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Abstract In this paper, we provide a historical survey of the most significant
results concerning the computational power of neural models. We distinguish three
important periods: first, the early works from McCulloch and Pitts, Kleene, and
Minky, where the computational equivalence between Boolean recurrent neural
networks and finite state automata is established. Secondly, the two breakthroughs
by Siegelmann and Sontag showing the Turing universality of rational-weighted
neural networks, and the super-Turing capabilities of analog recurrent neural
networks. Thirdly, the recent results by Cabessa, Siegelmann and Villa revealing
the super-Turing computational potentialities of interactive and evolving recurrent
neural networks.
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1 The Early Works

In theoretical neuroscience, understanding the computational and dynamical capa-
bilities of biological neural networks is an issue of central importance. In this
context, much interest has been focused on comparing the computational powers
of diverse theoretical neural models with those of abstract computing devices.

This comparative approach was initiated by McCulloch and Pitts who proposed
a modelisation of the nervous system as a finite interconnection of threshold logic
units [19]. For the first time, neural networks were considered as discrete abstract
machines, and the issue of their computational capabilities investigated from the
automata-theoretic perspective. In this context, Kleene and Minsky proved that
recurrent neural networks made up of threshold activation units were computation-
ally equivalent to classical finite state automata [13, 20].
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Besides, in a seminal report entitled “Intelligent Machinery” [31], Turing
brilliantly introduced many concepts which have later become central in the field
of neural computation. For instance, Turing foresaw the possibility of surpassing
the capabilities of finite state machines and reaching Turing universality via neural
networks called “B-type unorganised machines”. The networks consisted of a
general interconnection of NAND neurons, and the consideration of infinitely many
such cells could simulate the behaviour of a Turing machine. Moreover, Turing
also introduced the key idea of “training” neural networks by considering the
possibility of modifying the synaptic connections between the cells by means of
what he called “connection-modifiers”. Later, the Turing universality of infinite or
heterogeneous neural networks has further been investigated in many directions, see
for instance [8,9,11,23]. These seminal works opened up the way to the theoretical
computer scientist approach to neural computation. However, the purely discrete
and mechanical approach under consideration quickly appeared too restrictive, far
from the biological reality.

According to these considerations, von Neumann proposed another relevant
approach to the issue of information processing in the brain from the hybrid
perspective of digital and analog computation [22]. He considered that the non-
linear character of the operations of the brain emerges from a combination of
discrete and continuous mechanisms, and therefore envisioned neural computation
as something strictly more powerful than abstract machines. Almost in the same
time, Rosenblatt proposed the so-called “perceptron” as a more general computa-
tional neural model than the McCulloch-Pitts units [24]. The essential innovation
consisted in the introduction of numerical synaptic weights and as well as a special
interconnection pattern. This neural model gave rise to an algorithmic conception
of “learning” achieved by adjusting the synaptic weights of the networks according
to some specific task to be completed. This study is nowadays considered as
foundational for the field of machine learning. The computational capabilities of
the perceptron were further studied by Minsky and Papert [21].

2 Two Significant Breakthroughs

Later, Siegelmann and Sontag made two significant steps forward concerning the
precise issue of the computational power of recurrent neural networks. Firstly, they
focused their attention on the consideration of more realistic activation functions for
the neurons and showed that by extending the activation functions of the cells from
boolean to linear-sigmoid, the computational power of the neural networks would
drastically increase from finite state automata up to Turing capabilities [28]. The
Turing universality of neural networks was then generalised to a broader class of
sigmoidal activation functions [12]. The computational equivalence between the so-
called rational recurrent neural networks and the Turing machines has nowadays
become standard result in the field.
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Secondly and most importantly, following von Neumann considerations, they
assumed that the variables appearing in the underlying chemical and physical
phenomena could be modelled by continuous rather than discrete numbers, and
therefore proposed a precise study of the computational power of recurrent neural
networks from the perspective of analog computation [27]. They introduced the
concept of an analog recurrent neural network as a classical linear-sigmoid neural
net equipped with real- instead of rational-weighted synaptic connections. This
analog information processing model turns out to be capable of capturing the
non-linear dynamical properties that are most relevant to brain dynamics, such as
rich chaotic behaviours [7, 25, 26, 29, 32]. In this context, they proved that analog
recurrent neural networks are computationally equivalent to Turing machine with
advice, hence capable of super-Turing computational capabilities from polynomial
time of computation already. They further formulated the so-called Thesis of Analog
Computation – an analogous to the Church-Turing thesis, but in the realm of
analog computation – stating that no reasonable abstract analog device can be more
powerful than first-order analog recurrent neural networks [26, 27].

3 Present and Future

But until the mid 1990s, the neural models involved in the study of the computa-
tional capabilities of recurrent neural networks have always been oversimplified,
lacking many biological features which turn out to be essentially involved in the
processing of information in the brain. In particular, the effects that various kinds
of noise might have on the computational power of recurrent neural networks had
not been considered. Moreover, the ability of neural networks to evolve over time
has also been neglected in the models under consideration. Biological mechanisms
like synaptic plasticity, cell birth and death, changes in connectivity, etc., – which
are widely assumed to be of primary importance in the processing and encoding
of information –, have yet not been taken into consideration in the study of the
computational capabilities of neural networks.

Concerning noise, Maass and Orponen showed that general analog computa-
tional systems subjected to arbitrarily small amount of analog noise have their
computational power reduced to that of finite automata or even less [17]. In
particular, the presence of arbitrarily small amount of analog noise seriously reduces
the capabilities of both rational- and real-weighted recurrent neural networks to
those of finite automata, namely to the recognition of regular languages. Maass and
Sontag then extended this result by showing that, in the presence of gaussian or
other common analog noise distribution with sufficiently large support, recurrent
neural networks have their computational reduced to even less than finite automata,
namely to the recognition of definite languages [18]. These two results were further
generalised to the broader classes of quasi-compact and weakly ergodic Markov
computational systems, respectively [1].
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Concerning the evolvability of neural networks, Cabessa and Siegelmann con-
sidered a more biologically oriented model where the synaptic weights, the connec-
tivity pattern, and the number of neurons can evolve rather than stay static [3]. The
so-called evolving recurrent neural networks were proven to be computationally
equivalent to the analog neural networks, and hence capable of super-Turing
computational power, regardless of whether their synaptic weights are rational or
real. These results are important, showing that the power of evolution brings up
additional potentialities to first-order recurrent neural networks and provides an
alternative and equivalent way to the incorporation of the power of the continuum
towards the achievement of super-Turing computational capabilities of neural
networks. This feature is particularly interesting since certain analog assumptions
in neural models have sometimes been argued to be too strong.

However, in this global line of thinking, the issue of the computational capa-
bilities of neural networks has always been considered from the strict perspective
of Turing-like classical computation [30]: a network is viewed as an abstract
machine that receives a finite input stream from its environment, processes this
input, and then provides a corresponding finite output stream as answer, without
any consideration to the internal or external changes that might happen during the
computation. But this classical computational approach is inherently restrictive,
and has nowadays been argued to “no longer fully corresponds to the current
notion of computing in modern systems” [16], especially when it refers to bio-
inspired complex information processing systems [14, 16]. Indeed, in the brain
(or in organic life in general), information is rather processed in an interactive
way, where previous experience must affect the perception of future inputs, and
where older memories may themselves change with response to new inputs. Hence,
neural networks should rather be conceived as performing sequential interactions
or communications with their environments, and be provided with memory that
remains active throughout the whole computational process, rather than proceeding
in a closed-box amnesic classical fashion. Accordingly, the computational power
of recurrent neural networks should rather be conceived from the perspective of
interactive computation [10].

Along these lines, Cabessa and Siegelmann studied the computational power
of recurrent neural networks involved in a basic interactive computational
paradigm [4]. They proved that the so-called interactive recurrent neural networks
with rational and real synaptic weights are computationally equivalent to interactive
Turing machines and interactive Turing machines with advice, respectively. These
achievements provide a generalisation to the bio-inspired interactive computational
context of the previous classical results by Siegelmann and Sontag [27, 28].
Besides, Cabessa and Villa also provided a study of the super-Turing computational
capabilities of analog neural networks involved in another kind of reactive and
memory active computational framework [5].

The last advances concerning the study of the computational power of recurrent
neural networks were provided by Cabessa and Villa [2, 6]. They studied the
computational potentialities of a recurrent neural model combining the two relevant
features of evolvability and interactivity introduced in [3, 4], and showed that the
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so-called interactive evolving recurrent neural networks are capable of super-Turing
computational potentialities, equivalent to interactive Turing machine with advice,
irrespective of whether their synaptic weights are rational or real.

These results show that the consideration of evolving capabilities in a first-
order interactive neural model provides the potentiality to break the Turing barrier,
irrespective of whether the synaptic weights are rational or real. They support the
extension of the Church-Turing Thesis to the context of interactive computation:
“Any (non-uniform interactive) computation can be described in terms of interactive
Turing machines with advice” [15]. As for the classical computational framework,
the super-Turing computational capabilities can be achieved without the need of
a framework based on the power of the continuum – in the case of interactive
evolving recurrent neural networks with rational weights. This feature is particularly
meaningful, since while the power of the continuum is a pure conceptualisation of
the mind, the evolving capabilities of the networks are, by contrast, really observable
in nature.

From a general perspective, we believe that such theoretical studies about
the computational power of bio-inspired neural models might ultimately bring
further insight to the understanding of the intrinsic natures of both biological
as well as artificial intelligences. We also think that foundational approaches
to alternative models of computation might in the long term not only lead to
relevant theoretical considerations, but also to important practical applications.
Similarly to the theoretical work from Turing which played a crucial role in the
practical realisation of modern computers, further foundational considerations of
alternative models of computation will certainly contribute to the emergence of
novel computational technologies and computers, and step by step, open the way
to the next computational era.
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