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Abstract—Recent results have shown that finite state automata

can be simulated by recurrent neural networks composed of

synfire rings. The simulation process was shown to work correctly

in the cases of Boolean neural networks and of Izhikevich

spiking neural networks. In this paper, we generalize these

results to the very biological context of the Hodgkin-Huxley

neural model. We prove that any finite state automaton can be

simulated by a Hodgkin-Huxley based recurrent neural network

composed of synfire rings. In this framework, the inhibitory

system ensuring the transition between the successive rings can be

significantly simplified. These results show that a neuro-inspired

paradigm of abstract computation based on sustained activities of

neural assemblies is indeed possible, and potentially harnessable.

They also constitute a first step towards the implementation of

biological neural computers.

I. INTRODUCTION

It has early been observed that Boolean recurrent neural
networks are computationally equivalent to finite state au-
tomata [1]–[3]: on the one hand, any Boolean recurrent neural
networks can be simulated by some finite state automaton;
on the other hand, any finite state automaton can be simulated
by some Boolean network. The latter result opened the way to
important further investigations, motivated by the possibility to
implement finite state machines on parallel hardwares (see for
instance [4]–[19]). Nowadays, the computational capabilities
of diverse neural models have been shown to range from the
finite automaton degree [1]–[3], [19], up to the Turing [20]–
[26] or even to the super-Turing level [27]–[31]. These studies
have been generalized to alternative bio-inspired paradigms of
computation [31]–[37].

But the neural networks involved in the above mentioned
studies are still far from the neurobiological reality. First of all,
the discrete-time first-order neural model is highly simplistic.
Moreover, in biological neural nets, information is more likely
processed by cell assemblies rather than by isolated entities.
Also, synaptic connections are unreliable. And neural nets
are subjected to various phenomena, like synaptic plasticity.
In a more biologically oriented context, the implementations
of associative memory tasks, of logical gates, or of abstract
devices have been achieved on diverse kinds of networks of
oscillators [38]–[41]. Logical gates have also been physically
implemented in patterned neural cultures [42], [43].

In terms of information processing, the concept of a syn-
fire chain – a sequence of layers of neurons that are fully
connected from one stratum to the next – has been proposed
as a fundamental structure of biological neural nets. Synfire
chains are indeed capable of conveying repeated complex
spatio-temporal patterns of discharges in a robust and highly
temporally precise way [44]–[48]. Besides, the spontaneous
emergence of an abundance of “looping” synfire chains –
referred to as synfire rings – has been observed in self-
organizing neural networks subjected to various mechanisms
of plasticity [49].

Based on these considerations, recent results have shown
that finite state automata can be simulated by recurrent neural
networks composed of synfire rings [50], [51]. The simu-
lation process was shown to work correctly in the cases
of Boolean neural networks [50] and of Izhikevich spiking
neural nets [51]. This paradigm of neural computation finds
its relevance at many levels: (i) The successive computational
states are achieved via temporally robust activities of cell
assemblies – the synfire rings – rather than by discrete spiking
configurations. (ii) The successive computational states are en-
coded into cyclic attractor dynamics induced by the sustained
activities of the synfire rings. (iii) The transitions between such
attractors are perfectly controlled, in an input-driven way. (iv)
The global computational process remains robust to various
kinds of architectural failures and synaptic noises.

In this paper, we generalize these results to the very bi-
ological context of the Hodgkin-Huxley neural model. More
precisely, we prove that any finite state automaton can be sim-
ulated by a Hodgkin-Huxley based recurrent neural network
composed of synfire rings. In this framework, the inhibitory
system ensuring the transition between the rings can be
significantly simplified (compared with previous works [50],
[51]), due to the consideration of the refractory period of the
cells.1 These results show that a neuro-inspired paradigm of
abstract computation based on sustained activities of neural
assemblies is indeed possible, and potentially harnessable.
They also constitute a first step towards the implementation
of biological neural computers.

1In fact, the so-called “triangular structures” of [50], [51], which were
precisely the Achille’s heel of the construction’s robustness, are no more
needed.



II. FINITE STATE AUTOMATA AND BOOLEAN RECURRENT
NEURAL NETWORKS

Boolean recurrent neural networks (BRNNs) are recurrent
neural networks composed of McCulloch and Pitts cells [1].
At each time steps, the activation values of the cells is either
firing (1) or quiet (0). Formally, the dynamics of the network
is computed as follows: given the activation values of the input
neurons (uj(t))M

j=1 and the internal neurons (xj(t))N
j=1 at time

t, the activation values of the internal neurons (xi(t + 1))N
i=1

at time t + 1 are given by the following equations:

xi(t + 1) = ✓

0

@
NX

j=1

aij · xj(t) +
MX

j=1

bij · uj(t) + ci

1

A ,

for i = 1, . . . , N (1)

where the aij , bij , and ci are the synaptic weights and bias
of the network, and ✓ is the classical hard-threshold activation
function defined by

✓(x) =

(
0 if x < 1

1 if x � 1.

Boolean recurrent neural networks are known to be compu-
tationally equivalent to finite state automata [1]–[3].

Theorem 1 (Minsky 1967). Any Boolean neural network can
be simulated by some finite state automaton, and any finite
state automaton can be simulated by some Boolean network.

The first part of this statement is straightforward. A Boolean
network with N cells has at most 2N spiking configurations. It
can therefore be simulated by a finite state automaton with less
than 2N states. The second part of the statement is more rele-
vant, since it concerns the issue of the implementation of finite
state machines on parallel hardwares (see for instance [4]–
[19]). This possibility to simulate finite automata by recurrent
neural networks constitutes the core of this work.

In order to illustrate this process, we consider a transducer,
i.e., a finite state automaton provided with an output channel,
implementing a serial binary adder. The transducer is repre-
sented as a labelled directed graph illustrated in Figure 1. The
nodes and edges of the graph represent the computational
states and transitions of the transducer. This transducer is
composed of two states corresponding to the two situations
of either being currently carrying a 1 in the adding process
or not. A transition from node qi to node qj labelled by i/o
means that if the transducer is in state qi and it receives input
symbol i, then it will output symbol o and move to state qj .

The computation of the following binary sum s

01 11 01 11 11 01 11

+ 1 1 1 0 0 1
1 1 0 0 1 1 0

by the transducer of Figure 1 is illustrated in Table 1 (three first
rows). The transducer starts in its initial state q0. It receives
as successive inputs the successive pairs of bits of s in reverse
order, namely
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Fig. 1: A finite transducer implementing a serial binary adder. The
nodes and edges of the graph represent the computational states and
transitions of the transducer, respectively. A transition from qi to qj
labelled by i/o means that if the transducer is in state qi and it
receives input symbol i, then it will output symbol o and move to
state qj . The initial state is q0. This transducer can compute the sum
of any two binary numbers. For this purpose, it starts from initial
state q0 and takes as successive inputs the successive pairs of bits of
the sum in reverse order; if needed, it adds a last input

�
0
0

�
so as to

come back to state q0. The successive output bits correspond to the
result of the sum in reverse order also.

input
�
0
0

�
in order to come back to the final state q0. During

this process, it moves from one state to the other according to
its labelled transitions, and outputs the successive bits 0, 1, 1,
0, 0, 1, 1. This sequence of bits corresponds to the result of
the sum s in reverse order.

A Boolean recurrent neural network simulating the trans-
ducer of Figure 1 is illustrated in Figure 2. This network is
obtained on the basis on Minsky’s original construction [3]
which is not optimal in terms of number of cells and con-
nections. The network has 4 input cells (blue) and two output
cells (red) used to encode the 4 possible inputs and 2 possible
outputs of the transducers, respectively. It also has 8 internal
cells Cs,i (black) used to represent the 8 possible events of
the transducer, i.e., the events “being is state s and receiving
input i”, for all s 2 {q0, q1} and i 2 {
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}. The

network is designed in such a way that, at each time step, at
most one internal cell and one output cell is spiking. More
precisely, if at time step t, the network has its cell Cs,i being
spiking and if it receives the encoding of input i0, then at time
t + 1, cells Cs0,i0 and Cout,o will be spiking, where s0 and o
are given by the transducer’s transition (s, i/o, s0).

The computation of the binary sum s (given above) by
the Boolean network of Figure 2 is illustrated in Table 1
(eight middle rows). The network starts with all cells being
quiet. It receives the successive input patterns (1, 0, 0, 1, 1)T ,
(0, 1, 1, 0, 0)T , (0, 0, 1, 0, 1)T , (0, 0, 0, 1, 1)T , (0, 1, 0, 1, 0)T ,
(0, 0, 0, 1, 1)T , (0, 1, 1, 0, 0)T which correspond to the encod-
ings the successive pairs of bits of s in reverse order
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Equation (1). The (non-quiet) output patterns that it produces�
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correspond to the encodings

of the successive bits 0, 1, 1, 0, 0, 1, 1. This sequence of bits
is the result of the sum s in reverse order.

These considerations show that the transducer of Figure 1 is
perfectly simulated by the Boolean neural network of Figure 2
with a time delay of 1 � 2 time steps. More precisely, during
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Fig. 2: A Boolean recurrent neural network computationally equiv-
alent to the finite transducer of Figure 1. The four input cells (blue)
are used encode the four possible inputs of the transducers: the
patterns (u0 = 1, u1 = 1, u2 = 0, u3 = 0), (u0 = 1, u1 =
0, u2 = 1, u3 = 0), (u0 = 0, u1 = 1, u2 = 0, u3 = 1) and
(u0 = 0, u1 = 0, u2 = 1, u3 = 1) encode the transducer’s inputs�
0
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, and
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and
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, respectively. The “start” cell spikes only

at time t = 0 in order to initiate the dynamics. The internal cells
(black) are organized in a 4⇥2 grid-like structure which refers to the
4 possible inputs and 2 possible states of the transducer (Minsky’s
construction [3]). Cell Cs,i represents the event of the transducer
being in state s and receiving input i, for all s 2 {q0, q1} and
i 2 {
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}. The two output cells (red) are used to encode

the outputs of the transducer: the patterns (Rout,0 = 1, Rout,1 = 0)
and (Rout,0 = 0, Rout,1 = 1) encode the transducer’s outputs 0
and 1, respectively. The orange and black synaptic connections have
weights 1/3. The red ones have weights 1.

the computation, the transducer is in state s, receiving input
i and producing output o at time t if and only if the neural
network has its cells Cs,i and Cout,o spiking at times t + 1
and t+2, respectively. This feature can be verified in Table 1.

Finally, note the above construction is generic and can be
applied to any finite state automaton. The formal proof of the
correctness of this general simulation process goes back to
Minsky’s work [3].

III. FINITE STATE AUTOMATA AND HODGKIN-HUXLEY
NEURAL NETWORKS COMPOSED OF SYNFIRE RINGS

The equivalence between automata and recurrent neural
networks presented in Section II has been extended to the more
biological context of recurrent neural networks composed of
synfire rings [50], [51]. Here, we show that these latter results
can be further generalized to the even more biological context
of the Hodgkin-Huxley (HH) model. More precisely, we show
that any finite state automaton can be simulated by a recurrent
neural network composed of synfire rings, and where the cells’
dynamics are governed by the HH-equations. Formally, the
following result holds.

Theorem 2. Any finite state automaton can be simulated by
a Hodgkin-Huxley based recurrent neural network composed
of synfire rings.

The rest of this section is devoted to the proof of this
theorem. It presents the key steps of a construction process
that starts from a given finite state automaton and builds a
corresponding HH-based neural network composed of synfire
rings which simulates this automaton correctly. The construc-
tion process is generic and can be applied to any finite
state automaton. Section IV illustrates the correctness of this
construction process when applied to the specific example of
the serial binary adder of Figure 1.

A. Hodgkin-Huxley cells

The pioneering Hodgkin-Huxley2 (HH) model is considered
amongst the most accurate model for the simulation of biolog-
ical neurons [52]. The parameters of the original conductance-
based HH equations are highly precise for the modelling of
action potentials. But they remain difficult to be adjusted when
approaching and simulating some experimental data.

Based on physiological considerations, we chose to use a
slightly simplified HH-model described in details in [53]. This
simplified model replaces the rate constants by Boltzmann
functions and discards the power functions, which makes it
easier to handle, especially in the context of experimental
data. The neurons of our HH-based neural network are all
identical and the values of their parameters are those of
the “standard neuron” of the virtual laboratory “SimNeuron”
(www.virtual-physiology.com).

B. Synfire rings

A synfire chain consists of a sequence of layers of neurons
that are fully connected from one stratum to the next by means
of excitatory synaptic connections [44]–[46]. A synfire ring is
a synfire chain that loops back in on itself, i.e., where the
last layer is connected to the the first [49]. In a synfire chain
or ring, the weights of the connections are assumed to be
strong enough to ensure that a spiking activity can propagate
from one layer to the next in a robust manner. The internal
connections of a synfire rings are referred to as the intra-ring
connections. A synfire chain and a synfire ring are illustrated
in Figure 3.

C. General construction

We describe the construction process to obtain a HH-
based neural network composed of synfire ring capable of
simulating any given finite state automaton. The main idea of
the construction is to replace each cell Cs,i and Cout,o of Min-
sky’s construction (illustrated in Figure 2) by a corresponding
synfire ring Rs,i and Rout,o, respectively. The input cells of
Minsky’s construction remain however unchanged. In addition,
every synaptic connection is replaced by a fibre of excitatory
connection, and in some cases also, by an additional reverse

2Alan Llyod Hodgkin and Andrew Fielding Huxley were awarded of the
Medicine’s Nobel Prize in 1963 for this model.



Table 1: Computation of the sum s 1 0 1 1 0 1
+ 1 1 1 0 0 1 = 1100110 by the transducer of Figure 1, by the Boolean neural network of Figure 2

and by the HH-neural network of Figure 7 (see Sections III and IV for this last case). The three first rows illustrate the computation of the
transducer. The next eight rows illustrate the computation of the Boolean neural network of Figure 2. We see that the transducer is correctly
simulated by the Boolean neural network with a short delay of 1 or 2 time steps. The last two rows illustrate the the computation of the
HH-based neural network of Figure 7 (relative to Section III and IV). The time steps are no more relevant in this case.

time steps 0 1 2 3 4 5 6 7 8 9

states q0 q1 q0 q0 q1 q1 q1 q0 – –
inputs

�1
1

� �0
0

� �1
0

� �1
1

� �0
1

� �1
1

� �0
0

�
– – –

outputs 0 1 1 0 0 1 1 – – –
J · · · · · · · · · · · · · · result of the sum s in reverse order · · · · · · · · · · · · · · I

cell start 1 0 0 0 0 0 0 0 0 0

cell u0 0 1 0 0 1 0 1 0 0 0

cell u1 0 1 1 0 0 0 1 0 0 0

cell u2 1 0 0 1 1 1 0 0 0 0

cell u3 1 0 1 1 0 1 0 0 0 0

cells Cs,i – C
q0,

⇣
1
1

⌘ C
q1,

⇣
0
0

⌘ C
q0,

⇣
1
0

⌘ C
q0,

⇣
1
1

⌘ C
q1,

⇣
0
1

⌘ C
q1,

⇣
1
1

⌘ C
q1,

⇣
0
0

⌘ – –

cell Cout,0 0 0 1 0 0 1 1 0 0 0

cell Cout,1 0 0 0 1 1 0 0 1 1 0

J · · · · · · encoding of the result of the sum s in reverse order · · · · · · I

The next lines are relative to Sections III and IV. In this case, the time steps are no more relevant.

rings Rs,i – R
q0,

⇣
1
1

⌘ R
q1,

⇣
0
0

⌘ R
q0,

⇣
1
0

⌘ R
q0,

⇣
1
1

⌘ R
q1,

⇣
0
1

⌘ R
q1,

⇣
1
1

⌘ R
q1,

⇣
0
0

⌘ – –

ring Rout,j – Rout,0 Rout,1 Rout,1 Rout,0 Rout,0 Rout,1 Rout,1 – –
J · · · · · · · · · encoding of the result of the sum s in reverse order · · · · · · · · · I

fibre of inhibitory connections, as described in details in the
next paragraphs. The synfire rings will always be activated via
fibres of excitatory connections projecting onto one specific
of their layers, called the activation layer (dark blue filled
cells in Figures 4, 5 and 6). We assume that the rings are
wired in such a way that the information propagates inside
them in the clockwise direction of rotation (grey or red little
arrows in Figures 4, 5 and 6). According to this construction
process, the HH-based neural network composed of synfire
rings corresponding to the network of Figure 2 is schematically
illustrated in Figure 7.

Each input connection of Minsky’s construction between
two cells ui and Cj (orange arrows of Figure 2) is replaced by
a fibre of excitatory connections projecting from the input cell
ui onto the activation layer of the targeted ring Rj (orange
arrows of Figure 7). These input connections are illustrated
in Figure 4. The synaptic weights are chosen such that one
or even two fibres of input connections are not sufficient to
activate the ring onto which they project.

Each internal connection of Minsky’s construction between
two cells Ci and Cj (black arrows of Figure 2) is replaced by
a fibre of excitatory connections projecting from the activation
layer of ring Ri onto that of ring Rj , and by a reverse fibre of
inhibitory connections projecting from a layer of Rj located
“after” its activation layer onto a layer of Ri located “before”
its activation layer (these couple of fibres are represented by
the black arrows of Figure 7), where “before” and “after” are
relative to the clockwise direction of rotation. These inter-ring
connections are illustrated in Figure 5. The excitatory synaptic
weights are chosen such that one fibre of inter-ring connections

is not sufficient to activate the ring onto which it projects. The
inhibitory synaptic weights are, by contrast, chosen such that
if ring Rj becomes active via its activation layer, then it will
send via one of its next layers a sufficiently strong inhibition
to a layer of Ri located before its activation layer in order to
kill the activation that this latter might receive a bit later. Note
that this inhibition process is repeated as long as Rj remains
active. In this way, the activation of a subsequent ring always
triggers the inhibition of the previous one, ensuring that except
during the transition phases at most one internal synfire ring
is always active.

Each output connection of Minsky’s construction between
an internal cell Ci and an output cell Cj (red arrows of
Figure 2) is replaced by a fibre of excitatory connections
projecting from the activation layer of ring Ri onto that of
ring Rj (red arrows of Figure 7). In this case, the excitatory
synaptic weights are chosen such that one fibre of inter-ring
connections is sufficient to activate the output ring onto which
it projects. In addition, two fibres of inhibitory connections of
the same kinds as that described above are introduced between
all pairs of output rings. In this way, the activation of an output
ring always triggers the inhibition of all other ones. These
output inter-ring connections are illustrated in Figure 6.

The parameters of the HH-cells and the weights of the intra-
ring connections are set such that any activated synfire ring
will necessarily settle into a self-sustained activity, as long as it
is not affected by any inhibitory inter-ring fibre of connections.
The weights of the input and inter-ring excitatory connections
are chosen such that the conjunction of two input fibres and
one inter-ring fibre is sufficient to activate the ring onto which



it projects. By suitably tuning the parameters of the cells and
connections, these conditions can always easily be fulfilled
within our HH-based model.

According to this construction, any finite state automaton
A is simulated by its corresponding HH-neural network of
synfire rings N in the following precise sense. Suppose that
A receives the sequence of input symbols i = (i0, i1, . . . , in)
inducing the computation

sin
i0/o0�! sk0

i1/o1�! sk1 · · · in/on�! skn (2)

where each skm and om is the successive state and out-
put induced by input im, respectively. The way that N is
constructed ensures that if it receives the sequence of input
patterns i0 = (i00, . . . , i

0
0), where each i0m is the encoding of

im, then the sequences of internal and output synfire rings that
will be activated are

Rsin,i0 , Rsk0 ,i1 , . . . , Rskn�1
,in (3)

Rout,o0 , Rout,o1 , . . . , Rout,on (4)

In other words, the successive states and outputs of A are
perfectly reflected by the sequence of internal and output rings
of N that are activated: in fact, the states and outputs of A
correspond precisely to the indices of the internal and output
rings of N that are activated.

The simulation of the transducer of Figure 1 by the HH-
based neural network of Figure 7 is illustrated in Table 1
(first three rows and last two rows). On the one hand, the
computation of the binary sum s by the transducer corresponds
to the following path (three first rows of Table 1)

q0
(1
1)/0
�! q1

(0
0)/1
�! q0

(1
0)/1
�! q0

(1
1)/0
�! q1

(0
1)/0
�! q1

(1
1)/1
�! q1

(0
0)/1
�! q0

On the other, the activity of the HH-based neural network
computing the binary sum s is described as follow. The
network starts with all cells being quiet. At sufficiently distant
time steps – in order for it to have enough time to settle into
the successive self-sustain activities induced by the synfire
rings – the network receives the input patterns (1, 0, 0, 1, 1)T ,
(0, 1, 1, 0, 0)T , (0, 0, 1, 0, 1)T , (0, 0, 0, 1, 1)T , (0, 1, 0, 1, 0)T ,
(0, 0, 0, 1, 1)T , (0, 1, 1, 0, 0)T which correspond to the encod-
ings the successive pairs of bits of s in reverse order
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the successive internal and output rings that are activated are
the following (two last rows of Table 1)

Rq0,(1
1)

, Rq1,(0
0)

, Rq0,(1
0)

, Rq0,(1
1)

, Rq1,(0
1)

, Rq1,(1
1)

, Rq1,(0
0)

Rout,0, Rout,1, Rout,1, Rout,0, Rout,0, Rout,1, Rout,1

Hence, the successive states and outputs of the transducer are
perfectly reflected by the sequence of activated internal and
output rings of the network, in the precise sense formalized
in Relations (2) and (3-4) above. In addition, note that the
successive activated output rings correspond to the encodings
of the successive bits 0, 1, 1, 0, 0, 1, 1. This sequence of bits
is the result of the sum s in reverse order.

Due to space restrictions, the construction process that
we described in this section cannot be formalized in further
details, and its formal proof of correctness is postponed to
a forthcoming journal paper. But we claim that the proposed
construction is generic and can be applied to any finite state
automaton. These considerations conclude the (still informal)
proof of Theorem 2.
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Fig. 3: A synfire chain and a synfire ring with n layers.

Fig. 4: A fibre of input excitatory connections (red arrows) projecting
from an input cell ui (light blue cell) onto the activation layer of a
synfire ring Ri (dark blue filled cells).

Fig. 5: Inter-ring excitatory and inhibitory connections between two
synfire rings Ri and Rj . There is a fibre of excitatory connections
(red arrows) projecting from the activation layer of Ri onto that of
Rj . There is also a fibre of inhibitory connections (light blue arrows)
projecting from a layer of Rj located “after” the activation layer onto
a layer of Ri located “before” the activation layer.

IV. SIMULATION

In order to attest the correctness of our construction process,
we show that the HH-based neural network of Figure 7



Fig. 6: Output inter-ring excitatory and inhibitory connections. The
grey and red rings represent one internal and two output rings
Ri, Ro1 , Ro2 , respectively. There is a fibre of excitatory connections
(red arrows) projecting from the activation layer of Ri onto that of
Ro1 . There are also two fibres of inhibitory connections (light blue
arrows) between Ro1 and Ro2 . Each one projects from a layer located
“after” the activation layer onto a layer located “before” the activation
layer.
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Fig. 7: Schematic representation of the HH-neural network composed
of synfire rings corresponding to the network of Figure 2. The blue
circles are the input HH-cells. The black and red double circles
represent the internal and output synfire rings made up of HH-cells,
respectively. The blue, black and red arrows represent the fibres of
input, inter-ring and output connections, described in Figures 4, 5
and 6, respectively. Note that for each inter-ring excitatory fibre
projecting from a ring Ri to a ring Rj (black connection), there
is a corresponding reverse inhibitory fibre from Rj to Ri that is not
represented (cf. Figure 5). The blue fibres between Rout,0 and Rout,1

are the inhibitory output connections described in Figure 6.

simulates the automaton of Figure 1 in a adequate way, in
the precise sense described at the end of Section III.

Our HH-network is subjected to 4 input signals (start signal
is omitted) and is composed of 8 internal and 2 output synfire
rings (cf. Figure 7). Each input signal is given in the form of a

constant external current stimulus with an amplitude of 1.9 nA
and a duration of 1 ms. Note that one external current stimulus
is not sufficient to generate an action potential of a single cell.
Each ring consists in 12 layers of 3 cells each, which amounts
to a total of 36 cells. The number of 12 layers has been
chosen in such a way that the refractory period of the neurons
could never inhibit the spike propagation throughout the layers.
Accordingly, each activated synfire rings will necessarily settle
into a self-sustained activity, as long as it does not receive any
other inhibition.

The strength of the synaptic connections are modelled by
the alpha-function ↵(t) = a · t · e�b·t, where a and b are
different parameters depending on the kinds of connections
that we consider. For the excitatory intra-ring connections
(grey connections of Figure 3), a = 25.0 nA and b = 2.0 ms�1

with a maximal amplitude I = 4.5 nA. For the excitatory inter-
ring connections (red connections of Figure 5), a = 3.0 nA
and b = 0.7 ms�1 with I = 1.7 nA. And for the inhibitory
inter-ring connections (blue connections of Figure 5), a = 15.0
nA and b = 1.5 ms�1 with I = 3.5 nA.

We simulated the activity of the network during the com-
putation of the sum s. The raster plot of this simulation is
presented in Figure 8. We submitted to the network a sequence
of input patterns corresponding to the encodings the successive
pairs of bits of s in reverse order. The sequence of internal
and output rings that are activated corresponds precisely to that
described in Table 1 (last two rows). In particular, the activity
of the output rings (red dots) corresponds to the encoding
of the correct result of s in reverse order. We simulated the
network on other inputs and the result was always correct. This
simulation shows that the automaton of Figure 1 is correctly
simulated by our HH-based neural network composed of
synfire rings.

V. DISCUSSION

We showed that any finite state automaton can be simu-
lated by a Hodgkin-Huxley based recurrent neural network
composed of synfire rings. These results find their relevance
at many levels. First, the classical equivalence between finite
state automata and Boolean neural networks [3] (an its sub-
sequent improvements [4]–[19]) would probably not so easily
generalize to the context of more biological models, due to
the simplicity of the first-order or second-order discrete-time
neural models. By contrast, our work shows that finite state
automata can be simulated by bio-inspired neural networks.
Secondly, synfire chains and synfire rings are likely to be
fundamental structures of biological neural networks, and a
computational paradigm based on these structures possesses
the following advantages:

• the successive computational states are achieved via tem-
porally robust activities of cell assemblies;

• the successive computational states are encoded into
cyclic attractor dynamics induced by the self-sustained
activities of the rings;

• the transitions between such attractors are perfectly con-
trolled, in an input-driven way;



Fig. 8: Raster plot of the activity of the HH-based neural network of Figure 7 simulating the automaton of Figure 1. The dashed blue
lines represent the triggered input signal. Each input pattern (u0 = 1, u1 = 1, u2 = 0, u3 = 0), (u0 = 1, u1 = 0, u2 = 1, u3 = 0),
(u0 = 0, u1 = 1, u2 = 0, u3 = 1) or (u0 = 0, u1 = 0, u2 = 1, u3 = 1), which encode the automaton’s inputs
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respectively, is represented as a single blue trigger input signal. Each dot in the lower diagram represents a spiking neuron of the network.
The black dots represent the internal neurons and the red dots the output neurons. In this case, the input stream corresponds to the encoding
of the binary sum s 1 0 1 1 0 1

+ 1 1 1 0 0 1 : the successive pairs of bits of s are given in reverse order. We see that the sequence of activated output
rings corresponds to the encoding of the result of s in reverse order, namely 1100110.

• the global computational process remains robust to vari-
ous kinds of architectural failures and synaptic noises.

For future work, we envision to study the learning capabil-
ities of the synfire ring neural architecture. In this case, one
would need to consider a synfire ring architecture where the
inter-ring connectivity is subjected to some form of Spike-
Timing Dependent Plasticity (STDP). Then, it would be in-
teresting to investigate if, starting from fully or randomly
connected synfire based architectures, the networks could
be capable of learning a relationship between certain input
streams and synfire patterns of activity, in the form of an
associative memory.

We also plan to generalize the present considerations to-
wards the achievement of Turing-complete computation. For
this purpose, the notion of “unboundedness” must be intro-
duced somewhere, in order to model the infinite tapes of the
Turing machines and their potentially unbounded contents. A
first way would be to consider a synfire ring based architecture
for which additional rings can appear throughout the computa-
tional process, in an unbounded way. A second way would be
to use an additional information, like the synpatic strengths
of certain specific connections for instance, that would be
modelled as rational numbers and updated throughout the
computational process.

With these achievements, we do not intend to argue that
brain computational processes really proceed via simulations

of finite state automata in the very way that we described.
Rather, our intention is to show that a neural paradigm of
abstract computation based on sustained activities of cell
assemblies is indeed possible, and potentially exploitable. As
a consequence, biological neural networks should in principle
be capable of simulating finite state automata, whether via the
proposed paradigm, or via some other one. From a broader
perspective, these results might lay the theoretical bases for
the realization of biological neural computers.

ACKNOWLEDGMENT

This work was partially supported by the DARPA
program Lifelong Learning Machines (L2M), BAA No.
HR001117S0016 and cooperative agreement No. HR0011-18-
2-0023.

REFERENCES

[1] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent
in nervous activity,” Bulletin of Mathematical Biophysic, vol. 5, pp. 115–
133, 1943.

[2] S. C. Kleene, “Representation of events in nerve nets and finite
automata,” in Automata Studies, C. Shannon and J. McCarthy, Eds.
Princeton, NJ: Princeton University Press, 1956, pp. 3–41.

[3] M. L. Minsky, Computation: finite and infinite machines. Englewood
Cliffs, N. J.: Prentice-Hall, Inc., 1967.

[4] A. Cleeremans, D. Servan-Schreiber, and J. L. McClelland, “Finite state
automata and simple recurrent networks,” Neural Computation, vol. 1,
no. 3, pp. 372–381, 1989.

[5] J. L. Elman, “Finding structure in time,” Cognitive Science, vol. 14,
no. 2, pp. 179–211, 1990.



[6] N. Alon, A. K. Dewdney, and T. J. Ott, “Efficient simulation of finite
automata by neural nets,” J. ACM, vol. 38, no. 2, pp. 495–514, 1991.

[7] J. B. Pollack, “The induction of dynamical recognizers,” Machine
Learning, vol. 7, pp. 227–252, 1991.

[8] C. L. Giles, C. B. Miller, D. Chen, H. Chen, G. Sun, and Y. Lee,
“Learning and extracting finite state automata with second-order recur-
rent neural networks,” Neural Computation, vol. 4, no. 3, pp. 393–405,
1992.

[9] R. L. Watrous and G. M. Kuhn, “Induction of finite-state languages using
second-order recurrent networks,” Neural Computation, vol. 4, no. 3, pp.
406–414, 1992.

[10] Z. Zeng, R. M. Goodman, and P. Smyth, “Learning finite state machines
with self-clustering recurrent networks,” Neural Computation, vol. 5,
no. 6, pp. 976–990, 1993.

[11] M. W. Goudreau, C. L. Giles, S. T. Chakradhar, and D. Chen, “First-
order versus second-order single-layer recurrent neural networks,” IEEE
Transactions on Neural Networks, vol. 5, no. 3, pp. 511–513, 1994.
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