
Neural Networks 126 (2020) 312–334

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Automata complete computationwith Hodgkin–Huxley neural
networks composed of synfire rings✩

Jérémie Cabessa a,b,∗,1, Aubin Tchaptchet c,1

a Laboratory of Mathematical Economics and Applied Microeconomics (LEMMA), Université Paris 2, Panthéon-Assas, 75005 Paris, France
b Institute of Computer Science of the Czech Academy of Sciences, P. O. Box 5, 18207 Prague 8, Czech Republic
c Institute of Physiology, Philipps University of Marburg, 35037 Marburg, Germany

a r t i c l e i n f o

Article history:
Received 21 July 2019
Revised and accepted 23 March 2020
Available online 28 March 2020

Keywords:
Neural computation
Recurrent neural networks
Cell assemblies
Synfire rings
Hodgkin–Huxley equations
Finite state automata

a b s t r a c t

Synfire rings are neural circuits capable of conveying synchronous, temporally precise and self-
sustained activities in a robust manner. We propose a cell assembly based paradigm for abstract
neural computation centered on the concept of synfire rings. More precisely, we empirically show
that Hodgkin–Huxley neural networks modularly composed of synfire rings are automata complete.
We provide an algorithmic construction which, starting from any given finite state automaton, builds
a corresponding Hodgkin–Huxley neural network modularly composed of synfire rings and capable of
simulating it. We illustrate the correctness of the construction on two specific examples. We further
analyze the stability and robustness of the construction as a function of changes in the ring topologies
as well as with respect to cell death and synaptic failure mechanisms, respectively. These results
establish the possibility of achieving abstract computation with bio-inspired neural networks. They
might constitute a theoretical ground for the realization of biological neural computers.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

The computational aspects of neural information processing is
an issue of central importance. From a theoretical perspective,
it has been shown that various models of abstract computation
could be simulated by different kinds neural networks. In par-
ticular, Boolean recurrent neural networks are computationally
equivalent to finite state automata (Kleene, 1956; McCulloch
& Pitts, 1943; Minsky, 1967). Sigmoidal neural networks with
rational synaptic weights are Turing-complete (Hartley & Szu,
1987; Hyötyniemi, 1996; Kilian & Siegelmann, 1996; Neto, Siegel-
mann, Costa, & Araujo, 1997; Pollack, 1987; Siegelmann & Sontag,
1995; Turing, 1948). And notably, sigmoidal neural networks with
either real or evolving synaptic weights are super-Turing (Bal-
cázar, Gavaldà, & Siegelmann, 1997; Cabessa & Siegelmann, 2011,
2014; Siegelmann, 2003; Siegelmann & Sontag, 1994). These stud-
ies have been generalized to alternative paradigms of computa-
tion (Cabessa & Duparc, 2016; Cabessa & Finkel, 2019; Cabessa
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& Siegelmann, 2012; Cabessa & Villa, 2012, 2014, 2015, 2016).
The computational power of spiking (instead of sigmoidal) neural
networks has also been extensively studied (Maass, 1999; Maass
& Bishop, 1999). More recently, the study of P systems—parallel
abstract models of computation inspired from the membrane
structure of biological cells—, and in particular, of spiking neural
P systems, has become a highly active field of research (G., 2000;
Neary, 2015; Păun, 2002).

In biology, the computational capabilities of the cortex are
rather investigated from the perspective of cell assembly the-
ory (Braitenberg, 1978; Hebb, 1949; Palm, 1982; Palm, Knoblauch,
Hauser, & Schüz, 2014). This approach understands and models
the brain in terms of distributed neuronal activity. The general
assumptions are that entities of the outside world as well as
internal states are encoded into groups of neurons – the neural as-
semblies – rather than into single ‘‘grandmother’’ cells. In addition,
the assemblies are involved in the implementation of two kinds
of associative memories: an auto-associative memory, which cor-
responds to the storage and stabilization of local activity patterns;
and a hetero-associative memory, which refers to long range
interconnections between local assemblies. The assemblies would
be generated via Hebbian coincidence or correlation learning
mechanisms. The present study fits within this research direction.

In this context, the implementation of finite state automata
has been achieved in neurobiologically inspired networks that
are modularly composed of Hebbian cell assemblies (Fay, Kauf-
mann, Knoblauch, Markert, & Palm, 2005; Garagnani, Wennekers,
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& Pulvermüller, 2009; Markert, Knoblauch, & Palm, 2005, 2007;
Wennekers, 2006, 2007, 2009; Wennekers, Garagnani, & Pulver-
müller, 2006; Wennekers & Palm, 2009) (the relationship be-
tween this and our approaches is discussed in Section 7). Besides,
the implementations of associative memory tasks, logical gates, or
abstract devices have been achieved on diverse types of oscillator
networks (Hoppensteadt & Izhikevich, 2000; Malagarriga et al.,
2015; Xu, Principe, & Harris, 2004; Zanin, De. Pozo, & Boccaletti,
2011).

In neural computation, several types of neural circuits have
been argued to be crucially involved in the processing and coding
of information. Amongst these, synfire chains are of particular in-
terest. Synfire chains are feedforward neural circuits whose every
layer is connected to the next by means of excitatory conver-
gent/divergent synaptic patterns (Abeles, 1991, 2004; Diesmann,
Gewaltig, & Aertsen, 1999; Ikegaya et al., 2004; Mainen & Se-
jnowski, 1995). According to this architecture, the neurons of
each layer tend to fire simultaneously, and the firing activity can
propagate throughout the successive layers in a synchronized
manner. In this way, synfire chains are capable of conveying
repeated complex spatio-temporal patterns of discharges in a
robust and highly temporally precise way. Moreover, synfire rings
consist of looping synfire chains (Horn, Levy, Meilijson, & Ruppin,
1999; Levy, Horn, Meilijson, & Ruppin, 2001; Zheng & Triesch,
2014). As an additional dynamical feature, the ring shape natu-
rally gives rise to self-sustained activities, which correspond to
attractor dynamics.

Synfire chains and rings have been shown to spontaneously
emerge in neural networks subjected to various kinds of synaptic
plasticity. In networks of integrate-and-fire neurons, the consid-
eration of a rate-based Hebbian learning rule together with re-
peated input stimulations gives rise to small synfire chains (Hertz
& Prügel-Bennett, 1996). When provided with a synaptic scal-
ing learning rule, the networks also unveil the organization of
synfire-like patterns of activity (Buonomano, 2005). The incorpo-
ration of a spike-timing dependent synaptic plasticity (STDP) rule
leads to the formation of sub-assemblies of cells firing in cyclic
manner – synfire ring-like structures – referred to as distributed
synchrony (DS) cycles (Horn et al., 1999; Levy et al., 2001). Notably,
the consideration of STDP together with axon remodeling yields
the development of long synfire chains (Jun & Jin, 2007). In more
physiologically realistic neural networks composed of Hodgkin–
Huxley cells, STDP also entails the self-organization of chain of
cell assemblies dependent on the plasticity timing windows (Ki-
tano, Câteau, & Fukai, 2002). In pacemaker-triggered oscillator
networks, STDP with asymmetric learning windows induces for-
mation of feedforward circuits – synfire ring-like structures –
starting from the pacemaker (Masuda & Kori, 2007). Further-
more, an abundance of synfire rings has been shown to emerge
in self-organizing neural networks subjected to STDP, structural
plasticity as well as homeostatic forms of plasticity (Zheng &
Triesch, 2014). For a thorough review concerning the relationship
between weight dynamics and emergence of various neuronal
structures, see Gilson, Burkitt, and Van Hemmen (2010) (and
the references therein). On the other hand, it has also been
shown that locally connected random networks do not naturally
sustain stable propagation of synfire activity, but rather lead
to ‘‘synfire explosions’’, unless specific parametric regimes are
considered (Mehring, Hehl, Kubo, Diesmann, & Aertsen, 2003).

Here, we propose a cell assembly based paradigm for ab-
stract neural computation, centered on the concept of synfire
rings. We consider a modified version of the highly accurate
Hodgkin–Huxley model for capturing the dynamics of individ-
ual cells (Hodgkin & Huxley, 1952). We empirically show that
Hodgkin–Huxley (HH) recurrent neural networks modularly com-
posed of synfire rings are automata complete. More precisely,

we provide an algorithmic construction which, starting from any
finite state automaton, builds a corresponding Hodgkin–Huxley
neural network modularly composed of synfire rings and capable
of simulating it. We illustrate the correctness of the construction
on two specific examples. We further analyze the stability and
robustness of the construction as a function of changes in the
ring topologies as well as with respect to cell death and synaptic
failure mechanisms, respectively. These results generalize those
of Cabessa and Masulli (2017) and Cabessa, Horcholle-Bossavit,
and Quenet (2017) to the more biological context of Hodgkin–
Huxley neural networks. In this framework, the inhibitory system
ensuring the transition between the rings can be significantly
simplified.2 These results further extend those of Cabessa and
Tchaptchet (2018) by providing a rigorous formulation of the
algorithmic construction, as well as a thorough analysis of the
stability and robustness of the simulation process.

The proposed neuro-computational paradigm finds its rele-
vance at many levels: (i) The successive computational states
are encoded into temporally robust cyclic attractor dynamics, in-
duced by the self-sustained activities of the synfire rings. (ii) The
transitions between such attractors are perfectly controlled, in an
input-driven way. (iii) The global computational process is robust
to various kinds of architectural failures and synaptic noises. (iv)
The proposed model fits within the general theory of cell assem-
blies. These considerations establish the possibility of achieving
abstract computation with bio-inspired neural networks. They
support the idea that biological neural networks are (at least) au-
tomata complete. They might also constitute a theoretical ground
for the realization of biological neural computers.

2. Boolean recurrent neural networks and finite state au-
tomata

A Boolean recurrent neural network (BRNN) N is a synchronous
network of Boolean neurons, i.e., McCulloch and Pitts cells (Mc-
Culloch & Pitts, 1943), related together in a general architecture.
It is composed of M Boolean input neurons (ui)Mi=1 and N Boolean
internal neurons (xi)Ni=1, among which P are considered to be the
output neurons (xik )

P
k=1 (if P = 0, then no output is considered).

At each time step, the activation value of every cell is either firing
(equal to 1) or quiet (equal to 0). The dynamics of network N
is computed as follows: given the activation values of the input
neurons (uj)Mj=1 and the internal neurons (xj)Nj=1 at time t , the
activation values of the internal neurons (xi)Ni=1 at time t + 1 are
given by the following equations:

xi(t + 1) = θ

⎛⎝ N∑
j=1

aij · xj(t) +

M∑
j=1

bij · uj(t) + ci

⎞⎠ ,

for i = 1, . . . ,N (1)

where aij and bij are the weights of the synaptic connections from
xj to xi and from uj to xi, respectively, ci is the bias of cell xi, and
θ is the classical hard-threshold activation function defined by

θ (x) =

{
0 if x < 1
1 if x ≥ 1.

Two Boolean recurrent neural networks are illustrated in Fig-
ures 3 and 4.

The input state, internal state and output state of network N at
time t are the Boolean vectors

u(t) = (u1(t), . . . , uM (t))T ∈ BM

2 The so-called ‘‘triangular structures’’ of Cabessa et al. (2017), Cabessa and
Masulli (2017), which were the Achille’s heel of the construction’s robustness,
are no more needed here.
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Fig. 1. A finite state automaton. Finite state automaton recognizing the
language Σ∗0110Σ∗ , i.e., all sequences of bits containing the pattern 0110. The
nodes and edges of the graph represent the computational states and transitions
of the automaton, respectively. Nodes q0 and q4 are the initial and final states,
respectively. A transition from qi to qj labeled by u means that if the automaton
is in state qi and receives input symbol u, then it will move to state qj .

x(t) = (x1(t), . . . , xN (t))T ∈ BN

o(t) = (xi1 (t), . . . , xiP (t))
T

∈ BP .

For any input stream u = u(0)u(1)u(2) · · ·, the computation and
output of N working over input u are the sequences of internal
states and output states at successive time steps

N (u) = x(0)x(1)x(2) . . .
o(u) = o(0)o(1)o(2) . . .

where x(0) = 0 and the components of x(t) and o(t) are given
by Eq. (1), for each t > 0.

Finite state automata constitute an abstract model of compu-
tation working as language recognizers. Formally, a deterministic
finite state automaton (DFSA) is a tuple A = (Q , Σ, δ, q0, F ),
where:

• Q is a finite set of states;
• Σ is an alphabet for the input symbols;
• δ : Q × Σ → Q is the transition function;
• q0 ∈ Q is the initial state;
• F ⊆ Q is the set of final states.
A finite state automaton is generally represented as a directed

graph, as illustrated in Fig. 1. The nodes and edges of the graph
represent the states and transitions of the automaton. Each tran-
sition δ(q, a) = q′ signifies that if the automaton is in state q ∈ Q
and receives input symbol a ∈ Σ , then it will move to state
q′

∈ Q . For any input (stream) w = a0a1 · · · an ∈ Σ∗, the
computation of A over w is the sequence

A(w) =
(
(qi0 , a0, qi1 ), (qi1 , a1, qi2 ), . . . , (qin , an, qin+1 )

)
such that qi0 = q0 and δ(qik , ak) = qik+1 , for all k = 0, . . . , n. Such
a computation is usually denoted as

A(w) : q0
a0
−→ qi1

a1
−→ qi2 · · · qin

an
−→ qin+1 .

Input w is said to be accepted (resp. rejected) by automaton A if
the last state qin+1 of computation A(w) belongs (resp. does not
belong) to the set of final states F . The set of all inputs accepted
by A is the language recognized by A, denoted as L(A).

Finite state transducers are slightly modified versions of finite
state automata working as output generators instead of language
recognizers. Formally, a deterministic finite state transducer (DFST)
is a tuple T = (Q , Σ, δ, q0), where:

• Q is a finite set of states;
• Σ is an alphabet of the input and output symbols;
• δ : Q × Σ → Q × Σ is the transition function;
• q0 ∈ Q is the initial state.
A finite state transducer is also generally represented as a

directed graph, as illustrated in Fig. 2. Each transition δ(q, a) =

(q′, o) signifies that if the transducer is in state q ∈ Q and receives
input symbol a ∈ Σ , then it will move to state q′

∈ Q and

Fig. 2. A finite state transducer. A finite state transducer implementing a serial
binary adder. The nodes and edges of the graph represent the computational
states and transitions of the transducer, respectively. A transition from qi to qj
labeled by u/o means that if the transducer is in state qi and receives input
symbol u, then it will move to state qj and output symbol o. The initial state
is q0 . The transducer computes the sum of two binary numbers as follows: it
starts from initial state q0 and takes as inputs the successive pairs of bits of the
sum in the reverse order; if needed, it adds a last input

(0
0

)
so as to come back

to its initial state q0 . The successive output bits correspond to the result of the
sum in the reverse order.

output symbol o ∈ Σ . For any input w = a0a1 · · · an ∈ Σ∗, the
computation of T over w is usually denoted as

T (w) : qi0
a0/o0
−−→ qi1

a1/o1
−−→ qi2 · · · qin

an/on
−−→ qin+1

where qi0 = q0 and qik , ak, ok, qik+1 are such that δ(qik , ak) =

(qik+1 , ok), for all k = 0, . . . , n. The output generated by T working
on input w is the sequence

o(w) = o0o1 · · · on.

Boolean recurrent neural networks are known to be com-
putationally equivalent to finite state automata (Kleene, 1956;
McCulloch & Pitts, 1943; Minsky, 1967).

Theorem 1 (Minsky 1967). Any Boolean neural network can be
simulated by some finite state automaton, and any finite state au-
tomaton or transducer can be simulated by some Boolean network.

The first part of this statement is straightforward. A Boolean
network with N cells has at most 2N spiking configurations. It
can therefore be simulated by a finite state automaton containing
at most 2N states. In short, the states of the automaton are
the spiking configurations (or states) of the network, and the
edges of the automaton are the network’s transitions between
these configurations. In this way, the dynamics of the network
corresponds precisely to the paths in the graph of the automaton.

The second part of the statement is more relevant, since it
concerns the issue of the implementation of finite state machines
on parallel hardwares (see for instance (Alon, Dewdney, & Ott,
1991; Elman, 1990; Horne & Hush, 1996; Indyk, 1995; Omlin
& Giles, 1996; Siegelmann, 1996)). A algorithmic construction
taking a given automaton or transducer as input and providing a
recurrent neural network that simulates it as output is described
in Algorithm 1 (adapted from Minsky, 1967).

In order to illustrate this construction, we consider the au-
tomaton and the transducer of Figures 1 and 2, respectively.
The automaton is a pattern detector, recognizing the language
Σ∗0110Σ∗, i.e., all sequences of bits containing the pattern 0110.
The accepting computation of this automaton working over input
00101100 is illustrated in Table 1 (rows 2–3).

A Boolean neural network simulating this automaton is il-
lustrated in Fig. 3. This network is obtained on the basis on
Algorithm 1 ((Minsky, 1967)’s construction) which is not optimal
in terms of number of cells and connections,3. The network is de-
signed in such a way that, at each time step, at most one internal

3 For optimality issues, see Horne and Hush (1996), Indyk (1995) as well as
the discussion in Section 7.
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Algorithm 1 Procedure which starts from a given automaton (transducer) and builds a Boolean recurrent neural network that simulates it.

Require: DFSA A = (Q , Σ, δA, q0, F ) (resp. DFST T = (Q , Σ, δT , q0))
1: // ***cells***
2: set K Boolean input cells (ua)a∈Σ , where K = |Σ | // input cells
3: set K × N Boolean internal cells (Cq,a)q∈Q ,a∈Σ , where N = |Q | // internal cells
4: set K Boolean output cells (Cout,a)a∈Σ // output cells - transducer’s case
5: //***connections***
6: for all transition (q, a, q′) ∈ graph(δA) (resp. (q, a, q′, o) ∈ graph(δT )) do
7: add an input connections from ua to Cq,a of weight 1

2 // input connections
8: for all input symbol a′

∈ Σ do
9: add a connection from Cq,a to Cq′,a′ of weight 1

2 // internal connections
10: end for
11: add a connection from Cq,a to Cout,o of weight 1 // output connections - transducer’s case
12: end for

cell is spiking. More precisely, if at time step t , the network has
its cell Cq,a being spiking while receiving the encoding of input
a′, then at time t + 1, cell Cq′,a′ will be spiking, where q′ is given
by the automaton’s transition δ(q, a) = q′. The computation of
this network over the encoding of input 00101100 is illustrated
in Table 1 (rows 4–7). Thanks to Algorithm 1, the indices of the
successive spiking cells of the network (Cq0,0, Cq1,0, Cq1,1, Cq2,0,
Cq1,1, Cq2,1, Cq3,0, Cq4,0) correspond precisely to the successive
states visited by the automaton (q0, q1, q1, q2, q1, q2, q3, q4). In
this precise sense, the automaton is correctly simulated by the
network.

The transducer of Fig. 2 implements a serial binary adder. It is
composed of two states, corresponding to the two situations of
either being currently carrying a 1 in the addition process or not.
The computation of this transducer over the binary sum s

01 11 11 11 01 01 11

+ 1 0 1 0 1 1
1 1 0 0 1 0 0

is illustrated in Table 1 (rows 8–10, see legend of Fig. 2 for a
description of the transducer’s computation).

The Boolean neural network simulating this transducer ob-
tained via Algorithm 1 is illustrated in Fig. 4. The network dynam-
ics satisfies the following property: if at time step t , the network
has its cell Cq,a being spiking while receiving the encoding of
input a′, then at time t + 1, cells Cq′,a′ and Cout,o′ will be spiking,
where q′ and o′ are given by the transducer’s transition δ(q, a) =

(o′, q′). The computation of this Boolean network over the encod-
ing of the binary sum s is illustrated in Table 1 (rows 11–17). Note
that the indices of the successive spiking cells of the network
(Cq0,(11)

, Cq1,(01)
, Cq1,(00)

, Cq0,(11)
, Cq1,(10)

, Cq1,(11)
, Cq1,(00)

) correspond
precisely to the successive states visited by the transducer (q0,
q1, q1, q0, q1, q1, q1). Moreover, the successive spiking output
cells of the network (Cout,0, Cout,0, Cout,1, Cout,0, Cout,0, Cout,1, Cout,1)
correspond precisely to the successive outputs the transducer (0,
0, 1, 0, 0, 1, 1). In this very sense, the transducer is correctly
simulated by the network.

These considerations show that the computations of the au-
tomaton and transducer of Figures 1 and 2 are perfectly reflected
by the dynamics of their corresponding Boolean neural networks
of Figures 3 and 4, respectively, with a time delay of 1 or 2 time
steps.4. More precisely, the automaton (resp. the transducer) is
in state q and receives input a at time t if and only if the neural
network has its internal cell Cq,a spiking at time t + 1 (resp. and
its output cell Cout,o spiking at time t + 2). These features can be
verified in Table 1.

Finally, note that the above construction is generic: it can be
applied to any finite state automaton or transducer. The formal

4 A formal definition of the concept of simulation of an automaton or
transducer by a corresponding neural network is provided in Section 4.3

proof of the correctness of this simulation process goes back
to Minsky (1967).

3. Modified Hodgkin–Huxley model

The pioneering Hodgkin–Huxley5 (HH) model is considered
amongst the most accurate for the simulation of biological neu-
rons (Hodgkin & Huxley, 1952). The parameters of the original
conductance-based HH-equations are highly precise for the mod-
eling of action potentials. But they remain difficult to be adjusted
when simulating experimental data.

Here, we consider an improved HH-model which is closer
the biological reality (cf. System (2)) (Tchaptchet et al., 2013).
The rate constants of the original HH-equations are replaced by
Boltzmann functions fitted with biological parameters. Moreover,
the power functions of the original equations are discarded. This
model is easier to handle, since the equations are simplified and
all parameters have biological meanings. The equations of this
improved model have been used successfully in various contexts,
showing the relations to the original HH-model (Postnova, Finke,
Huber, Voigt, & Braun, 2012; Tchaptchet, 2018, 2019; Tchaptchet
et al., 2013).

In this biological context, each synapse is associated with a
corresponding synaptic current. The synaptic currents are mod-
eled by the so-called alpha function α(t) = a · t · e−b·t , where
a and b are different parameters depending on the kinds of
connections that we consider (cf. Table 2). In the sequel, the
maximal amplitudes of these synaptic currents will be referred
to as the synaptic weights.

For any given neuron, let V be its membrane potential and C
its membrane capacitance. Let also IL be a leakage current, INa and
IK be the sodium and the potassium fast currents responsible for
spike generation, respectively, IC be the set of synaptic currents
coming from the neighboring neurons, and Iinput be a pulse-
like input current. The following system of ordinary differential
equations (ODE) characterizing the membrane potential V as a
function of the currents IL, INa, IK , IC and Iinput constitutes the
modified version of the Hodgkin–Huxley model considered here:

C ·
dV
dt

= −IL − INa − IK − IC − Iinput

IL = gL · (V − VL)
INa = gNa · m · h · (V − VNa) where

dm
dt

=
m∞ − m

τm
m∞ =

1
1 + e−sm·(V−Vhm)

dh
dt

=
h∞ − h

τh
h∞ = 1 −

1
1 + e−sh·(V−Vhh)

5 Alan Llyod Hodgkin and Andrew Fielding Huxley were awarded of the
Medicine’s Nobel Prize in 1963 for this model.
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Fig. 3. Boolean recurrent neural network computationally equivalent to the finite automaton of Fig. 1. The network has 2 input cells, u0 and u1 (blue), used to
encode the 2 possible automaton input symbols 0 and 1, respectively. The ‘‘start’’ cell spikes only at time t = 0 in order to initiate the dynamics. The 10 internal cells
Cq,a (black) represent the 10 possible events of the automaton, namely, ‘‘being is state q and receiving input a’’, for all q ∈ Q = {q0, q1, q2, q3, q4} and a ∈ Σ = {0, 1}.
The orange and black synaptic connections have weights 1/2. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 4. Boolean recurrent neural network computationally equivalent to the finite transducer of Fig. 2. The network has 4 input cells u(00) , u(01) , u(10) , u(11) (blue)

used to encode the 4 possible inputs of the transducer
(0
0

)
,
(0
1

)
,
(1
0

)
,
(1
1

)
, respectively. The ‘‘start’’ cell spikes only at time t = 0 in order to initiate the dynamics.

The 8 internal cells Cq,a (black) represent the 8 possible events of the transducer, namely, ‘‘being is state q and receiving input a’’, for all q ∈ Q = {q0, q1} and
a ∈ Σ = {

(0
0

)
,
(0
1

)
,
(1
0

)
,
(1
1

)
}. The two output cells Cout,0 and Cout,1 (red) represent the two possible outputs 0 and 1 of the transducer, respectively. The orange and

black synaptic connections have weights 1/2. The red connections have weights 1. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

IK = gK · n · (V − VK )
dn
dt

=
n∞ − n

τn
n∞ =

1
1 + e−sn·(V−Vhn)

(2)

IC = wexc
intra + wexc

inter + winh
inter + wexc

output + winh
output

wexc
intra = aexcintra · t · eb

exc
intra·t

wexc
inter = aexcinter · t · eb

exc
inter ·t

winh
inter = ainhinter · t · eb

inh
inter ·t

wexc
output = aexcoutput · t · eb

exc
output ·t

winh
output = ainhoutput · t · eb

inh
output ·t

Iinput = aexcinput · χtinput (t)

In the last equation, χtinput (t) = 1 if t ∈ [0, tinput ] and χtinput (t) = 0
otherwise, meaning that the input current Iinput has a constant
amplitude of aexcinput and a duration of tinput ms.

A detailed explanation of the parameters of Eqs. (2) can be
found in Postnova et al. (2012), Tchaptchet (2019), Tchaptchet
et al. (2013). Throughout this work (Sections 4–6), the considered
cells are the same as the ‘‘standard neuron’’ of the virtual labo-
ratory ‘‘SimNeuron’’ (http://www.virtual-physiology.com/). They
are all identical in the so-called steady-state mode. Their corre-
sponding parameters are given in Table 2. In Section 6, variations
of the parameters aij and bij characterizing the synaptic currents
will be considered and specified explicitly (where i ∈ {exc, inh}
and j ∈ {intra, inter}).

In this work, the differential Equations (2) are implemented
using the classical Euler’s discretization method with a time
step of 0.01. Simulations are in milliseconds, meaning that each
millisecond of simulation is discretized in 100 time steps. The
simulations are performed in C# for Sections 4 and 5, and in
Python for Section 6.

http://www.virtual-physiology.com/
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Table 1
Row 1. Time steps. Rows 2–3. Computation of the automaton of Fig. 1 over input 00101100. Rows 4–7. Dynamics of the Boolean neural network of Fig. 3 over the
encoding of the same input. Note that the indices s of the successive activated cells Cs,i of the network match the successive states s of the automaton. Rows 8–10.
Computation of the transducer of Fig. 2 over the input sum 1 1 1 0 0 1

+ 1 0 1 0 1 1 . Rows 11–17. Dynamics of the Boolean neural network of Fig. 4 over the encoding of the
same input. The indices s and j of the successive activated cells Cs,i and Cout,j of the network match the successive states s and outputs j of the transducer.

Time steps 0 1 2 3 4 5 6 7 8 9

Inputs 0 0 1 0 1 1 0 0 – –
◀ · · · · · · · · · pattern 0110 · · · · · · · · · ▶

States q0 q1 q1 q2 q1 q2 q3 q4 q4 –
detected

Cell start 1 0 0 0 0 0 0 0 0 0
Cell u0 1 1 0 1 0 0 1 1 0 0
Cell u1 0 0 1 0 1 1 0 0 0 0

◀ ·· encoding of the pattern 0110 ·· ▶
Cells Cs,i – Cq0,0 Cq1,0 Cq1,1 Cq2,0 Cq1,1 Cq2,1 Cq3,0 Cq4,0 –

detected

Inputs
(1
1

) (0
1

) (0
0

) (1
1

) (1
0

) (1
1

) (0
0

)
– – –

States q0 q1 q1 q0 q1 q1 q1 q0 – –
Outputs 0 0 1 0 0 1 1 – – –

◀ · · · · · · · · · · · · · · result of the sum s in the reverse order · · · · · · · · · · · · · · ▶

Cell start 1 0 0 0 0 0 0 0 0 0
Cell u(00) 0 0 1 0 0 0 1 0 0 0
Cell u(01) 0 1 0 0 0 0 0 0 0 0
Cell u(10) 0 0 0 0 1 0 0 0 0 0
Cell u(11) 1 0 0 1 0 1 0 0 0 0
Cells Cs,i – Cq0,(11)

Cq1,(01)
Cq1,(00)

Cq0,(11)
Cq1,(10)

Cq1,(11)
Cq1,(00)

– –
Cells Cout,j – – Cout,0 Cout,0 Cout,1 Cout,0 Cout,0 Cout,1 Cout,1 –

◀ · · · · · · encoding of the result of the sum s in the reverse order · · · · · · ▶

Table 2
Values of the parameters of Eqs. (2). These parameters are those of a ‘‘standard neuron’’ of the virtual laboratory ‘‘SimNeuron’’ (www.virtual-
physiology.com).
Membrane
capacitance [pF]

C = 0.1

Currents: Leakage Sodium Potassium
non-synaptic

Max. conductances [µS] gL = 0.1 gNa = 4.0 gK = 2.0

Potentials [mV] VL = −60 VNa = 50 VK = −90

Half potentials [mV] Vhm = −22 Vhh = −50 Vhn = −30

Slope of sm = 0.14 sh = 0.12 sn = 0.14
(in-)activation [mV−1

]

Time constants [ms] τm = 0.05 τh = 1.5 τn = 1.8

Currents: Excitatory Inhibitory
synaptic

Input aexcinput = 1.9 tinput = 0.4

Intra-ring aexcintra = 25.0 bexcintra = 2.0

Inter-ring aexcinter = 3.0 bexcinter = 0.7 ainhinter = 15.0 binhinter = 1.5

Output aexcoutput = 6.0 bexcoutput = 0.7 ainhoutput = 15.0 binhoutput = 1.5

4. Finite state automata and Hodgkin–Huxley neural networks
composed of synfire rings

We now generalize the equivalence between automata and
recurrent neural networks presented in Section 2 to the biologi-
cal context of Hodgkin–Huxley (HH) recurrent neural networks
composed of synfire rings. More precisely, we show that any
finite state automaton or transducer can be correctly simulated
by a recurrent neural network modularly composed of synfire
rings, and whose cells’ dynamics is governed by the modified HH-
Equations (2). Note that a formal proof of this feature requires an
analytical resolution of the systems of differential Equations (2)
modeling each cell of the networks. The multiplicity of the ODE
involved makes this a complex task. Hence, the correctness of

the simulation process will be verified empirically rather than
analytically. In this sense, our analysis remains at the level of an
empirical evidence. The result can be formalized as follows:

Result 1. Any finite state automaton or transducer can be correctly
simulated by a Hodgkin–Huxley based recurrent neural network
modularly composed of synfire rings.

The rest of the section is devoted to the achievement of this
result. First, we properly recall the concept of a synfire ring. Next,
we describe an algorithmic construction which takes a finite state
automaton or transducer as input and provides a corresponding
HH-based neural network modularly composed of synfire rings

http://www.virtual-physiology.com
http://www.virtual-physiology.com
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Algorithm 2 Procedure which starts from a given automaton (transducer) and builds a HH-neural network composed of synfire rings that simulates
it (generalization of Minsky (1967)’s construction).
Require: DFSA A = (Q , Σ, δA, q0, F ) (resp. DFST T = (Q , Σ, δT , q0))
1: set K input cells (ua)a∈Σ , where K = |Σ | // input cells
2: set K × N synfire rings (Rq,a)q∈Q ,a∈Σ , where N = |Q | // internal rings
3: set K synfire rings (Rout,a)a∈Σ // output rings - transducer’s case
4: for all transition (q, a, q′) ∈ graph(δA) (resp. (q, a, q′, o) ∈ graph(δT )) do
5: add a bundle of input excitatory connections from ua to Rq,a // input connections
6: for all input symbol a′

∈ Σ do
7: add a bundle of inter-ring excitatory connections from Rq,a to Rq′,a′ // inter-ring excitatory connections
8: add a bundle of inter-ring inhibitory connections from Rq′,a′ to Rq,a // inter-ring inhibitory connections
9: end for

10: add a bundle of output excitatory connections from Rq,a to Rout,o // output excitatory connections - transducer’s case
11: for all output symbol o′

∈ Σ do
12: add a bundle of output inhibitory connections from Rout,o to Rout,o′ // output inhibitory connections - transducer’s case
13: end for
14: end for
15: set wexc

input , wexc
inter , wexc

output such that the following conditions are satisfied: // excitatory connections
• one bundle of input excitatory connections is not sufficient to activate a ring onto which it projects
• one bundle of inter-ring excitatory connections is not sufficient to activate a ring onto which it projects
• the synchronized activations of one bundle of input excitatory connections and one bundle of inter-ring excitatory connections is sufficient

to activate a ring onto which it projects
16: set winh

inter and winh
output such that the following condition is satisfied: // inhibitory connections

• each single synapse of a bundle of inhibitory connections is sufficiently strong to knock out the activation the cell onto which it projects

as output (Algorithm 2). The construction is generic, in the sense
that it can be applied to any finite state automaton or transducer.
Afterwards, we formally define the concept of correct simulation
of a finite state machine by a corresponding HH-based neural
network. Finally, we empirically show that any automaton or
transducer is correctly simulated by the corresponding HH-based
neural network constructed by Algorithm 2.

4.1. Synfire rings

A synfire chain consists of a sequence of layers of neurons
that are fully connected from one stratum to the next by means
of excitatory synaptic connections (Abeles, 1982, 1991, 2004).
A synfire ring is a synfire chain that loops back in on itself,
i.e., where the last layer is connected to the first (Zheng & Triesch,
2014). A synfire chain and a synfire ring are illustrated in Fig. 5.
The width of a synfire chain or ring refers to the number of cells
composing each of its layer. The length is the number of layers
composing it. For instance, the synfire chain and ring of Fig. 5
have width 3 and length 8. In a synfire chain or ring, the weights
of the connections are assumed to be strong enough to ensure
that a spiking activity can propagate from one layer to the next in
a robust manner. The internal excitatory connections of a synfire
rings are referred to as the intra-ring connections. The synaptic
weight associated to these internal connections, denoted by wexc

intra,
refers to the sum of the synaptic currents transmitted by each.
The parameters of wexc

intra are given in Table 2. Synfire rings will
always be activated via one of their specific layers called the
activation layer (dark blue cells in Fig. 5, 7 and 8). We assume that
the rings are wired in such a way that the information propagates
in the clockwise direction of rotation (gray or red little arrows in
Fig. 7 and 8).

4.2. General construction

We describe the construction which starts from a given finite
state automaton and builds a HH-based neural network mod-
ularly composed of synfire rings capable of simulating it. The
construction is a generalization of Algorithm 1 to the context
of synfire rings. The main idea consists first in replacing the
cells Cq,a and Cout,a of Algorithm 1 (Minsky’s construction) by
corresponding synfire rings Rq,a and Rout,a, respectively. The input

cells of Algorithm 1 remain however unchanged. In addition,
every synaptic connection of Minsky’s construction is replaced
by a bundle of excitatory connections, and in some cases also, by
an additional reverse bundle of inhibitory connections. The whole
process is described in detail in Algorithm 2. The next paragraphs
are devoted to the presentation of the connectivity patterns and
successive steps composing this construction.

First of all, we focus on the various connectivity patterns
between synfire rings. Let u be an input cell and R be a synfire
ring. A bundle of input excitatory connections (Fig. 6, top panel) is
an ensemble of excitatory synapses projecting from u onto each
cell of a (target) layer of R (one-to-all connections). The synaptic
weight associated to this bundle, denoted by wexc

input , refers to the
sum of the synaptic currents transmitted by u. Moreover, let R1
and R2 be two synfire rings. A bundle of excitatory or inhibitory
connections (Fig. 6, bottom panel) denotes an ensemble of excita-
tory or inhibitory synapses connecting each cell of a (source) layer
of R1 to each cell of a (target) layer of R2 (all-to-all connections).
The synaptic weights associated to these bundles, denoted by wexc

−

or winh
−

, refer to the sum of the synaptic currents transmitted by
each cell of the source layer. Hence, the intensity of the whole
bundle is equal to wexc

−
· k or winh

−
· k, where k is the number

of cells in the source layer. In the sequel, these weights will be
denoted by wexc

inter , w
inh
inter or wexc

output , w
inh
output depending on whether

R1 is an output synfire ring or not (this will be specified in the
next paragraphs). The values of these weights are determined by
the formula and parameters specified in Eqs. (2) and Table 2.

We now describe the successive steps of the construction.
First of all, each input cell u of Minsky’s construction is kept
unchanged, and each internal or output cell C of Minsky’s con-
struction is replaced by a corresponding internal or output synfire
ring, respectively.

Moreover, each input connection of Minsky’s construction be-
tween two cells ui and Cj (orange arrows of Figs. 3 and 4) is
replaced by a bundle of input excitatory connections projecting
from the input cell ui onto the activation layer of the targeted
ring Rj (orange double arrows of Fig. 10 and 11). This bundle of
connections is illustrated in Fig. 7. Its associated weights wexc

input are
chosen such that the connections from ui to Rj are not sufficient
to activate the activation layer of Rj. More precise conditions for
the setting of these weights are provided in Algorithm 2. Note
also that in our simulation process, an input signal from ui to Rj
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Fig. 5. A synfire chain and a synfire ring. Layers of neurons fully connected from one to the next by means of excitatory synaptic connections. The filled-in cells
represent the activation layer of the ring.

Fig. 6. A bundle of input excitatory connections (top panel), and two bundles of inter-ring excitatory (bottom left panel) and inter-ring inhibitory (bottom
right panel) connections. For each panel, the top figure illustrates the detailed situation, and the bottom one its schematic representation (used in the subsequent
figures). Columns of cells represent rings’ layers. Red or blue arrows represent excitatory or inhibitory connections between these layers, respectively. The synaptic
weights wexc

input , w
exc
−

, winh
−

associated to these bundles are also represented. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

is rather simulated by the transmission of a synaptic current Iinput
to each cell of the activation layer of Rj.

Furthermore, each internal connection of Minsky’s construc-
tion between two cells Ci and Cj (black arrows of Figs. 3 and 4)
is replaced by two reverse bundles of inter-ring connections. The
first one consists of excitatory connections projecting from the
activation layer of ring Ri onto that of ring Rj. The second one
is composed of reverse inhibitory connections projecting from a
layer of Rj located ‘‘after’’ its activation layer onto a layer of Ri
located ‘‘before’’ its activation layer, where ‘‘before’’ and ‘‘after’’
are relative to the clockwise direction of rotation (black double
arrows of Fig. 10 and 11). These bundles of inter-ring excita-
tory and inhibitory connections are illustrated in Fig. 7. Their
respective weights wexc

inter and winh
inter are chosen such that the two

following conditions are satisfied: First, the bundle of inter-ring
excitatory connections from Ri to Rj is not sufficient to activate
the activation layer of Rj. Second, if ring Rj becomes active via
its activation layer, then it will send back to Ri an inhibition that
is sufficiently strong to knock out the activation that the latter
ring might have received recently. In this way, the activation of
a subsequent ring always triggers the inhibition of the previous

one, ensuring that except during the transition phases, at most
one internal synfire ring is always active. Further conditions for
the setting of these weights are provided in Algorithm 2.

Also, each output connection of Minsky’s construction be-
tween an internal cell Ci and an output cell Cout,j (red arrows
of Fig. 4) is replaced by a bundle of excitatory connections pro-
jecting from the activation layer of ring Ri onto that of ring
Rout,j together with reverse bundles of inhibitory connections (of
the kind described above) between Rout,j and all other output
rings (red double arrows of Fig. 11). These bundles of excita-
tory and inhibitory output connections are illustrated in Fig. 8.
Their respective weights wexc

output and winh
output are chosen such that

the two following conditions are satisfied: First, the excitatory
connections from ring Ri to Rout,j are sufficient to activate Rout,j.
Second, if ring Rout,j becomes active, then it will send to all other
output rings an inhibition that is sufficiently strong to knock them
out.

The parameters of the HH-cells and the weights of the intra-
ring connections are set such that any activated synfire ring
will necessarily settle into a self-sustained activity, as long as
it is not affected by any inter-ring inhibitory connection. The
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Fig. 7. Connectivity pattern between an input cell and two synfire rings.
The light blue circle and gray rings represent an input cell u and two internal
synfire rings Ri and Rj , respectively. A bundle of input excitatory connections
(red arrow) projects from cell u onto the activation layer of ring Rj . The two
rings Ri and Rj are connected by bundles of inter-ring excitatory and inhibitory
connections. A bundle of inter-ring excitatory connections (red arrow) projects
from the activation layer of Ri onto that of Rj . A reverse bundle of inter-ring
inhibitory connections (blue arrow) projects from a layer of Rj located ‘‘after’’
its activation layer onto a layer of Ri located ‘‘before’’ its activation layer. The
transition-ring mechanism refers to the dynamical situation where the combined
activations of u and Ri provoke the activation of Rj , which in turn leads to
the inhibition of Ri . (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 8. Connectivity pattern between an internal synfire ring and two output
synfire rings. The gray and red rings represent an internal and two output
rings Ri, Rout,j, Rout,k , respectively. A bundle of output excitatory connections (red
arrow) projects from the activation layer of Ri onto that of Rout,j . Two reverse
bundles of output inhibitory connections (blue arrows) link Rout,j and Rout,k . Each
one projects from a layer located ‘‘after’’ the activation layer of one ring onto
a layer located ‘‘before’’ the activation layer of the other ring. The output-ring
mechanism refers to the dynamical situation where the activation Ri provokes
the activation of Rout,j , which in turn leads to the inhibition of Rout,k , supposing
that the latter was already active. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

precise conditions that these weights need to satisfy are given
in Algorithm 2. The values of the parameters characterizing all
synaptic currents are given in Table 2.

The correctness of this construction relies on two key dynam-
ical processes, referred to as the transition-ring and output-ring
mechanisms, illustrated in Figs. 7 and 8, respectively. In the first

case (Fig. 7), an input cell u and a synfire ring Ri both project
via bundles of input and inter-ring connections onto a second
synfire ring Rj. The synaptic weights wexc

input , wexc
inter , winh

inter can be
fine-tuned in such a way that the combined activations of u and Ri
provoke the activation of Rj, which in turn leads to the inhibition
of Ri. The synaptic parameters given in Table 2 ensure that this
mechanism is correctly realized in the present context of HH cells.
The correctness of this mechanism is illustrated by the raster plot
of Fig. 9 (left panel), and the issue of its secure implementation
analyzed in Section 6.5. In the second case (Fig. 8), an internal
synfire ring Ri projects via a bundle of output connections onto
an output synfire ring Rout,j, which is connected by a bundle
of output inhibitory connections to another output synfire ring
Rout,k. The synaptic weights wexc

output and winh
output can finely-tuned

such that the activation of Ri provokes the activation of Rout,j
which in turn leads to the inhibition of Rout,k, supposing that the
latter was already active. Again, the synaptic parameters given
in Table 2 ensure that this mechanism is correctly achieved. The
correctness of this mechanism is illustrated by the raster plot of
Fig. 9 (right panel).

The whole construction is formally described in Algorithm
2. According to this procedure, the HH-based neural networks
composed of synfire rings simulating the automata and of Figs. 1
and 2 are schematically illustrated in Fig. 10 and 11, respectively.

4.3. The concept of ‘‘simulation’’

We provide a formal definition of the concept of simulation
of an automaton or a transducer by a corresponding neural net-
work. Towards this purpose, we first come back to Minsky’s
construction. Algorithm 1 takes as input an automaton A =

(Q , Σ, δ, q0, F ) or a transducer T = (Q , Σ, δ, q0) and provides as
output a corresponding Boolean neural network NA or NT , re-
spectively. We recall that for any input stream w = a0a1 · · · an ∈

Σ∗, the computations of A and T on w are denoted by

A(w) : q0
a0

−→ qi1
a1

−→ qi2 · · ·
an

−→ qin+1

T (w) : q0
a0/o0
−→ qi1

a1/o1
−→ qi2 · · ·

an/on
−→ qin+1 .

(3)

In addition, for any sequence of symbols w = a0a1 · · · an ∈ Σ∗, let
w̄ = ua0ua1 · · · uan denote the successive activations of the input
cells ua0 , ua1 , . . . , uan of NA (resp. NT ) at times 0, 1, . . . , n. We
say that A (resp. T ) is correctly simulated by NA (resp. NT ), if
and only if, when A (resp. T ) and NA (resp. NT ) are run in par-
allel on input streams w and w̄, respectively, then the successive
states of A (resp. states and outputs of T ) are perfectly reflected
with a time delay of 1 time step (resp. 1 and 2 time steps) by
the successive spiking internal cells of NA (resp. internal and
output cells of NT ). Formally, A (resp. T ) is correctly simulated
by NA (resp. NT ), if and only if, for any w = a0a1 · · · an, the
computation of NA (resp. NT ) on w̄ = ua0ua1 · · · uan yields the
following sequence of spiking internal cells (resp. internal and
output cells)

t = 0 t = 1 t = 2 t = 3 . . . t = n + 1 t = n + 2
− Cq0,a0 Cqi1 ,a1 Cqi2 ,a2 . . . Cqin ,an
− − Cout,o0 Cout,o1 . . . . . . Cout,on .

(4)

This definition ensures that the successive states of A (resp. suc-
cessive states and outputs of T ), given in Relation (3), correspond
precisely to the indices of the successive spiking internal cells of
NA (resp. internal and output cells of NT ), given in Relation (4).

The proof that any automaton A (resp. transducer T ) is cor-
rectly simulated by the Boolean neural network NA (resp. NT )
provided by Algorithm 1 is fairly straightforward and can be
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Fig. 9. Activities of the transition-ring and the output-ring mechanisms. The cells are modeled by the HH-equations (2). In both rasters, each dot represents the
activation of a whole layer of a synfire ring (instead of a single cell). Left raster: Two synfire rings R0 and R1 (composed of 12 layers of 3 cells each) are connected
as described in Fig. 7. The combined activations of R0 (lower raster trace) and of the input current (upper blue trace), provoke the activation of R1 (upper raster
trace), which in turn, leads to the inhibition of R0 (lower raster no-trace). This dynamics corresponds precisely to the transition-ring mechanism. Right raster: One
internal synfire ring Rq,1 and two output synfire rings Rout,0 and Rout,1 (composed of 12 layers of 3 cells each) are connected as described in Fig. 8. If Rout,0 is already
active (middle raster trace), then the activation of Rq,1 (lower raster trace), induced by an input current in this case (upper blue trace), provokes the activation of
Rout,1 (upper raster trace), which in turn, leads to the inhibition of Rout,0 (middle raster no-trace). This dynamics corresponds precisely to the output-ring mechanism.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Schematic representation of the HH-neural network composed of synfire rings simulating the automaton of Fig. 1. The blue circles are the input
HH-cells. The black double circles represent the internal synfire rings made up of HH-cells. The orange and black arrows represent the bundles of input and
inter-ring connections described in Fig. 7. Note that for each bundle of inter-ring excitatory connections projecting from a ring Ri to a ring Rj (black connection),
there is a corresponding reverse bundle of inter-ring inhibitory connections from Rj to Ri that is not represented (cf. Fig. 7). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Schematic representation of the HH-neural network composed of synfire rings simulating the transducer of Fig. 2. The blue circles are the input cells.
The black and red double circles represent the internal and output synfire rings made up of HH-cells, respectively. The orange, black and red arrows represent
bundles of input, inter-ring and output connections described in Figs. 7 and 8, respectively. The blue arrows between Rout,0 and Rout,1 are two reverse bundles of
inhibitory output connections described in Fig. 8. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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found in Minsky (1967). The correct simulations of automaton A
and transducer T of Figs. 1 and 2 by their corresponding Boolean
neural networks NA and NT of Figs. 3 and 4 can be verified in
Table 1: see rows 3 and 7 for the dynamics of A and NA, as well
as rows 9–10 and 16–17 for those of T and NT .

Similarly, Algorithm 2 takes as input an automaton A or a
transducer T and provides as output a corresponding HH-based
neural network composed of synfire rings NHH

A or NHH
T , respec-

tively. For any sequence of symbols w = a0a1 · · · an ∈ Σ∗,
let ŵ = ua0 , ua1 , . . . , uan denote the successive activations of
the input cells ua0 , ua1 , . . . , uan of NHH

A (resp. NHH
T ) at times

t0, t1, . . . , tn by an input current of amplitude 1.9 nA and duration
4 ms (cf. Section 3), and where the ti’s are sufficiently distant
apart from one another in order for the network to be able to
settle into stable synfire ring activations between ti and ti+1, for
0 ≤ i ≤ n − 1 (cf. Section 6 for further detail). We say that A
(resp. T ) is correctly simulated by NHH

A (resp. NHH
T ), if and only if,

for any w = a0a1 · · · an, the computation of NHH
A (resp. NHH

T ) on
ŵ = ua0 , ua1 , . . . , uan yields the following sequence of activated
internal rings (resp. internal and output rings)

− Rq0,a0 Rqi1 ,a1 Rqi2 ,a2 . . . Rqin ,an
− − Rout,o0 Rout,o1 . . . . . . Rout,on .

(5)

Here again, the definition ensures that the successive states of A
(resp. successive states and outputs of T ), given in Relation (3),
correspond precisely to the indices of the successive activated
internal rings of NA (resp. internal and output rings of NT ), given
in Relation (5).

4.4. Justification of Result 1

We now show that the construction given in Algorithm 2
correctly fulfills the statement of Result 1. The idea consists in
showing that the dynamics of the Boolean networkNA (resp.NT )
is stably and correctly reflected by that of the HH-based network
NHH

A (resp. NHH
T ), in the precise sense described below. Since A

(resp. T ) is correctly simulated by NA (resp. NT ), then so is it
by NHH

A (resp. NHH
T ). This analysis relies on the empirical evi-

dence that the two transition-ring and output-ring mechanisms
(cf. Fig. 7 and 8) can be successfully and stably implemented in
the present context (cf. Fig. 9). A thorough analysis of this feature
is provided in Section 6.5. In this sense, our analysis remains at
the level of an empirical evidence.

First of all, note that Algorithm 2 is a generalization of Algo-
rithm 1. In line 1, we also consider k input cells (ua)a∈Σ , where
k = |Σ |. In lines 2–3, instead of considering Boolean cells
(Cq,a)q∈Q ,a∈Σ and (Cout,a)a∈Σ , we consider synfire rings (Rq,a)q∈Q ,a∈Σ

and (Rout,a)a∈Σ . In lines 4–14, instead of adding single input, in-
ternal and output synaptic connections between Boolean cells, we
add bundles of input, inter-ring and output connections between
input cells and rings, between internal rings, and between inter-
nal and output rings, respectively. Finally instead of setting the
weights of the input and internal connections to 1/2 and those
of the output connections to 1, we tune the synaptic weights of
the connections bundles so as to fulfill the conditions of lines 15–
16. The synaptic parameters given in Table 2 guarantee that these
properties are satisfied.

The patterns of connectivity and their corresponding synaptic
weights ensure the successful implementations of the transition-
ring and output-ring mechanisms (cf. Fig. 7, 8, 9 and Section 6.5).
More precisely, if an internal ring Rq,a receives combined ac-
tivations from an input cell ua and another internal ring Rq′,a′

(via bundles of input and inter-ring connections), then Rq,a will
become activated and Rq′,a′ will in turn be inhibited. In addition,
if an output ring Rout,o receives activation from an internal ring
Rq,a (via output connections), then Rout,o will become activated

and every other output rings Rout,o′ will in turn be inhibited, for
all o′

∈ Σ .
According to the parallelism between Algorithms 2 and 1

as well as to the successful implementations of the transition-
ring and output-ring mechanisms, if NHH

A (resp. NHH
T ) receives

the input pattern ŵ = ua0 , ua1 , . . . , uan , then it will mimic the
behavior of NA (resp. NT ) over input stream w̄ = ua0ua1 · · · uan ,
in the following sense: the network NHH

A (resp. NHH
T ) will have

its internal ring Rq,a (resp. its internal ring Rq,a and output ring
Rout,o) activated after receiving input signal uai , if and only if, the
network NA (resp. NT ) has its internal Boolean cell Cq,a (resp. its
internal Boolean cell Cq,a and output Boolean cell Cout,o) spiking 1
time step (resp. 1 and 2 time steps) after receiving input uai , for
each 0 ≤ i ≤ n. Hence, throughout the computational process,
the sequence of activated internal rings (resp. and output rings)
of NHH

A (resp. NHH
T ) is the exact counterpart to that of spiking

internal cells (resp. and output cells) of NA (resp. NT ), given in
Relation (4), namely:

Rq0,a0 Rqi1 ,a1 Rqi2 ,a2 . . . Rqin ,an
− Rout,o0 Rout,o1 . . . . . . Rout,on

(6)

Relations (3) and (6) show that the automaton A (resp. the
transducer T ) is correctly simulated by the HH-neural network
NHH

A (resp. NHH
T ).

The correct simulations of automaton A and transducer T of
Figs. 1 and 2 by their corresponding HH-based neural networks
NHH

A and NHH
T of Fig. 10 and 11 can be verified in Table 3

(Section 5): see rows 3 and 4 for the dynamics of A and NHH
A ,

as well as rows 7–8 and 9–10 for those of T and NHH
T .

5. Numerical simulations

In order to validate the correctness of our construction (Algo-
rithm 2), we show by means of numerical simulations that the
HH-based neural networks of Figs. 10 and 11 correctly simulate
the automaton and transducers of Fig. 1 and 2, in the sense of
Section 4.4. The governing Equations of the neurons’ dynamics
and their parameters are described in Section 3.

We consider synfire rings composed of 12 layers of 3 neurons
each, which amounts to a total of 36 neurons. The number of
12 layers has been chosen in order to satisfy the requirements
described in Section 6.3. Accordingly, each activated synfire ring
will necessarily settle into a self-sustained activity, as long as it
does not receive any other inhibition.

The HH-network simulating the automaton of Fig. 1 is sub-
jected to 2 input signals (start signal is omitted) and is composed
of 10 internal synfire rings (cf. Fig. 10). We simulated the activity
of this network receiving input pattern 00101100. The raster plot
of this simulation is presented in Fig. 12. The internal rings that
are successively activated are reported in Table 3. The activation
of ring Rq4,0 shows that the pattern 0110 has been correctly
detected in the input. This experiment shows that the automaton
of Fig. 1 is correctly simulated by the HH-based neural network
composed of synfire rings of Fig. 10. Indeed, the successive states
of the automaton (Table 3, row 3)

q0, q1, q1, q2, q1, q2, q3, q4

are correctly reflected by the indices of the successive activated
rings of the corresponding network (Table 3, row 4)

Rq0,0, Rq1,0, Rq1,1, Rq2,0, Rq1,1, Rq2,1, Rq3,0, Rq4,0.

Similarly, The HH-network simulating the automaton of Fig. 2
is subjected to 4 input signals (start signal is omitted) and is
composed of 8 internal and 2 output synfire rings (cf. Fig. 11).
We simulated the activity of the network during the computation
of the sum s = 1 1 1 0 0 1

+ 1 0 1 0 1 1 . The raster plot of this simulation
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Fig. 12. Raster plot of the activity of the HH-based neural network of Fig. 10 simulating the automaton of Fig. 1. The raster traces are composed of successive
dots, each of which representing the activation of a whole layer of a synfire ring. Inputs (0, 1) and (1, 0) encode the automaton’s inputs 0 and 1, respectively. Inputs
are transmitted to the network in the form of constant currents of fixed duration (blue trace). In this case, the input stream corresponds to the encoding of the
binary input 00101100. The raster shows the synfire rings that are successively activated. We see that the last activated ring that is Rq4,0 . This encodes the fact of
the corresponding automaton being in final state q4 , and therefore, that the input pattern is accepted. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 13. Raster plot of the activity of the HH-based neural network of Fig. 11 simulating the transducer of Fig. 2. The raster traces are composed of successive
dots, each of which representing the activation of a whole layer of a synfire ring. Inputs (0, 0), (0, 1), (1, 0), (1, 1) encode the transducer’s inputs

(0
0

)
,
(0
1

)
,
(1
0

)
,
(1
1

)
,

respectively. Inputs are transmitted to the network in the form of constant currents of fixed duration (blue trace). In this case, the input stream corresponds to the
encoding of the binary sum s = 1 1 1 0 0 1

+ 1 0 1 0 1 1 : the successive pairs of bits of s are given in the reverse order. The raster shows the successive internal and output
rings that are successively activated. The sequence of activated output rings corresponds to the encoding of the result of s in the reverse order, namely, 0010011.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

is presented in Fig. 13. The inputs submitted to the network
correspond to the encodings the successive pairs of bits of s in the
reverse order. The internal and output rings that are successively
activated are reported in Table 3. The activity of the output rings

(red patterns) corresponds to the encoding of the result of s in
the reverse order. Here again, this experiment shows that the
automaton of Fig. 2 is correctly simulated by the HH-based neural
network of synfire rings of Fig. 11. Indeed, the successive states
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and outputs of the transducer (Table 3, rows 7–8)

q0, q1, q1, q0, q1, q1, q1 and 0, 0, 1, 0, 0, 1, 1

are correctly reflected by the indices of the successive activated
rings of its corresponding network (Table 3, rows 9–10)

Rq0,(11)
, Rq1,(01)

, Rq1,(00)
, Rq0,(11)

, Rq1,(10)
, Rq1,(11)

, Rq1,(00)
and

Rout,0, Rout,0, Rout,1, Rout,0, Rout,0, Rout,1, Rout,1.

6. Stability, robustness and representational capacity

Sections 4 and 5 empirically show that any finite state au-
tomaton can be correctly simulated by a corresponding HH-based
neural network modularly composed of synfire rings. The stability
of the simulation process relies on the following four dynamical
features: (i) the possibility of a Hodgkin–Huxley cell to be peri-
odically reactivated; (ii) the ability of synfire rings to generate
self-sustained activities; (iii) the ability of synfire rings to gen-
erate temporally synchronized activities; (iv) the possibility to
activate and inhibit synfire rings in a controlled manner, in order
to ensure the implementations of the transition-ring mechanism
and the output-ring mechanism (cf. Fig. 7 and 8). Furthermore,
the robustness of the simulation process derives from the resis-
tance of those dynamical features to cell death and/or synaptic
failure mechanisms.

In the following subsections, we first study the self-sustained
activities of synfire rings. We then focus on the stability and
robustness of the these dynamics as a function of the ring topolo-
gies and the presence of synaptic noises. We finally touch on
issue of the representational capacity of the synfire ring neural
architecture, by considering the possibility of overlapping rings.

6.1. Refractory period and depolarization block

The modified Hodgkin–Huxley Equations (2) capture the mod-
eling of the refractory period of the cells, i.e., the period following
a spike and during which any further stimulation of the cell has
no effect in (cf. Fig. 14). The refractory period is affected by the
intrinsic parameters of the cell (cf. Table 2): its membrane ca-
pacitance as well as the maximum conductances, potentials, half
potentials, slope of (in-)activation and time constants, all of them
related to the leaky, sodium and potassium currents (Tchaptchet,
2019).

The intrinsic parameters of the cells used in our model (cf. Ta-
ble 2) induce a total spike duration – refractory period included
– of about 8 ms. Consequently, if two activations of a cell occur
within a delay of less than 8 ms, then only one action potential
will be generated: due to the refractory period, the cell membrane
will not be ready for responding to the second stimulus. We will
show that the refractory period of the cells imposes a strong
condition on the ring topology in order to ensure the possibility
of generating self-sustained activities (cf. Section 6.3).

The modified Hodgkin–Huxley Equations (2) also capture the
effect of depolarization block—the silent state occurring when the
neuron receives excessive excitation (cf. Fig. 15) (Bianchi et al.,
2012). In fact, input stimuli of larger intensities induce respond-
ing spikes of higher frequencies (Fig. 15, cases C,D,E), up to the
level where the input current becomes too large. In that case,
the cell to enter the depolarization block, and no more spiking
response is possible (Fig. 15, case F). We will show that the
depolarization block effect imposes restrictions on the intensities
of the input and intra-ring synaptic current (cf. Sections 6.4 and
6.6).

Fig. 14. Refractory period. Different responses of the cell (blue trace) to
different pairs of input stimuli of same intensities (red trace). Cases A,B,C. Due to
the refractory period of the cell, the short time delay between the two inputs
makes it impossible for it to generate a second action potential. Case D. The
two inputs are sufficiently spaced in time for the cell to generate two action
potentials. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 15. Spike frequency and depolarization block. Different responses of the
cell (blue trace) to different input currents of constant intensities (red trace).
Cases C,D,E. The larger the input current, the higher the spiking frequency of
the cell. Case F. When the input current becomes too high, the cell enters the
depolarization block, where no action potential is possible. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

6.2. Self-sustained activity

The self-sustained activity of a synfire ring refers to the dy-
namics where the successive layers of the ring are spiking in a
time-locked and persistent manner, as illustrated in Fig. 18 (mid-
dle panel for instance). A self-sustained activity is characterized
by the following dynamical properties:

• the successive layers are activated in a synchronous way
(vertical spiking patterns in Fig. 18)

• the successive layers are activated in a persistent way (pe-
riodicity of the vertical spiking patterns in Fig. 18)

• the time intervals between the successive layer activations
remain constant over time (constant distance between ver-
tical spiking patterns in Fig. 18)

As regards self-sustained activities, the synfire ring topology
exhibits two important properties. First, it leads to the emergence
of a temporal structure, which refers to the discrete-time steps at
which the successive layers of the rings are activated.6 The time
structure is discrete, regular and persistent over time. Second and

6 Note that the modified HH-model Eq. (2), by its continuous-time nature,
imposes no discrete-time dynamical feature to the neurons.
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Table 3
Rows 1–3. Computation of the automaton of Fig. 1 over input 00101100. Row 4. Dynamics of the HH-based neural network of Fig. 10 over the encoding the same
input 00101100 (cf. Raster plot of Fig. 12 for the timing of the inputs). Rows 5–7. Computation of the transducer of Fig. 2 over the sum 1 1 1 0 0 1

+ 1 0 1 0 1 1 . Rows 8–9.
Dynamics of the HH-based neural network of Fig. 11 over the encoding of the same input 1 1 1 0 0 1

+ 1 0 1 0 1 1 (cf. Raster plot of Fig. 13 for the timing of the inputs).

Time steps 0 1 2 3 4 5 6 7 8

Inputs 0 0 1 0 1 1 0 0 –
◀ · · · · · · · · · pattern 0110 · · · · · · · · · ▶

States q0 q1 q1 q2 q1 q2 q3 q4 q4
detected

Rings Rs,i – Rq0,0 Rq1,0 Rq1,1 Rq2,0 Rq1,1 Rq2,1 Rq3,0 Rq4,0
detected

Time steps 0 1 2 3 4 5 6 7 8

Inputs
(1
1

) (0
1

) (0
0

) (1
1

) (1
0

) (1
1

) (0
0

)
–

States q0 q1 q1 q0 q1 q1 q1 q0 –
Outputs 0 0 1 0 0 1 1 – –

◀ · · · · · · · · · · · · · · result of the sum s in the reverse order · · · · · · · · · · · · · · ▶

Rings Rs,i – Rq0,(11)
Rq1,(01)

Rq1,(00)
Rq0,(11)

Rq1,(10)
Rq1,(11)

Rq1,(00)
–

Ring Rout,j – Rout,0 Rout,0 Rout,1 Rout,0 Rout,0 Rout,1 Rout,1 –
◀ · · · · · · · · · encoding of the result of the sum s in the reverse order · · · · · · · · · ▶

most importantly, the synfire topology turns out to enhance and
consolidate synchronicity of the successive layer activations. In
other terms, even if not present at the start of the dynamics, the
synfire topology forces the emergence of a synchronous dynam-
ics. This property is explained by the full converging/diverging
connectivity pattern between the successive layers of the rings.
In fact, each cell of a subsequent layer lk+1 receives the same
synaptic connections from all cells of the preceding layer lk.
Accordingly, all cells of lk+1 integrate the same synaptic inputs,
and in turn, produce the very same – thus synchronous – spiking
activity. The synchronizing capability of a ring is illustrated in
Fig. 16. While the cells of the very first layer are activated with
time delays of up to 1 ms, the subsequent layers turn out to be
perfectly synchronized, from the second layer already.

6.3. Length of the rings

The possibility for a ring to generate self-sustained activities
is directly related to its length. There is a minimal ring length –
determined by the refractory period of the cells – below which
self-sustained activities are not possible.

More precisely, in a synfire ring, the spiking of two successive
layers lk−1 and lk is possible only if the activations sent by lk−1
are received by lk at a time when the cells of lk are not in their
refractory periods anymore. Otherwise, the spike propagation
would be interrupted (Fig. 14, cases A,B,C). In order to ensure
the possibility of a self-sustained activity, the period of the ring –
the time delay between two activations of a same layer – must
therefore be larger than the refractory period of the cells. Clearly,
the period of the ring is related to its length: the larger the length,
the larger the period. Whenever the ring length is too small,
the spiking activity will not be able to propagate throughout the
successive layers in a persistent way. On the other hand, there
is no theoretical upper bound on the ring’s length that would
prevent from a time-locked inter-layer spike propagation.

In the present case, according to the parameters of our cells
(cf. Table 2), the ring’s length must be larger than 5 to ensure the
possibility of a self-sustained activity. Fig. 17 (first graph) illus-
trates the spiking activity of a synfire ring of length 3 (and width
3). In this case, the spikes cannot propagate back from the third to
the first layer: the reactivation of the cells of the first layer (blue
trace) occurs during their refractory periods, preventing them
from spiking again. A self-sustained activity is thus not possible.
A synfire ring of length 4 would also not permit a self-sustained
activity. Fig. 17 (second graph) illustrates the spiking activity of a
synfire ring of length 5 (and width 3). A self-sustained activity is
now generated. The color repetition highlights the periodicity of

the ring’s dynamics. The fact that the second blue spike is slightly
shorter than the first indicates that cells of the first layer have not
fully recovered their resting states when receiving their second
activations (Fig. 14, case D). This ‘‘anomaly’’ is recovered in the
next periods (the next blue spikes recover full amplitude). Fig. 17
(third graph) illustrates the spiking activity of a synfire ring of
length 25 (and width 3). Here again, a self-sustained activity is
generated. In this case, the spiking pattern is highly stable both
over time and intensity. In all simulations, the parameters of the
intra-ring synaptic currents are set to aexcintra = 5.0 and bexcintra = 1.0.

Note that the period of the ring is not only influenced by the
ring length, but also by the intensities of the excitatory intra-
ring synaptic currents. Larger synaptic currents produce faster
openings and closings of the ionic channels, which in turn induce
faster spike generations (Fig. 15, cases C,D,E), thus leading to a
smaller ring period. This feature is emphasized in more detail in
Section 6.6.

6.4. Width of the rings

Contrary to the ring’s length, the width of rings does not in-
fluence the possibility to generate self-sustained activities. Rings
composed of reliable neurons and synapses can theoretically give
rise to self-sustained activities, irrespective of their width (as-
suming that they are long enough, cf. Section 6.3). However, in
the presence of cell-based or synaptic-based failure mechanisms,
wider rings tend to be more robust than thinner ones.

The dynamics of three synfire rings of length 10 and widths
2, 5 and 25 are illustrated in Fig. 18 respectively. In all cases, a
proper self-sustained activity is obtained. But in order to ensure
a regular and persistent inter-layer spike propagation, the synap-
tic strengths of the intra-ring synapses must be adjusted with
respect to the ring width. In fact, the wider the ring, the larger
the number of intra-ring synapses projecting onto each cell, and,
hence, the larger the synaptic currents received by each layer cell.
Consequently, the intra-ring synaptic currents must be adapted in
such a way that the sum of input currents received by each cell
permits its activation. Currents of too low intensities will not be
able to activate the layer cells, while too high currents will drive
them into their depolarization block, preventing them from firing
(Fig. 15, case F). In our context, the parameters of the intra-ring
synaptic currents in the first and second rasters of Fig. 18 are set
to aexcintra = 5.0 and bexcintra = 1.0, whereas those of the third raster
are aexcintra = 0.5 and bexcintra = 1.0. In the latter case, a wider ring
imposes the consideration of lower intra-ring currents, in order
to avoid the depolarization block effect.
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Fig. 16. Synchronizing capability of the synfire ring topology. The cells of the first layer are activated with time delays of up to 1 ms (ill-aligned first vertical
spiking pattern). From the second layer already, the successive layer activations become perfectly synchronized (well-aligned vertical spiking patterns). Bottom plot.
An input current of 5 nA and 0.4 ms is injected to each cell of their first layer to initiate the rings’ dynamics.

Fig. 17. Spiking activities of 3 synfire rings. The successive spikes represent the activities of cells belonging to successive layers of the rings. They show the
propagation of activity through the successive layers. First graph. Synfire ring of length 3 (and width 3). The spike propagation is interrupted at the third layer.
Second graph. Synfire ring of length 5 (and width 3). The ring generates a self-sustained activity, as shown by the periodicity of the colored spikes. Third graph.
Synfire ring of length 25 (and width 3). Only the activities of the first 5 cells are displayed in different colors. Here again, the ring generates a self-sustained activity,
as shown by the periodicity of the colored spikes. Bottom plot. Input current of 5 nA and 0.4 ms injected to each cell of the rings’ first layer. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 18. First raster. Activity of a synfire ring of length 10 and width 2. The raster shows the activations of the successive layers of the ring. After each activation of
the (upper) 10-th layer, the (downer) first layer is being reactivated. Hence, a self-sustained activity is generated. Second raster. Self-sustained activity of a synfire
ring of length 10 and width 5. Third raster. Self-sustained activity of a synfire ring of length 10 and width 25. In this case, the ring is wider than long. Bottom
plot. Input current of 5 nA and 0.4 ms injected to each cell of the first layer of each ring.

6.5. Transition between rings’ activities

The correctness of our construction resides in the controlled
activations and deactivations of synfire rings by means of com-
bined triggers coming from inputs cells and other rings. In fact,
the transition-ring and output-ring mechanisms (Figures 7 and 8)
rely on the possibility for a ring Rj, when activated, to trigger the
inhibition of another ring Ri. We show that this mechanism can
be securely implemented in our framework. For this purpose, the
inhibition currents must be sufficiently strong (cf. Table 2 for the
parameters characterizing these currents). But most importantly,
the activation and inhibited layers of Ri (cf. Fig. 7, dotted dark
blue and dotted white layers of the left-hand ring) need to be
neither too close nor too far apart from each other. We focus on
the explanation of this feature.

In Fig. 7, let the activation and inhibited layers of Ri (dotted
dark blue and dotted white layers) be denoted by li1 and lik,
respectively; let also the activation and inhibition layers of Rj

(dotted dark blue and dotted white layers) be denoted by lj1
and lj2, respectively; let the input cell (upper isolated cell) be
denote by u. Now, suppose that the activation layer li1 and the
input cell u are both spiking within a specific short time interval.

Their combined current activate layer lj1, which initiates the self-
sustained activity of ring Rj. When layer lj2 is activated, it sends
inhibitions to layer lik. Meanwhile, the self-sustained activity of
Ri continues to propagate, and at some point, the cells of layer
lik will integrate the temporal summation of the inhibitory and
excitatory postsynaptic potentials (IPSPs and EPSPs) generated
by the cells of layers lj2 and lik−1, respectively. The lik cells will
then either stay silent or produce action potentials, depending on
whether this temporal summation is below or above their firing
threshold. Note that the intensity of the temporal summation
depends on the position of lik in Ri. In Fig. 19, lik = li4. In this
case, the temporal summation is below the threshold’s cells, the
self-sustained activity of ring Ri is blocked, and the ring transition
process is correctly achieved. In Fig. 20, lik = li8. In this case,
the temporal summation is above the threshold’s cells, the self-
sustained activity of ring Ri is pursued, and the ring transition
process is defective. In our case, taking lik as the fourth layer
of Ri ensures a secured implementation of the transition-ring
mechanism.



328 J. Cabessa and A. Tchaptchet / Neural Networks 126 (2020) 312–334

Fig. 19. Transition-ring mechanism (cf. Fig. 7). Activity of two synfire rings Ri (blue trace, cells 0 to 29) and Rj (red trace, cells 30 to 59) of lengths 10 and widths
3. The first input stimulus (bottom red trace) activates the first layer of Ri (first red arrow), which then enters into a self sustained activity (blue pattern). A second
input stimulus from an external cell u (bottom turquoise trace) occurs during a time period that overlaps with the reactivation of the first layer li1 of Ri . The combined
activations of u and li1 activate the first layer lj1 of Rj (two red arrows), which in turn enters into a self sustained activity (red pattern). The second layer lj2 of Rj

inhibit the fourth layer li4 of Ri (blue round arrow). The spiking activity of Ri is blocked by this inhibition. Therefore, the transition of activities from Ri to Rj is
correctly achieved. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 20. Transition-ring mechanism (cf. Fig. 7). The situation is similar to that of Fig. 19, except that the second layer lj2 of Rj inhibit the eighth layer li8 (instead of
the fourth li4) of Ri (blue round arrow). By the time the spiking activity of Ri reaches layer li8 , the inhibition sent by l2j has weakened, and li8 can thus be activated.
Consequently, the self-sustained activity of Ri is not blocked, and the transition of activities from Ri to Rj is unsuccessful. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

6.6. Robustness

Transmission at individual synaptic contacts can be highly
unreliable, with presynaptic nerve impulses failing to evoke a
postsynaptic response (Allen & Stevens, 1994). Due to the re-
dundancy of connections projecting onto each layer cell, the
synfire ring topology provides the networks with important ro-
bustness capabilities. The self-sustained activities of the rings can
be preserved in cases of synaptic unreliability.

To illustrate this feature, we first study the robustness of
the self-sustained activity of synfire rings where for each cell
c , a given percentage α of its incoming synaptic connections
are randomly deactivated. The failure rate α is common to all
cells. A proper self-sustained activity can be generated, as long as

each cell receives synaptic currents of sufficiently high intensities.
Figures 21 and 22 illustrate the dynamics of a synfire ring of
length 10 and width 5 subjected to different failure rates. The
parameters of the intra-ring synaptic currents are set to aexcintra =

2.0 and bexcintra = 1.0. In Fig. 21, 20% (black pattern) and 50% (blue
pattern) of the synaptic connections projecting onto each cell
are randomly deactivated, respectively. In both cases, a proper
self-sustained activity is obtained. The two situations lead to
different inter-layer spike propagation frequencies. This feature
is explained as follows: the lower the failure rate, the higher
the intensities of the intra-ring synaptic currents received by the
cells, hence the faster their spiking responses (cf. Fig. 15, cases
C,D,E), and thus the higher the ring period. Fig. 22 illustrates the
case where 80% of the connections projecting onto each cell are
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Fig. 21. Raster plot. Activities of a synfire ring of length 10 and width 5 where 20% (black pattern) and 50% (blue pattern) of the synaptic connections projecting
onto each cell are randomly deactivated. For the sake of conciseness, both patterns are represented on the same graph. In both cases, a self-sustained activity is
generated. The lower the failure rate, the higher the inter-layer spike propagation frequency, thus the higher the ring period (illustrated by the superimposition of
the two patterns). Bottom plot. Input current of 5 nA and 0.4 ms injected to each cell of the first layer. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 22. Top graph. Activity of a synfire ring of length 10 and width 5 where 80% of the incoming synaptic connections to each cell are randomly deactivated. The
spiking activity vanishes at the second layer already. From the third layer onwards, the activities of the cells remain completely flat. Bottom plot. Input current of
5 nA and 0.4 ms injected to each cell of the first layer.

Fig. 23. Raster plot. Activities of a synfire ring of length 10 and width 5 where each cell c has a certain percentage αc of its incoming synaptic connections that
are randomly deactivated. The cyclic attractor dynamics of the ring is preserved, but the temporal structure, given by the synchronicity successive layer activations,
is lost. Bottom plot. Input current of 5 nA and 0.4 ms injected to each cell of the first layer.

randomly discarded. The self-sustained activity is not possible
anymore. The spike train stops at the second layer already, due
to insufficient synaptic currents transmitted by the first layer.

In the preceding simulations, the failure rate α is fixed for
all cells. Now, we consider the case where each cell c has a
specific percentage αc of its incoming synaptic connections that

are randomly deactivated. The failure rates αc are drawn from
the uniform distribution U(0, 1). Hence, on average, 50% of the
synaptic connections of the rings are discarded, but some cells
receive their full synaptic currents (if αc = 0), some receive only
a portion of them (if αc ∈ ]0, 1[), and some are dead (if αc = 1).
In this case, the cyclic attractor dynamics of the ring is preserved,
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but synchronicity of the successive layer activations is lost. Fig. 23
illustrates the dynamics of a synfire ring of length 10 and width 5
subjected to this synaptic failure mechanism. The spiking activity
is able to propagate throughout the successive layers without
vanishing and in a periodic manner (since the αc are fixed across
time). The average rate of 50% of remaining synapses in the whole
ring permits the continuous propagation of a spiking pattern.
Hence, the cyclic attractor dynamics of the ring is preserved.
However, the layer cells do not spike in a synchronous way
anymore. In fact, since the layer cells have different percentages
of their incoming synaptic connections that are randomly de-
activated, they receive synaptic currents of different intensities,
and in turn, show responses at different timings (cf. Fig. 15,
cases C,D,E). The layer responses are therefore desynchronized,
meaning that the time-locked inter-layer temporal structure is
lost.

6.7. Overlapping rings

In the biological context of cell assemblies, same cells are
likely to belong to various assemblies (Abeles, 1991; Izhikevich,
2006; Palm et al., 2014). This overlapping feature ensures that
each cell might participate to different neural functionalities, thus
enhancing the representational capacity of the networks. Accord-
ing to these considerations, the simulation of finite automata by
neural networks composed of overlapping rings is an issue of
specific interest. In this context, in order for the rings to preserve
their full encoding capabilities, the overlapping pattern must sat-
isfy the following property: at each time t , the dynamics of each
ring should never be able to activate, inhibit or desynchronize
the dynamics of another ring. For instance, two different rings
could never possess any layer in common, since the activation
of such shared layer would lead to an uncontrolled activation of
both rings.

We consider two synfire rings R1 and R2 and show that, for
some specific overlapping scheme, the dynamics of the rings
remain controllable, and hence, their full encoding capabilities
guaranteed. The overlapping pattern under consideration is il-
lustrated in Fig. 24. Accordingly, the common cells of R1 and R2
(black cells) are part of a same layer of R1 (blue ring), but are
spread across successive layers of R2 (red ring). The dynamics
of two such overlapping R1 and R2 are illustrated in Figures 25
and 26. In the first case (Fig. 25), only one ring, say R1, is active.
We see that the sustained activity of R1 does not elicit undesired
activation of R2 other than some sporadic spikes. In the second
case (Fig. 26), both R1 and R2 are active. We observe that their
respective dynamics are not significantly disrupted by the spiking
of the shared cells, since only additional sporadic spikes appear.
In both cases, the dynamical encoding of the rings, represented
by their self-sustained activities, is therefore guaranteed.

7. Conclusion

We introduced a paradigm for neural computation based on
robust, temporally precise and self-sustained activities of cell
assemblies—the synfire rings. The proposed paradigm is capable of
abstract computation via the simulation of specific abstract ma-
chines. More specifically, we empirically showed that finite state
automata can be simulated by Hodgkin–Huxley recurrent neural
networks modularly composed of synfire rings. The proposed
model of computation possesses the following characteristics:

• The successive computational states are encoded into tem-
porally robust cyclic attractor dynamics, instead of discrete
spiking configurations;

• The transitions between such attractors are perfectly deter-
mined by the connectivity pattern between the rings, and
triggered by the input signals;

Fig. 24. Two overlapping synfire rings R1 (blue) and R2 (red). For the purpose
of clarity, the synfire rings are represented as synfire chains. But the leftmost
and rightmost layers of R1 are assumed to coincide, and the lowermost and
uppermost layers of R2 also coincide. The rings R1 and R2 contain 4 cell in
common (black bold cells). Note that the 3 leftmost and 3 rightmost black cells
are the same. The lowermost black cell is also the same as the uppermost one.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

• The self-sustained activity of synfire rings is highly stable
with respect to variations in their topologies.

• The global computational process is robust to some archi-
tectural failures and synaptic noises, due to the redundancy
of the connectivity patterns.

From a purely theoretical point of view, finite state automata
are the simplest kinds of finite state machines. They recognize
the class of regular languages, which corresponds to the lowest
level of the Chomsky’s hierarchy. Their memory is limited to
their number of states. More complex finite state machines, like
counter automata, pushdown automata or Turing machines, can
all be seen as automata provided with different kinds of external
memories. Nevertheless, these abstract machines are at the basis
of the fundamental conception of computation, which consists
in successive ‘‘mechanical-like’’ input driven transitions between
different computational states. From a practical point of view,
however, large enough automata capture the computational ca-
pabilities of any current digital machine. Our results state that
the automaton-based conception of computation can be achieved
by bio-inspired neural networks modularly composed of synfire
rings.

As regards optimality, the conception of a synfire ring based
neural network simulating a given automaton (Algorithm 2) is a
generalization of Minsky (1967)’s construction (Algorithm 1). The
idea consists in replacing the cells and connections of Minsky’s
network by corresponding synfire rings and bundles of connec-
tions, respectively. According to Algorithm 2, an automaton with
i input symbols and n states is simulated by a corresponding
network containing O(i · n) rings, and hence, containing O(i · n)
cells also (note that the number of cells per ring in bounded,
i.e., does not increase with the size of the network) (Minsky,
1967). However, Minsky (1967)’s construction is known to be
sub-optimal. It has been shown that any deterministic automaton
with n states can be implemented by a neural network of optimal
size containing Θ(

√
n) cells (Horne & Hush, 1996; Indyk, 1995).

We claim that the optimal-size construction of Horne and Hush
(1996) can also be generalized to the context of synfire rings, in
a similar manner as (Minsky, 1967)’s construction. As a conse-
quence, an automaton with n states could a priori be simulated
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Fig. 25. Dynamics of two overlapping synfire rings. Two rings (blue and red) of lengths 10 and widths 5 overlap according to the pattern of Fig. 24. Accordingly,
the cells of the blue ring’s first layer numbered 1, 2, 3, 4, 5, and those of the red ring’s layers 1 to 5 numbered 50, 55, 60, 65, 50, are pairwise equivalent (highlighted
with black squared). For the sake of clarity, they are represented as distinct, but blue and red black squared columns of cells are the same. Only the blue ring is
activated. Despite being overlapping, the self-sustained activity of the blue ring does not elicit any self-sustained activity of the red ring, but only sporadic spikes
of the shared cells. The encoding represented by the rings’ dynamics is thus guaranteed. Bottom plot. Input current of 5 nA and 0.4 ms injected to each cell of the
first layer. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 26. Dynamics of two overlapping synfire rings. Two rings (blue and red) of lengths 20 and widths 5 overlap according to the pattern of Fig. 24. Accordingly,
the cells of the blue ring’s 13th layer numbered 60, 61, 62, 63, 64, and those of the red ring’s layers 3 to 7 numbered 110, 111, 112, 113, 114, are pairwise equivalent
(highlighted with black squared). Both rings are activated. Despite being overlapping, the self-sustained activities of the rings are not significantly perturbed, with
only additional sporadic spikes of the shared cells. The encoding represented by the rings’ dynamics is thus guaranteed. Bottom plot. Input current of 5 nA and
0.4 ms injected to each cell of the first layer. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

by an optimal-size neural network containing Θ(
√
n) rings and

cells. This issue is expected to be studied in more detail in a future
work.

Our work follows the general theory of cell assemblies (Braiten-
berg, 1978; Hebb, 1949; Palm, 1982; Palm et al., 2014), but more
specifically, fits within the framework of operational cell assem-
blies, as developed for instance by Fay et al. (2005), Garagnani
et al. (2009), Markert et al. (2005), Wennekers (2006, 2007, 2009),
Wennekers et al. (2006), Wennekers and Palm (2009). In this con-
text, Hebbian cell assemblies consist in generic fully (or densely)
connected pools of neurons, and correspond to fixed point at-
tractors. They ‘‘serve as representations for either static entities
(attractors) or temporal memory contents (synfire chains)’’ (Wen-
nekers et al., 2006). The assemblies are considered as ‘‘building
blocks’’, and thus can be combined in a modular way to form rule-
like state transition graphs—referred to as synfire graphs (Wen-
nekers, 2006). The combination process is achieved by means of
few associative principles in line with Hebb’s original approach:
auto-associative mappings; hetero-associative mappings; and some-
times also input-gated mappings (Wennekers et al., 2006). The
dynamical transitions across assemblies are activated in a con-
trolled manner, either by specific input sequences (Wennekers

et al., 2006) or by unspecific trigger signals (Wennekers & Palm,
2009). In addition, operational cell assemblies can either be im-
plemented constructively, during initialization phase, or can self-
organize by means of ongoing synaptic plasticity mechanisms,
e.g., incremental covariance learning rule or synaptic plasticity
rule with fixed LTP/LTD thresholds (Wennekers et al., 2006).
In the case of specific inputs and deterministic transitions, the
obtained systems are computationally equivalent to finite state
automata, while in the case of non-deterministic transitions, they
implement Markov chains. As a consequence, operational cell as-
semblies can handle functionalities of a well-defined complexity.
They have been applied in the contexts of language and complex
behavior models (Garagnani et al., 2009; Markert et al., 2007;
Wennekers, 2006, 2007, 2009; Wennekers et al., 2006)

In our context, the synfire rings play the role of the Hebbian
cell assemblies. The modular combination of synfire rings into
state transition graphs – the synfire graphs (Wennekers, 2006)
– also requires few combining principles: the input connections,
the intra-ring connections, the inter-ring connections and the
transition- and output-ring mechanisms, respectively. The main
difference of our approach resides in that the synfire graphs are
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composed of synfire rings instead of Hebbian cell assemblies.
Accordingly, our ‘‘building blocks’’ correspond to cyclic instead of
fixed points attractors, and most of all, they do underlie ‘‘spatio-
temporal sequences of activity patterns’’ (Wennekers et al., 2006).
In fact, the self-sustained activities of the rings lead to the emer-
gence of a ‘‘primary’’ temporal structure at a ‘‘micro-level’’. On
top of this, the controlled transitions between attractors, along
the edges of the synfire graphs, induce a ‘‘secondary’’ temporal
structure at a ‘‘macro-level’’. In this sense, our model permits the
development of nested temporal structures at different scales.
These considerations are in line with the original reflections
by Braitenberg (1978), who saw in modular cell assemblies the
possibility to generate a ‘‘hierarchical temporal structure’’ com-
posed of temporal structures at different levels (Palm et al., 2014).
The second difference is that, as opposed to Hebbian cell assem-
blies, synfire rings give rise to periodic dynamics. The periods
and phases differences of the rings could be thus exploited as
additional encoding information. Indeed, our findings show that
the ring periods depend directly on the intensity of the intra-ring
synaptic currents (Fig. 21). Wennekers and Palm (1996) further
showed that the wave velocities of synfire chains – and hence the
periods of synfire rings – could be controllable by the intensity
of external inputs. Accordingly, synfire rings might capture char-
acteristics of neural oscillators (Hoppensteadt & Izhikevich, 2000;
Malagarriga et al., 2015; Xu et al., 2004; Zanin et al., 2011), and
as such, constitute a bridge between the cell assembly and the
neural oscillator theories.

In biological networks, neural assemblies are likely to be over-
lapping with each other, rather than being disjoint (Abeles, 1991;
Palm et al., 2014). In an associative memory model, where mem-
ories are either embedded into attractors via Hebbian cell assem-
blies (Braitenberg, 1978; Hebb, 1949; Hopfield, 1982) or encoded
into spatio-temporal patterns via synfire chains (Abeles, 1991) or
polychronous groups of neurons (Izhikevich, 2006), this overlap-
ping feature ensures that memories are stored in a distributed
manner. In the case of Hebbian cell assemblies, Boolean (Hopfield,
1982) networks can store a maximal number of uncorrelated
memory patterns Pmax = 0.14N , where N is the number of
neurons (Amit, Gutfreund, & Sompolinsky, 1985). More biologi-
cally realistic spiking networks provide robust associative storage
of sparse patterns at a capacity close to the one of technical
networks (Sommer & Wennekers, 2001). In the case of synfire
rings, Boolean and integrate-and-fire winners-take-all networks
can embed a maximal number of pools of Pmax ∼= 8N , where N is
the number of neurons (Bienenstock, 1995; Herrmann, Hertz, &
Prügel-Bennett, 1995; Hertz, 1999). As for balanced networks of
spiking neurons, upper limits on memory capacity for both cases
of Hebbian assemblies and synfire chains can be obtained, and
correspond to Pmax = 0.1NE and Pmax = 0.065NE , respectively,
where NE is the number of excitatory neurons (Aviel, Horn, &
Abeles, 2005). In the case of polychronous groups, the memory
capacity of the system turns out to exceed the number of units
composing it (Izhikevich, 2006; Izhikevich, Gally, & Edelman,
2004; Szatmáry & Izhikevich, 2010). Along these lines, the in-
vestigation of neural networks composed of overlapping rings,
initiated in Section 6.7, is expected to be pursued.

Furthermore, as for the context of general cell assemblies (Palm
et al., 2014), the central question of learning within the specific
synfire ring neural architecture is expected to be studied. As a
first step, the auto-associations (i.e., the intra-ring connections)
could be frozen, and only the hetero-associations (i.e., the intra-
ring connections) would be subjected to spike-timing dependent
plasticity (STDP) mechanisms. Accordingly, Hebbian-like learning
mechanisms shall lead to the self-organization of designated
hetero-associative memory models composed of synfire rings .

As a third research direction, the proposed paradigm is in-
tended to be generalized towards the achievement of Turing-like

computation. First (unpublished) results in this direction show
that fixed-space Turing machines can be simulated by synfire ring
based neural networks composed of Boolean cells. Even if fixed-
space Turing machines are (only) computationally equivalent to
finite state automata, these results are of conceptual relevance:
the synfire-ring based neural networks could be considered – and
thus programmed – like Turing machines up to their maximal
representational capabilities.7 In this context, the program of the
machine is represented by a suitably interconnected pool of rings.
The tape content, head position and symbol currently read by
the machine are represented by overlying sequences of rings.
The computation of the machine is then simulated by updating,
in a controlled manner, the dynamics of the pool and overlying
sequences of rings, every time a new input is received. The
generalization of the construction to the case of synfire ring based
neural networks composed of Hodgkin–Huxley cells is envisioned
for future work.

Finally, with these achievements, we do not intend to argue
that brain computational processes really proceed via simulations
of finite state automata in the very way described here. Rather,
our intention is to show that a paradigm for abstract neural
computation, based on sustained activities of cell assemblies, is
possible and potentially exploitable. As a consequence, biological
neural networks should in principle be capable of simulating
finite state automata, whether via the proposed paradigm, or via
some other one. Finally, should the proposed networks be im-
plemented in patterns of in vitro cultures of neurons (Feinerman,
Rotem, & Moses, 2008; Wolf & Geisel, 2008), it would lead to the
realization of biological neural abstract computers.
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