking in cortical neural networks. Nature 402, 529–533 (1999). https://doi.org/
10.1038/990101

8. Hertz, J., Prügel-Bennett, A.: Learning synfire chains by self-organization.
Netw.: Comput. Neural Syst. 7(2), 357–363 (1996). https://doi.org/10.1088/0954-
898X 7 2 017

9. Hertz, J., Prügel-Bennett, A.: Learning synfire chains: turning noise into signal. Int.
J. Neural Syst. 7(4), 445–450 (1996). https://doi.org/10.1142/S0129065796000427

10. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation, 3rd edn. Pearson international edition, Addison-
Wesley, Boston (2007)

11. Horne, B.G., Hush, D.R.: Bounds on the complexity of recurrent neural net-
work implementations of finite state machines. Neural Netw. 9(2), 243–252 (1996).
https://doi.org/10.1016/0893-6080(95)00095-X

12. Ikegaya, Y., et al.: Synfire chains and cortical songs: temporal modules of corti-
cal activity. Science 304(5670), 559–564 (2004). https://doi.org/10.1126/science.
1093173

13. Indyk, P.: Optimal simulation of automata by neural nets. In: Mayr, E.W., Puech,
C. (eds.) STACS 1995. LNCS, vol. 900, pp. 337–348. Springer, Heidelberg (1995).
https://doi.org/10.1007/3-540-59042-0 85

14. Jun, J.K., Jin, D.Z.: Development of neural circuitry for precise temporal sequences
through spontaneous activity, axon remodeling, and synaptic plasticity. PLOS One
2(8), 1–17 (2007). https://doi.org/10.1371/journal.pone.0000723

15. Kleene, S.C.:Representation of events in nerve nets andfinite automata. In: Shannon,
C., McCarthy, J. (eds.) Automata Studies, vol. 34, pp. 3–42. Princeton University
Press, Princeton (1956). https://doi.org/10.1515/9781400882618-002

16. Levy, N., Horn, D., Meilijson, I., Ruppin, E.: Distributed synchrony in a cell assem-
bly of spiking neurons. Neural Netw. 14(6–7), 815–824 (2001). https://doi.org/10.
1016/S0893-6080(01)00044-2

17. Lupanov, O.B.: On the synthesis of threshold circuits. Probl. Kibernet. 26, 109–140
(1973)

18. Mainen, Z., Sejnowski, T.: Reliability of spike timing in neocortical neurons. Science
268(5216), 1503–1506 (1995). https://doi.org/10.1126/science.7770778

19. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall Inc.,
Englewood Cliffs (1967)

20. Siegelmann, H.T.: Neural Networks and Analog Computation: Beyond the Turing
Limit. Birkhauser Boston Inc., Cambridge (1999)

21. Siegelmann, H.T., Sontag, E.D.: Analog computation via neural networks.
Theor. Comput. Sci. 131(2), 331–360 (1994). https://doi.org/10.1016/0304-
3975(94)90178-3

22. Siegelmann, H.T., Sontag, E.D.: On the computational power of neural nets. J.
Comput. Syst. Sci. 50(1), 132–150 (1995). https://doi.org/10.1006/jcss.1995.1013

23. Š́ıma, J.: Energy complexity of recurrent neural networks. Neural Comput. 26(5),
953–973 (2014). https://doi.org/10.1162/NECO a 00579

24. Š́ıma, J., Orponen, P.: General-purpose computation with neural networks: a sur-
vey of complexity theoretic results. Neural Comput. 15(12), 2727–2778 (2003).
https://doi.org/10.1162/089976603322518731

https://doi.org/10.1109/IJCNN.2018.8489700
https://doi.org/10.1038/990101
https://doi.org/10.1038/990101
https://doi.org/10.1088/0954-898X_7_2_017
https://doi.org/10.1088/0954-898X_7_2_017
https://doi.org/10.1142/S0129065796000427
https://doi.org/10.1016/0893-6080(95)00095-X
https://doi.org/10.1126/science.1093173
https://doi.org/10.1126/science.1093173
https://doi.org/10.1007/3-540-59042-0_85
https://doi.org/10.1371/journal.pone.0000723
https://doi.org/10.1515/9781400882618-002
https://doi.org/10.1016/S0893-6080(01)00044-2
https://doi.org/10.1016/S0893-6080(01)00044-2
https://doi.org/10.1126/science.7770778
https://doi.org/10.1016/0304-3975(94)90178-3
https://doi.org/10.1016/0304-3975(94)90178-3
https://doi.org/10.1006/jcss.1995.1013
https://doi.org/10.1162/NECO_a_00579
https://doi.org/10.1162/089976603322518731

818 J. Cabessa and J. Š́ıma

25. Š́ıma, J., Wiedermann, J.: Theory of neuromata. J. ACM 45(1), 155–178 (1998).
https://doi.org/10.1145/273865.273914

26. Zheng, P., Triesch, J.: Robust development of synfire chains from multiple plastic-
ity mechanisms. Front. Comput. Neurosci. 8(66) (2014). https://doi.org/10.3389/
fncom.2014.00066

https://doi.org/10.1145/273865.273914
https://doi.org/10.3389/fncom.2014.00066
https://doi.org/10.3389/fncom.2014.00066

	Robust Optimal-Size Implementation of Finite State Automata with Synfire Ring-Based Neural Networks
	1 Introduction
	2 Neural Networks and Synfire Rings
	3 Finite State Automata and Boolean Neural Networks
	4 Finite State Automata and Boolean Neural Networks Composed of Synfire Rings
	5 Conclusion
	References

