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Studies of Boolean recurrent neural networks are briefly introduced with an emphasis on the attractor
dynamics determined by the sequence of distinct attractors observed in the limit cycles. We apply this
framework to a simplified model of the basal ganglia-thalamocortical circuit where each brain area
is represented by a “neuronal” node in a directed graph. Control parameters ranging from neuronal
excitability that affects all cells to targeted local connections modified by a new adaptive plasticity
rule, and the regulation of the interactive feedback affecting the external input stream of information,
allow the network dynamics to switch between stable domains delimited by highly discontinuous
boundaries and reach very high levels of complexity with specific configurations. The significance
of this approach with regard to brain circuit studies is briefly discussed. Published by AIP Publishing.
https://doi.org/10.1063/1.5042312

Boolean recurrent neural networks offer the advantage
to study the computational and dynamical features of
biological neural networks in a simplified, yet formally
defined framework. The attractors of such networks cor-
respond precisely to the cycles in the graphs of their
corresponding automata and can thus be computed explic-
itly and exhaustively. The basal ganglia-thalamocortical
circuit is among the most important brain circuit to
make a bridge between perceptual, cognitive, emotional,
and decision-making information processing. We study
its attractor dynamics by means of a Boolean model
that allows an evaluation of important computational
features. The complexity of the dynamics of this model
is determined by both the number and the stability
of the attractors encountered throughout the computa-
tional process. We show that control parameters such
as neuronal excitability and fine tuning of the con-
nection strengths can settle the network activity into
stable attractor dynamics delimited by highly discontin-
uous boundaries. A feedback regulation of the external
input stream may, to some extent, combine and com-
pensate with the other control parameters in order to
increase the complexity and stabilize the attractor dynam-
ics. We introduce a biologically plausible adaptive plas-
ticity rule, which modifies the connection strengths as a
function of the attractor dynamics encountered through-
out the computational process, in addition to the timing
between the activations of pre- and post-synaptic neu-
rons. This rule sets the basis for the network to reach
and stabilize into attractor dynamics of high complex-
ity. We conclude with a discussion about the significance
of this framework for the investigation of the func-
tions of brain circuit modeled by Boolean recurrent net-
works, in particular for the basal ganglia-thalamocortical
circuit.

a)Electronic mail: jeremie.cabessa@u-paris2.fr
b)Electronic mail: alessandro.villa@unil.ch

I. INTRODUCTION

Neurons are excitable cells whose activity may be
described by highly nonlinear dynamical equations deter-
mined by the biophysical properties of the cell membrane
and by molecular and cellular reactions.1 Neuronal activity
is characterized by sensitivity to timing of changes in the cel-
lular electrochemical environment.2,3 Experimental evidence
exists of spatiotemporal patterns of neuronal discharges—the
spikes—, also referred to as preferred firing sequences, that
correspond to repeated ordered and precise interspike interval
relationships which recur above chance levels.4–8 A detailed
analysis of the spike trains—the time series formed by the
neuronal discharges—revealed the presence of deterministic
chaotic attractors in experimental recordings.9–12 Evidence
provided by the analysis of electroencephalogram (EEG)
recordings also supports the hypothesis of the existence
of deterministic dynamics in brain activity.13,14 An asso-
ciation between spatiotemporal firing patterns and chaotic
attractor dynamics was observed in theoretical15 and large
scale neuronal network simulations with embedded neuro-
developmental features.16 In other words, the spatiotemporal
patterns would be the witnesses of the capacity of neural
systems to converge to particular invariant states of network
activity referred to as attractor states.

Stability in the face of continuous perturbations is a hall-
mark of attractor dynamics17. It is required for persistence of
function associated with any form of neural coding.18,19 In
information theory, the term coding refers to a substitution
scheme where the message to be encoded is replaced by a
special set of symbols. However, substitution codes are essen-
tially static and seem unlikely to exist in the nervous system.
Time sequences, delays, and precise coincidence relationships
are critically important aspects of neural information process-
ing, and the possibility to fit them into substitution codes
appears rather remote. On the contrary, attractors defined
by sequences of states determined by the network dynam-
ics are a valuable metaphor for dynamical coding schemes.
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In this conceptual framework, meaningful attractors are asso-
ciated with memory and motor patterns and spurious attractors
associated with stable activity states not explicitly encoded in
the network.19–22

Attractor theory of neural information processing
necessarily requires precise time coding, as observed
experimentally.4–8,23 Other experimental evidence based on
a direct transfer function between stimulus and response
intensities24,25 assumes that the rate, and not the timing, of
neuronal discharges contains most, if not all, of the informa-
tion exchanged throughout a neural network.26 This assump-
tion led to the mainstream framework of artificial neural
networks characterized by analog elements that transmit and
process information based on scalar values produced as neu-
ronal outputs.27–29 It is interesting to remark that rate and
temporal coding can be reconciled to some extent because,
at the appropriate timescales, neuronal spike trains may be
compared to binary streams where each neuron gives at most
one spike per bin.30 Therefore, the state of each neuron can
be described by a binary variable, and neural networks can be
approximated by Boolean recurrent neural networks.

The framework of Boolean networks, although relatively
simple, has the advantage of allowing for a complete analy-
sis of the attractor dynamics of the networks. The attractors of
the Boolean networks correspond precisely to the cycles in the
graphs of their corresponding automata and can thus be com-
puted explicitly and exhaustively.31,32 The theoretical study
of the expressive capabilities and the computational power
of recurrent neural networks can be studied from the per-
spective of their attractor dynamics.32–38 Accordingly, a novel
attractor-based measure of complexity for Boolean recur-
rent neural networks based on the graph theoretic complexity
of their corresponding automata has been introduced.32 This
complexity measure is primarily related to the dynamics and
is associated with the ability of the networks to perform more
or less complicated classification tasks via the expression
of meaningful or spurious attractor dynamics. The network
structure strongly influences the dynamics of neural networks,
and the flexibility offered by tuning the dynamical properties
of the network is an essential feature of natural systems to shift
among the attractors following contextual needs. For instance,
in the real world, most activities of neural systems are tran-
sient, and signal-dependent transitions in the state space must
be reliably driven by the network dynamics. Extensive studies
in globally coupled maps and neural networks39–42 demon-
strated the switching of attractors just by adding noise, and
the selection of an attractor triggered by external stimuli may
be considered as recall of a memory.20,21,43,44 More gener-
ally, itinerancy between attractors including infinitely many
unstable periodic orbits can be associated with transitions in
a chaotic multistable neural system according to interactivity
between internal dynamics and perceptual information.45–47

The connection strengths—synaptic weights—between
the neurons play a key role both in the computational power
of neural networks as well as in the emergence and stability
of specific patterns of activity. From a purely computational
perspective, integer-weighted neural networks are compu-
tationally equivalent to finite state automata and rational-
weighted neural networks are equivalent to deterministic

Turing machines, whereas all other models of real-weighted
or evolving neural networks are equivalent to each other
and strictly more powerful than Turing machines (super-
Turing).34,35,38,48–50 From a dynamical perspective, a self-
organization of the synaptic-weight matrix may be initially
required to form stable attractors, but relative weightings
based on dynamic conditions determined by learning any kind
of perceptual information is necessary to define specific neu-
ral functions.51–54 Persistence of coexistent synchronization
patterns regardless of the initial conditions is promoted by
increasing the heterogeneous distribution of coupling weights
in the neural networks.55

In this paper, we investigate the complexity in attrac-
tor dynamics of a Boolean model of the basal ganglia-
thalamocortical network.32 We present evidence that small
changes in control parameters such as neuronal excitabil-
ity and connection strengths can increase and stabilize the
complexity of attractor dynamics. We also show that feed-
back regulation of the external inputs may, to some extent,
combine and compensate with the other control parameters
in order to settle the network dynamics into stable domains
of high complexity. In addition, we introduce an adaptive
spike-timing dependent plasticity (STDP rule56–58) associated
with increasing levels of complexity of the attractor dynam-
ics. This new STDP rule modifies the connection strengths as
a function of the attractor dynamics encountered throughout
the computational process, in addition to the timing between
the activations of pre- and post-synaptic neurons. We show
that this rule brings the network activity to reach and stabi-
lize into attractor dynamics of high complexity. Our results
demonstrate that finely tuned and targeted changes in selected
synapses may dramatically increase the attractor complexity
of neural network dynamics. We conclude with a discus-
sion of the outcome of this rule on the function of the basal
ganglia-thalamocortical network.

II. BOOLEAN RECURRENT NEURAL NETWORKS

We briefly introduce our framework of Boolean recur-
rent neural networks, as defined and previously developed
elsewhere.32,59 A first-order Boolean recurrent neural net-
work (RNN) consists, in a formal definition, of a syn-
chronous network N of interconnected neurons composed of
M Boolean input neurons (uk)

M
k=1 and N Boolean internal

neurons (xi)
N
i=1 [Fig. 1(a)]. The dynamics of the network is

computed as follows: given the activation values of the input
and internal neurons [uk(t)]M

k=1 and [xj(t)]N
j=1 at time t, the

activation values of the internal neurons [xi(t + 1)]N
i=1 at time

t + 1 are computed as

xi(t + 1) = fθ

⎡
⎣

N∑
j=1

aij · xj(t)+
M∑

k=1

bik · uk(t)+ ci

⎤
⎦ , (1)

for i = 1, . . . , N , where aij and bik are the values of the con-
nection strengths—or synaptic weights—from internal neuron
j to internal neuron i and from input neuron k to internal neu-
ron i, respectively, ci is the bias of cell xi, θ is the threshold
of excitability (being the same for all neurons and equal to 1
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FIG. 1. (a) A general Boolean neural network. (b) A simple first-order
Boolean recurrent neural network with two input neurons u1 and u2 and three
internal neurons x1, x2, and x3. (c) The finite automaton A associated with
the Boolean recurrent neural network N . The nodes of A are the states of
N , and there is an edge from node �si to node �sj labelled by �u if and only
if network N switches from state �si to state �sj when receiving �u. According
to this construction, the cycles in the graph of A correspond precisely to the
attractors of N . For instance, the boldface cycle corresponds to the attractor
{(0, 0, 0)T , (1, 0, 0)T , (0, 1, 1)T }. (d) Dynamics of this Boolean network. The
boldface cycle above is generated by the Boolean input stream (blue dots)
falling into a specific sequence of Boolean states (red dots) corresponding to
an attractor dynamics (indicated by the dashed lines). Whenever the attractor
occurs in the network dynamics, a recurrent spatiotemporal pattern of activity
is observed in the firing sequence of the internal neurons.

unless specified), and fθ is the hard-threshold activation func-
tion given by fθ (x) = 1 if x ≥ θ (meaning that the neuron is
spiking), and fθ (x) = 0 if x < θ (meaning that the neuron is
quiet).

According to Eq. (1), the dynamics of the whole network
N is described by the equation

�x(t + 1) = fθ [A · �x(t)+ B · �u(t)+ �c] , (2)

where A = (aij), B = (bij), and �c = (ci) are the two
weight matrices and bias vector, respectively, �x(t) =
[x1(t), . . . , xN (t)] and �u(t) = [u1(t), . . . , uM (t)] are the Boolean

vectors—or Boolean state—describing the spiking configura-
tion of the internal and input neurons at time t, and fθ denotes
the hard-threshold function applied to each element of the
network. An example of a simple (RNN) is given in Fig. 1(b).

A. Correspondence with finite state automata

Boolean recurrent neural networks are computationally
equivalent to finite state automata.48,49 For any Boolean net-
work N , its corresponding automaton A can be constructed
as follows: the nodes of A correspond to the states of N , and
there is an edge from node �si to �sj labelled by �u in A if and
only if N moves from the Boolean state �si to �sj when receiv-
ing the Boolean input �u. Note that if N contains N internal
cells, then it can disclose up to 2N possible states. Thus, A
contains at most 2N nodes. According to this construction,
the various dynamics of network N correspond precisely to
the different paths in the graph of automaton A. Indeed, the
successive Boolean states forming a particular dynamics of
N are represented by successive nodes along a corresponding
path in the graph of A. As a consequence, the cyclic dynam-
ics—i.e., the attractors—of N corresponds precisely to the
cyclic paths—i.e., the cycles—in the graph of A.32 Therefore,
it suffices to construct the associated automaton A and list all
the cycles of this latter in order to compute the attractors of a
network N . Formally, an attractor of a Boolean network N is
a set of Boolean states X = { �x0, . . . , �xk} ⊆ B

N such that, for
some infinite input stream, the dynamics of N visits infinitely
often every state of X and no other ones from some time step
onwards. These attractors can thus be computed exhaustively.

A simple Boolean recurrent neural network and its cor-
responding finite state automaton are illustrated in Figs. 1(b)
and 1(c). The nodes of the automaton are the Boolean states
of the network that are reachable from the initial state �0. The
edges of the automaton correspond to the transitions between
those states and are labelled by the Boolean inputs of the
network. As an example, suppose that this network is receiv-
ing the following infinite periodic input stream (where the “ω
exponent” means that the pattern is repeated ad infinitum)[(

0
1

)(
1
1

)(
1
0

)(
0
1

)(
0
0

)(
1
0

)]ω

.

Then, according to Eq. (2), the network will produce the
corresponding infinite sequence of Boolean states

⎛
⎜⎜⎝

0
0
0

⎞
⎟⎟⎠

t=0

...

⎡
⎢⎢⎣

⎛
⎜⎜⎝

0
1
1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0
0
0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1
0
0

⎞
⎟⎟⎠

⎤
⎥⎥⎦

ω

t=9 t=10 t=11
t=12 t=13 t=14

t=15 ...
.

This dynamics corresponds to the following path in the
automaton of Fig. 1(c):⎛

⎝
0
0
0

⎞
⎠

(
0
1

)

→ . . .

(
1
0

)

→
⎛
⎝

0
1
1

⎞
⎠

(
0
1

)

→
⎛
⎝

0
0
0

⎞
⎠

(
0
0

)

→
⎛
⎝

1
0
0

⎞
⎠

(
1
0

)

→ . . . .

In this case, note that the set of states X = {(0, 1, 1)T , (0, 0, 0)T ,
(1, 0, 0)T } is an attractor, because the network dynamics
remains confined into it from time step 9 onwards. This attrac-
tor corresponds to the cycle [(0, 0, 0)T , (1, 0, 0)T , (0, 1, 1)T ,
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(0, 0, 0)T ] depicted in boldface in the automaton of Fig. 1(c).
In this automaton, we can list all simple cycles and deduce
that the network of Fig. 1(b) is characterized by 7 attractors,
which are as follows:

{(0, 0, 0)T }
{(0, 0, 0)T , (1, 0, 0)T , (0, 1, 1)T }
{(0, 0, 0)T , (1, 0, 0)T , (1, 1, 1)T , (0, 1, 1)T }
{(0, 0, 0)T , (1, 0, 0)T , (1, 1, 1)T , (0, 1, 0)T }
{(0, 0, 0)T , (1, 0, 0)T , (1, 1, 0)T , (0, 1, 1)T }
{(0, 0, 0)T , (1, 0, 0)T , (1, 1, 0)T , (0, 1, 0)T }
{(0, 0, 0)T , (1, 0, 0)T , (0, 1, 0)T }.

Any Boolean recurrent neural network N is always formed
by finitely many internal cells, and then it comprises finitely
many possible Boolean states. Therefore, any of its infi-
nite dynamics will eventually get trapped into some set of
states that repeat infinitely often, namely, into some attrac-
tor (indeed, any infinite sequence of finitely many possible
elements begins to repeat from some point onwards, but
not necessarily in a periodic way). Note that if the dynam-
ics of the network gets trapped into an attractor, then the
raster plot of any subset of the internal cells would nec-
essarily reveal a preferred firing sequence corresponding to
some recurrent spatiotemporal patterns of spikes repeating
more often than expected by chance. Therefore, in this frame-
work, the spatiotemporal patterns of activity are precise wit-
nesses of an underlying attractor dynamics. In the example of
Fig. 1(d), the network dynamics gets trapped into the attractor
X = {(0, 1, 1)T , (0, 0, 0)T , (1, 0, 0)T }, and a precise spatiotem-
poral pattern of activity (i.e., a repeating stream of Boolean
states) is a witness of that attractor. Any other infinite dynam-
ics, periodic or not, would also get trapped, after some
time, into one or many of the 7 attractors and generate the
corresponding spatiotemporal patterns of activity.

It is important to note that the entire list of attractors
belonging to a network dynamics can be fully determined
at any time step by knowing the set of variables defining
the topology of a network—i.e., the number and the kind of
cells, the connectivity pattern—and the set of control param-
eters—e.g., the threshold of excitability of each cell, the time
constants of the cell membrane, the refractory period, etc.
Hence, in the absence of any external force or rule affecting
the network—e.g., death of cell or cell multiplication, pruning
or growing synaptic connections, synaptic plasticity, adaptive
threshold of excitability, dynamic changes in resistivity, and
capacitance of cell membrane—the attractors do not change,
irrespective of the input pattern. However, any modification
of the network’s topology and control parameters induces a
modification of its attractors, and at any time step, it is neces-
sary to recompute the list of attractors if one wants to know a
measure of the complexity of the network dynamics.

B. Measure of complexity based on network dynamics

On the basis of neurophysiological criteria, it is possible
to evaluate the meaningfulness of an attractor (i.e., the mean-
ingfulness of a recurrent pattern of activity), and the simplest
categorization assumes that any attractor of a network can be
classified into two possible types: meaningful or spurious. An

attractor-based measure of complexity for Boolean recurrent
neural networks is given by a graph theoretic analysis of the
meaningful and spurious cycles contained in its correspond-
ing automaton.32 The specificity of this complexity measure
is that it is primarily related to the dynamics rather than to
the topology of the networks, and it is associated with the
ability of the networks to perform more or less complicated
classification tasks. In this paper, in order to avoid the evalua-
tion necessary for any categorization of the meaningfulness of
the attractors, we consider the number of attractors associated
with the Boolean networks as a representative, yet simpler,
measure of the complexity of network dynamics.

III. BOOLEAN MODEL OF THE BASAL
GANGLIA-THALAMOCORTICAL NETWORK

A. Functionality and relevance of the network
components

The basal ganglia-thalamocortical network is formed by
several parallel and segregated circuits involving different
areas of the cerebral cortex, striatum, pallidum, thalamus, sub-
thalamic nucleus, and midbrain.60 In the basal ganglia, we
considered the circuit including the two so-called “direct” stri-
atonigral and “indirect” striatopallidal inhibitory pathways.
The inhibitory GABAergic striatal neurons (Str) expressing
the dopamine D1 receptors (Str-D1) projects to the substan-
tia nigra pars reticulata (Snr) and pallidum (internal segment,
GPi, and external segment, GPe). Those neurons expressing
mainly the dopamine D2 receptors (Str-D2) project almost
exclusively to the external pallidal segment (GPe). However,
recent investigations suggested that a subpopulation of stri-
atal neurons coexpressing both D1 and D2 receptors might
be considered as the source of a third and separate neuronal
pathway with putative distinct signalling functions.61 In the
current model, we considered only the two main striatonigral
and striatopallidal inhibitory projections. The external pallidal
segment (GPe) is a real hub, with the majority of its neurons
being GABAergic and sending projections mainly to other
basal ganglia nuclei including the striatum, GPi/Snr, the sub-
thalamic nucleus (STN), and to the thalamic reticular nucleus
(NRT). The subthalamic nucleus (STN) is the main source of
excitatory projections within the basal ganglia, in particular to
GPe, GPi, SNr and is reciprocally connected with excitatory
connections with the cerebral cortex.62

The main output structure of the basal ganglia is repre-
sented by the substantia nigra pars reticulata (Snr) and the
pallidal internal segment (GPi), whose GABAergic inhibitory
projections reach the central and dorsal thalamic nuclei (Tha-
lamus) and the midbrain (e.g., the superior colliculus, SC).
The overall characteristic of the basal ganglia-thalamocortical
network is a combination of “open” and “closed” loops with
ascending sensory afferences reaching the thalamus and the
midbrain, as well as with descending motor efferences from
the midbrain (the tectospinal tract) and the cortex (the cor-
ticospinal tract). Fig. 2(a) shows a sketch of the network
considered in this study. Notice the presence of chains of
polysynaptic inhibitory connections, such as GPe → Str
→ GPe → GPi/SNr → NRT → Thalamus. Further details
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FIG. 2. (a) Boolean model of the basal ganglia-thalamocortical network con-
stituting 9 different interconnected brain areas, each one represented by a
single node in the model.32 Dark blue or orange arrows correspond to posi-
tive and negative weights, respectively. Notice the recurrent connections int1
and int2, which will be referred to as the interactive connections. (b) Finite
state automaton associated with the network of panel (a). Each node of the
automaton is a Boolean state of the network. Blue or red edges correspond
to transitions from state i to state j when receiving input 0 or 1, respectively.
The cycles in the automaton correspond to the attractors of the network.

regarding the connections of this circuit have been discussed
elsewhere.32

Here, we assume that each brain area is modeled by a
Boolean node; thus, the whole brain circuit is modeled by
a Boolean neural network composed of 9 nodes [Fig. 2(a)]
with its adjacency matrix given in Table I. The threshold of
excitability for all nodes is assumed to be equal to 1 (unless
specified). Each node of the automaton represents a Boolean
state of the network. Each Boolean state is defined according

TABLE I. Adjacency matrix of the Boolean model of the basal ganglia-
thalamocortical network (Fig. 2).

Source Target node#

Node# Name 0 1 2 3 4 5 6 7 8 9

0 IN · 1 1 · · · · · · ·
1 SC int1 · 1 · · · · · · ·
2 Thalamus · · · 1 · 1 1 1 1 1
3 NRT · · −1 · · · · · · ·
4 GPi/SNr · −1 −1 −1 · · · · · ·
5 STN · · · · 2 · 2 · · 2
6 GPe · · · −1/2 −1/2 −1/2 · −1/2 −1/2 ·
7 Str-D2 · · · · · · −1 · · ·
8 Str-D1 · · · · −1/2 · −1/2 · · ·
9 CCortex int2 1/2 1 1/2 · 1/2 · 1/2 1/2 ·

to the level of activation of the corresponding node #, as
defined in Table I. For example, state (1, 1, 0, 1, 0, 0, 0, 0, 1)T

corresponds to a network state characterized by activity in SC
(node #1), Thalamus (node #2), GPi/SNr (node #4), and in
CCortex (node #9). Then, state (1, 1, 0, 1, 0, 0, 0, 0, 1)T is rep-
resented by binary number “110100001,” which corresponds
to decimal number 417. The finite state automaton associated
with the Boolean model of the basal ganglia-thalamocortical
network is illustrated in Fig. 2(b). The numbers of the
nodes are the decimal encodings of the binary numbers cor-
responding to the states that they represent [for instance,
nodes 0 and 511 represent states (0, 0, 0, 0, 0, 0, 0, 0, 0)T and
(1, 1, 1, 1, 1, 1, 1, 1, 1)T , respectively]. The color of the edge
from node i to node j of the graph is blue or red if and only
if the network switches from state i to state j when receiv-
ing input 0 or 1, respectively. The cycles in the automaton
correspond to the attractors of the network. Any modifi-
cation in the connectivity pattern or in the values of the
control parameters of the Boolean model would induce a
corresponding modification of its corresponding automaton
(cf. Sec. II A).

The simulation of the model is run following synchronous
discrete time step updates of the state of all nodes. A con-
sequence of the simplification of the physiological reality of
the basal ganglia-thalamocortical circuit is the fact that we
have left aside the differences in conduction delays between
the various projections within the circuit. We may consider
each time step as a time interval that includes the cumulative
effects of axonal conduction delays, synaptic transmission,
postsynaptic potential kinetics, and axosomatic integration
necessary to reach threshold, if the activation—i.e., the depo-
larization of the cells—is large enough. We have also assumed
the same dynamics for excitatory and inhibitory connec-
tions. On the basis of experimental data reported in the
literature,60,63–65 the order of magnitude of the time steps here
should not be considered as time events lasting in the order of
4–10 ms and not 1 ms, as usually reported for spatiotemporal
firing patterns.

B. Neuronal excitability as a control parameter

In the absence of background activity and stochastic
inputs, the whole network dynamics is deterministic. An input
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pattern of activity provided only once at the beginning of the
simulation may either evolve toward a silent network—no
neurons are active—or toward a cyclic pattern of activity,
if the activity is such to be self-sustained without exter-
nal inputs, as illustrated elsewhere.66 After some delay, a
repeating input pattern of activity provokes an activity in the
network that is necessarily going to repeat through the same
sequence of states. For example, let us consider the basal
ganglia-thalamocortical network (Fig. 2) with the topology
described in Table I. The sensitivity to the control parame-
ters is illustrated in Fig. 3. The same initial repeating pattern
of activation (at the top of each panel) may lead to differ-
ent dynamics as a function of a small perturbation in the
threshold of excitability—i.e., a control parameter—[between
Figs. 3(a) and 3(b)] or as a function of a small perturbation in
the adjacency matrix—i.e., the network topology—[between
Figs. 3(b) and 3(c)].

In the current framework, the neuronal excitability of
the network corresponds to the threshold θ of activation for

FIG. 3. Examples of raster displays showing different spatiotemporal patterns
of activity in the basal ganglia-thalamocortical network of Fig. 2(a) associated
with different dynamics produced by the same initial repeating pattern of acti-
vation. At the top of each panel, the series of repeating stimulation pulses,
lasting 16 time steps, is labeled in red with yellow background. Dotted blue
lines in each panel indicate the appearance of a repeating spatiotemporal pat-
tern. For a comparison with the physiological model, the order of magnitude
of the time steps here should not be considered in the order of 4–10 ms. (a)
The rows of the rasters correspond to the nodes of the network with the same
adjacency matrix as Table I and the threshold of excitability set θ = 0.5. The
spatiotemporal pattern (gray area) started to appear at time 8, with a cycle
duration of 16 time steps, and then we considered the beginning of the repeti-
tion at time 24. (b) Identical network as panel (a) with the same initial pattern
of activation. The only difference is the value of the threshold of excitability,
θ = 0.6. The spatiotemporal pattern (gray area) started to repeat at time 27,
with a cycle duration of 16 time steps. (c) Identical threshold of excitabil-
ity as panel (b) with the same initial pattern of activation. The network is
the same (Table I) with a difference in just one synaptic weight, namely,
w2,5 = 0.9 (i.e., Thalamus→ STN) instead of its original value w2,5 = 1.0.
The spatiotemporal pattern (gray area) started to repeat at time 18, with a
cycle duration of 16 time steps.

all Boolean units, since there is no other parameter control-
ling this feature. Note that a decrease or an increase in this
threshold provokes the same effect as a global potentiation
or global depression of the network’s synaptic connections,
respectively. For any θ ∈ R, the notation Nθ refers to the basal
ganglia-thalamocortical network of Fig. 2(a) with the adja-
cency matrix of Table I and with the threshold of its Boolean
units being set to θ . For each value of θ in the range [0, 1.4] by
steps of 0.1, we computed the entire list of attractors of net-
work Nθ (for this purpose, we first computed the automaton
Aθ associated with Nθ and then computed the cycles of Aθ ,
as described in Sec. II A).

For θ = 0, the only attractor of Nθ is a single-point attrac-
tor corresponding to cycle (511, 511). Node 511 encodes the
network’s state when all brain areas are active. Therefore, for
θ = 0, the threshold is so low that all elements of the circuit
remain active once activated, irrespective of the input pattern
of activity. This single-point attractor corresponds to a degen-
erate dynamics. For θ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, the number of
attractors of Nθ is equal to 25, and this set of attractors is the
same for any threshold within that interval of θ (cf. Table II).
For θ ∈ {0.6, 0.7, 0.8, 0.9, 1.0}, the number of attractors of Nθ

is 22, and this other set of attractors is the same for any thresh-
old within that interval. These two sets of attractors are very
different as they share only the degenerate single-point attrac-
tor corresponding to cycle (0, 0). This degenerate attractor
is the only attractor observed for any θ ≥ 1.1, because the
threshold is set too high for any of the elements to be acti-
vated. The attractor dynamics of network Nθ is therefore a
piecewise constant function of θ with high discontinuity. The
attractor dynamics of the network remains stable within spe-
cific ranges of threshold, but for certain specific values, the
network switches from one dynamics to a very different one.
In the present case, four distinct attractor dynamics have been
observed.

C. Effect of local connectivity

The local connectivity, as defined by the adjacency matrix
of Table I, was kept fixed in the results presented so far.
The effects of small changes in local connectivity on attrac-
tor dynamics of the basal ganglia-thalamocortical network are
studied by introducing independent weight perturbations, by
steps of 0.1 decrease or increase, of one non-interactive con-
nection at a time and by computing the number of attractors
as described in Sec. II A.

The results reported in Fig. 4 correspond to a net-
work with threshold fixed at θ = 1.0 and whose connection
strengths were perturbed by 0.1. Each bar represents the num-
ber of attractors reached when a specific weight is decreased
by 0.1 with respect to its reference value (Table I). The red
line shows that in the absence of changes (i.e., the reference
values), the number of attractors is equal to 22. All connection
strengths of the adjacency matrix are labeled wi,j, with i being
the source and j the target area.

A decrease by 0.1 of w2,5 (i.e., Thalamus→ STN) trig-
gers a switch to a dynamics of higher complexity with 143
distinct attractors. A similar decrease for w6,5 (GPe→ STN)
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TABLE II. Attractors of Nθ for the different values of θ . The attractors are expressed as cycles of the automaton Aθ (cf. Sec. II A). Nodes of Aθ are numbers
between 0 and 511 encoding the states of the network Nθ (cf. Sec. III). For each cycle, the last node, being equal to the first one, is not mentioned.

θ ∈ {0.1, 0.2, 0.3, 0.4, 0.5} θ ∈ {0.6, 0.7, 0.8, 0.9, 1.0}
25 attractors 22 attractors

(0) (0)
(0, 384, 223, 383, 41) (0, 384, 223, 127, 33)
(0, 384, 223, 383, 425, 159, 511, 63, 41) (0, 384, 223, 511, 63, 33)
(0, 384, 223, 383, 425, 159, 511, 447, 191, 63, 41) (0, 384, 223, 511, 191, 63, 33)
(0, 384, 223, 383, 425, 415, 511, 63, 41) (0, 384, 479, 255, 63, 33)
(0, 384, 223, 383, 425, 415, 511, 447, 191, 63, 41) (0, 384, 479, 511, 63, 33)
(0, 384, 223, 511, 63, 41) (0, 384, 479, 511, 191, 63, 33)
(0, 384, 223, 511, 447, 191, 63, 41) (31, 161)
(0, 384, 479, 511, 63, 41) (31, 417, 159, 255, 63, 161)
(0, 384, 479, 511, 447, 191, 63, 41) (31, 417, 159, 511, 63, 161)
(41, 384, 223, 383) (31, 417, 159, 511, 191, 63, 161)
(41, 384, 223, 383, 425, 159, 511, 63) (33, 128, 95)
(41, 384, 223, 383, 425, 159, 511, 447, 191, 63) (33, 128, 95, 417, 159, 255, 63)
(41, 384, 223, 383, 425, 415, 511, 63) (33, 128, 95, 417, 159, 511, 63)
(41, 384, 223, 383, 425, 415, 511, 447, 191, 63) (33, 128, 95, 417, 159, 511, 191, 63)
(41, 384, 223, 511, 63) (33, 128, 479, 255, 63)
(41, 384, 223, 511, 447, 191, 63) (33, 128, 479, 511, 63)
(41, 384, 479, 511, 63) (33, 128, 479, 511, 191, 63)
(41, 384, 479, 511, 447, 191, 63) (63, 161, 159, 255)
(63, 425, 159, 511) (63, 161, 159, 511)
(63, 425, 159, 511, 447, 191) (63, 161, 159, 511, 191)
(63, 425, 415, 511) (191)
(63, 425, 415, 511, 447, 191)
(191, 447)
(447)

and w9,5 (CCortex→ STN) triggers a dynamics of high com-
plexity with 65 distinct attractors. The common point to all
these local connectivity modifications highlighted in Fig. 5(b)
is that a decrease in activation, or an increase in depression, of
node STN provokes an increase in the complexity of network
dynamics. Conversely, a decrease in strength of either w4,2

(SNR → Thalamus), w5,4 (STN → SNR), w6,4 (GPe →
SNR), w8,4 (Str-D1 → SNR), or w9,2 (CCortex → Thala-
mus) provokes a decrease in complexity dynamics to as few
as 5 or 8 distinct attractors. It is also interesting to note that
a large number of local connections have little or no effect

FIG. 4. Number of distinct attractors of network Nθ with a fixed threshold
θ = 1.0 as a function of the decrease of each of its non-interactive weight by
−0.1, one at a time. The red line represents the level of 22 of distinct attractors
observed in the absence of any change with respect to the reference values of
the adjacency matrix (Table I).

on the attractor dynamics of the network, as illustrated by
the arrows highlighted in Fig. 5(a). Much larger positive or
negative changes of these latter connections would still not
change the attractor dynamics. Therefore, there exist paths in
the network, here represented by the excitatory pathway “Tha-
lamus→ Str-D1 & Str-D2� STN→ CCortex→ SC” which
can be severely perturbed with little effect on the attractor
regime of the network.

IV. THE ROLE OF INTERACTIVITY

The output nodes of the basal ganglia-thalamocortical cir-
cuit are meant to send an efferent connection toward the effec-
tor nuclei associated with a motor and behavioral response.
These output nodes have also a recurrent connection to the
circuit via the links int1 and int2 [Figs. 2(a) and 5]. The
information carried by these feedback connections is inte-
grated with the external input, thus representing an interaction
between the network and its environment. These so-called
interactive connections are assumed to play a crucial role in
the processing of information. The notation Nθ ,int1,int2 refers
to the network [Fig. 2(a)] whose threshold and strengths
of interactive connections have been set to θ , int1, and int2,
respectively.

Figure 6 shows the number of attractors of Nθ ,int1,int2 for
threshold θ = 0.5, and for the interactive connections int1 and
int2 whose strength varied in the interval [−1.5, 1.5] by steps
of 0.1 (which means 961 overall tiles for this figure). Note
that the attractor dynamics is a piecewise constant function
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FIG. 5. Effect of small decreases in local connectivity strength on the attrac-
tor dynamics of the basal ganglia-thalamocortical network. Dark blue or
orange arrows correspond to positive and negative weights, respectively. (a)
The thick arrows highlight those connections whose small decreases do not
affect the network’s attractor dynamics. (b) A small decrease in connec-
tion strength of the thick arrows provokes a large increase in the number of
attractors observed in the dynamics. Notice the key role played by node STN.

of int1 and int2 characterized by stable domains delimited by
highly discontinuous boundaries. In this figure, we observed
10 domains corresponding to 10 different dynamics, i.e., with
1, 2, 3, 4, 6, 8, 9, 11, 21, and 25 distinct attractors. It is impor-
tant to note that the same number of distinct attractors does
not necessarily mean that the attractors are formed by the
same sets of states. In the example of Fig. 6, we show that the

FIG. 6. Combined effect of the interactivity and the neuronal excitability on
the attractor dynamics of the network Nθ ,int1,int2 with threshold θ = 0.5, and
with the interactive weights int1 and int2 varying in the range [−1.5, 1.5] by
step of 0.1 along the x and y axes, respectively. The color scale corresponds to
the number, indicated by a black label within the domain, of distinct attractors
ranging from 1 (blue tiles) to 25 (red tiles). No interactivity, i.e., int1 = int2 =
0, is highlighted by a white circle at the center of the figure. Note that domains
with the same color—i.e., 1a and 1b, and 2a, 2b, and 2c—are characterized
by attractors comprising different set of states.

FIG. 7. The same figure as Fig. 6 illustrating the combined effect of the
interactivity and the neuronal excitability on the attractor dynamics of the
network. Each panel shows the number of attractors of the network Nθ ,int1,int2
with a fixed value of threshold θ indicated in the corresponding legend. No
interactivity, i.e., int1 = int2 = 0, is highlighted by a black circle in each
panel.

domain with 1 attractor can be actually separated in two sub-
domains, labeled 1a and 1b, and the domain with 2 attractors
into 2a, 2b, and 2c. We do not discuss further in this paper the
additional complexity introduced by taking into account the
subdomains with the same number of attractors. This is a mat-
ter of study we are currently undergoing and will be presented
in a separate article in the near future.

Figure 7 extends the plot of Fig. 6 to the number of attrac-
tors of Nθ ,int1,int2 for each value of the threshold θ between 0
and 1.1 by steps of 0.1. For θ = 0, there are 4 different attrac-
tor dynamics with 1 (n = 651 tiles in Fig. 7), 2 (n = 105 tiles),
5 (n = 105 tiles), and 8 (n = 100 tiles) distinct attractors,
depending on the values of the weights of interactive connec-
tions. For θ = 0.6, we observed 10 domains, i.e., with 1, 2, 3,
4, 5, 11, 12, 13, 19, and 22 distinct attractors, which are only
partially overlapping with the domains observed for θ = 0.5.
The smallest domains in Fig. 7, corresponding to 1 tile,
were observed for θ = 0.2, at point (int1 = 0.1, int2 = −0.8)
triggering a dynamics with 9 attractors and at point (−0.8,
0.1) triggering 21 attractors. Also, for θ = 0.9, we observed
domains with just 1 tile, at point (−0.1, −0.1) triggering 13
attractors and at point (0.8, −0.1) triggering 19 attractors.
Note that the point with coordinates int1 = int2 = 0, with-
out any interactivity, generally lies near the boundary of the
domain characterized by the single-point degenerate attrac-
tor with all units remaining indefinitely active. Therefore, a
small amount of interactivity is sufficient to bring the net-
work dynamics attracted into another domain with slightly
more complexity. For θ = 1.1, any combination of interac-
tive connection strengths generated only 1 attractor domain,
corresponding to the single-point degenerate attractor with all
units remaining inactive because the threshold of activation is
too high irrespective of any input pattern.

The modification of the strength of both the interac-
tivity and local connectivity shows that attractor dynamics
may be tuned in a fine way to switch between domains
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characterized by different levels of complexity or to com-
pensate each other and settle the network into stable attrac-
tor dynamics. We extend the previous notation such that
Nwi,j,θ ,int1,int2 refers to the number of attractors of the net-
work of Fig. 2(a) whose threshold and strengths of inter-
active and local non-interactive connections (i, j) have been
set to θ , int1, wi,j, respectively. Figure 8 shows Nwi,j,θ ,int1,int2
with fixed threshold θ = 1.0, interactive connection strengths
int1, int2 varying between −1.5 and 1.5 by steps of 0.1 and
non-interactive connection strengths weakened by −0.1 one
at a time (with respect to the reference adjacency matrix of
Table I).

In all panels, notice the existence of several domains with
the same number of attractors. The diversity of the dynam-
ics defined as the number of distinct domains of complexity
might be considered as an additional feature. Both Figs. 8(e)
and 8(f) are characterized by a diversity equal to 9, but the
distribution of the complexity among the domains is slightly
different and makes the difference between the two panels.
Despite the similarity in the shape of their domains, Figs. 8(g)
and 8(h) are characterized by a diversity including 8 and
10 different attractor dynamics, respectively. In Fig. 8(j), we
observed the largest diversity in the attractor dynamics with
11 distinct domains and a maximum complexity equal to 65
different attractors. The highest complexity of 143 different
attractors was observed in Fig. 8(k), which is characterized
by a diversity of 9 domains. These results suggest that the
interactivity may compensate small perturbations of local
connectivity in terms of complexity (defined by the number
of attractors).

V. ATTRACTOR DYNAMICS DEPENDENCY ON
ADAPTIVE PLASTICITY OF LOCAL CONNECTIONS

We introduce a procedure to change the strength of a
local connection by a STDP rule associated with the attrac-
tor dynamics. In addition to the timing between the acti-
vations of pre- and post-synaptic neurons, this new rule is
based on an adaptive plasticity rate which modifies the con-
nection strengths as a function of the successive attractor
dynamics that the network encounters throughout its compu-
tational process. The rule is designed to shift network activity
toward an increase in the complexity of attractor dynamics.
More precisely, whenever the network receives some input
stream, it produces successive spiking patterns that modify
the synaptic weights according to the STDP. Hence, at each
time step, the topology of the network—i.e., its adjacency
matrix—has slightly changed, and the perturbations in the
synaptic strengths provoked may affect the number of attrac-
tors of the network (as described in Sec. III C) at that very
precise time step. In our procedure, we consider that these
variations influence in turn the STDP rule itself. As a con-
sequence, the network dynamics can stabilize in domains
characterized by high complexity (i.e., with a large number of
attractor dynamics), rather than switching between attractor
dynamics of low complexity. The application of this proce-
dure to the basal ganglia-thalamocortical network during its
computational process is illustrated at the end of this section.

FIG. 8. Combined effect of the interactivity and the local connectivity on
the attractors dynamics of the network. Each panel shows the number of
distinct attractors with fixed threshold θ = 1.0, one non-interactive connec-
tion strength decreased by −0.1 (with respect to the reference adjacency
matrix, Table I) and the interactive weights int1 and int2 varying in the range
[−1.5, 1.5] by step of 0.1 along the x and y axes, respectively. The num-
ber of distinct attractors is continuously color coded between 1 (blue tiles)
and 50 (red tiles), but the three largest values (i.e., 65, 80, and 143) have
been color coded in a discontinuous scale. The white lines correspond to iso-
clines and delimit the domains of attractor dynamics. No interactivity, i.e.,
int1 = int2 = 0, is highlighted by a black circle in each panel. Dynamics
after a decrease in input connections (a) w0,1 and (b) w0,2. The next panels
show the effect of the decrease by −0.1 in the following local connections:
(c) the same dynamics in either w4,2, w9,2; (d) w2,9; (e) the same dynam-
ics in either w2,6, w2,7, w8,8, w4,1, w4,3, w5,6, w5,9, w7,6, w8,6, w9,1; (f) w1,2; (g)
w2,3, w6,3, w9,3; (h) w6,7, w6,8, w9,7, w9,8; (i) w3,2; (j) w6,5, w9,5; (k) w2,5; (l)
w5,4, w6,4, w8,4.

Formally, we consider the following adaptive STDP rule
bounded by a definite weight interval I = [I1, I2]:

aij(t + 1) =

⎧⎪⎨
⎪⎩

I1, if R < I1,

R, if I1 ≤ R ≤ I2,

I2, if R > I2,

(3)

where

R = aij(t)+ λ(t)
{
xi(t + 1)xj(t)− C[xi(t)xj(t + 1)]

}
, (4)

and xi(t), xj(t), xi(t + 1), xj(t + 1) are the activation values of
neurons i and j at time t and j at times t and t + 1, respectively,
aij(t) and aij(t + 1) are the strength of the connections from j
to i at time t and t + 1, respectively, C is a constant modulating
the weight decrease, and λ(t) is the adaptive plasticity rate
described below.

Let n(t) be the number of attractors of the network at time
t, and nmin(t) and nmax(t) be the minimum and maximum num-
ber of attractors that the network has encountered during the
last M time steps, for some constant M > 0:

n(t) = number of attractors of the network at time t,

nmin(t) = min{n(t′) : max(0, t −M ) ≤ t′ ≤ t},
nmax(t) = max{n(t′) : max(0, t −M ) ≤ t′ ≤ t}.

The constant M is called the memory of the network. It
corresponds to the time window during which the network
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FIG. 9. Computation of the adaptive plasticity rate λ(t) at two time steps t
(blue) and t′ (red). As time increases, the values nmin(.) and nmax(.) evolve
along the x-axis. The interpolation lines vary in consequence. The current
number of attractor n(.) determines the current rate λ(.).

“remembers” the minimum and maximum number of attractor
that it has encountered.

The adaptive plasticity rate λ(t) is computed as the lin-
ear interpolation between the two points [nmin(t), λmax] and
[nmax(t), λmin], where λmin, λmax ∈ R are two bounds such that
λmin < λmax. Formally, the rate λ(t) is given by

λ(t) =

⎧⎪⎪⎨
⎪⎪⎩

λmax + [n(t)− nmin(t)]
λmin − λmax

nmax(t)− nmin(t)
,

if nmin(t) 	= nmax(t)

λmax otherwise.

(5)

The computation of λ(t) is illustrated in Fig. 9. If n(t) =
nmin(t) [resp. n(t) = nmax(t)], it means that the current attrac-
tor dynamics of the network is at a minimal (resp. maximal)
level. In this case, λ(t) = λmax [resp. λ(t) = λmin]. Such large
(resp. low) adaptive plasticity rate provokes large (resp. low)
variations of the connection strengths with the aim of desta-
bilizing (resp. stabilizing) the network’s current dynamics.
If nmin(t) = nmax(t), the network dynamics has settled into a
domain with the same complexity during the K last steps. In
this case, the new STDP rule sets λ(t) = λmax with the aim of
perturbing the current dynamics and allowing the possibility
to reach other states.

Note that nmin(t) and nmax(t) are functions of the mem-
ory M [cf. Eq. (4)], so is λ(t) [cf. Eq. (5)]. In this sense, the
STDP rule is a function of the complexity of the attractor
dynamics that the network encountered throughout its com-
putational process. This adaptive feature is crucial to reach
stable attractor dynamics of high complexity. Note that with
memory M = 1, only the current number of attractors is con-
sidered. In this case, nmin(t) = nmax(t) [cf. Eq. (4)]; hence, the
adaptive plasticity rate λ(t) is fixed to λmax for any time step
t [cf. Eq. (5)], and thus, the network dynamics is driven by
a fixed-rate STDP rule. On the opposite, for any M > 1, the
adaptive plasticity rate λ(t) is time dependent, and therefore,
the network dynamics is driven by the adaptive STDP rule.

In order to study the performance of the new STDP
rule, we implemented Algorithm 1 for the Boolean network
of Fig. 2 with a random input stream, and we recorded the

Algorithm 1. STDP-based adaptive weights procedure

Input : A; B; �c; λmin; λmax; M ; nb−steps
1: // INITIALIZATION
2: A← jitter(A) // random jitter of weight matrix A

3: X0 ← zero−vector()
4: λ← λmax

5: attractors−list = [ ]
6: memory−list = [ ]
7: t = 0
8: // SIMULATION
9: while t ≤ nb−steps do
10: �u← random−input() // generate random input u

11: �x1 ← fθ (A · �x0 + B · �u+ �c)
// compute next state x_1 according to Eq. (2)

12: A← stdp(A, B, �c, �x0, �x1, λ)

// update weight matrix A according to Eq. (3)

13: �x0 ← �x1

14: n← nb−attractors(A, B, �c)
// compute nb of attractors of the net (Sec. II A)

15: attractors−list.append(n)

// update list of attractors

16: memory−list.append(n) // update memory

17: if len(memory−list ≥ M ) then
18: memory−list.pop(0)

19: end if
20: nmin ← min(memory−list)
21: nmax ← max(memory−list)
22: λ← adaptive−rate(n, nmin, nmax, λmin, λmax)

// update rate lambda according to Eq. (5)

23: t← t + 1
24: end while
25: return attractors−list

sequence of attractor dynamics that the network encountered
throughout its computational process.

At the beginning of each simulation, the strength aij of
each connection (Table I) was jittered by a random uniform
noise εij ∼ U(−0.025, 0.8) in order to lay within the weight
interval Iij =

[
aij − 0.025; aij + 0.8

]
(line 2 of Algorithm 1).

These bounds were chosen on the basis of an empirical analy-
sis. We noticed that broader weight intervals bring the network
dynamics to get trapped into connection weight configurations
associated with a very low level of activity that does not allow
any further update of the connection weights. The extreme
values of adaptive plasticity rates were set to λmin = 0.002 and
λmax = 0.12.

Simulations using the same random seed were run vary-
ing the values of the memory M ∈ [1, 60, 120, 180, 240, 300].
In this way, we ensure the same jittering process and input
streams and allow for a direct analysis of the effect of vary-
ing the value of M . The results are displayed in Fig. 10.
For M = 1—which represents a fixed-rate STDP rule— the
sequences of attractor dynamics encountered by the networks
are highly unstable. The largest complexity for M = 1 was
equal to 66 and observed during intervals lasting 3 and 2 time
steps in Figs. 10(a) and 10(c), respectively. In Fig. 10(b), the
complexity level reached a value of 117 distinct attractors and
lasted only 1 time step. In other simulation runs with M = 1
and within the first 300 time steps of simulation, we observed
a level of complexity equal to 154, also lasting only 1 time
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FIG. 10. Sequences of attractor dynamics encountered by the network dur-
ing simulations of 300 time steps. At the beginning of each simulation run,
the initial adjacency matrix of the connection strengths is randomly jittered.
Then, at each time step, the network received a random input stream, the
connection strengths are updated according to the STDP rule described by
Eqs. (3)–(5), and the number of attractors is computed (see Sec. II A). Panels
(a)–(c) show examples of curves for three different initial random seeds. In
each panel, the same random seed is used with three different durations of the
memory M of the adaptive plasticity rate: M = 1, red curves; M = 60, blue
curves; M = 120, dotted green curves.

step, but we cannot discard the existence of higher levels of
complexity.

The same simulations with memory values set to M = 60
and M = 120 are also illustrated in Fig. 10. The results
show that the larger the memory, the larger is the duration
of sequences with the same dynamics. The median duration
of stable sequences over many simulation runs with different
random seeds tended to become equal to 8, 19, and 36 time
steps with memory values of M = 1, M = 60, and M = 120,
respectively. We observed also that the duration of a sequence
with the largest value of complexity tended to be equal to

FIG. 11. Effect of the targeted adaptive STDP rule on the sequences of attrac-
tor dynamics encountered by the network during simulations of 300 time
steps, with the same initial random seed in all panels. (a) The value of con-
stant C of weight decrease set to C = 1 for all connection weights of the
network. Results for memory M values equal to 1 (red curves), 60 (blue), and
120 (dotted green) time steps. This panel (a) is the same as Fig. 10(b) with a
different scale. Panels (b)–(d) show the curves obtained with constant C = 5
for the three selected connections w2,5, w6,5, and w9,5, and for memory values
M = 1, M = 60, and M = 120, respectively.

the value M of the memory. In particular, we observed, over
a large set of simulation runs, complexity of 154 distinct
attractors lasting 1 time step with M = 1, complexity 117 last-
ing 61 time steps with M = 60, and complexity 377 lasting
120 time steps with M = 120. These observations were con-
firmed by further simulations performed with memory values
up to M = 300. The new adaptive STDP rule may bring the
network dynamics to stabilize at high levels of complexity.
However, the intervals of stable high complexity of attrac-
tor dynamics tended to last no more than the duration of
the memory parameter. In some cases, the network dynam-
ics could be driven toward very low complexity levels, where
the network got trapped [e.g., Fig. 10(b), the dynamics falls
to level 1 at time step t = 131, with M = 60, and at t = 145
with M = 120].

A remarkable high level of complexity was reached fol-
lowing a small decrease in connection strength (by−0.1 of its
initial value) for three specific connections (i.e., w2,5, w6,5, and
w9,5, corresponding to projections Thalamus → STN, GPe
→ STN, and CCortex → STN, respectively; see Figs. 8(j)
and 8(k). Therefore, it is rational to think that a targeted mod-
ification of these connections by adaptive plasticity might
drive the network dynamics into a higher level of complex-
ity. This hypothesis was explored by implementing a larger
decrease adaptation update exclusively for those specific con-
nection strengths [formally, the value of constant C in Eq. (3)
was set to C = 5 for connections w2,5, w6,5, and w9,5, and the
default value C = 1 was kept for any other connection]. A
change of constant C for only specific connections is referred
to as targeted adaptive STDP rule.

In the absence of targeted adaptive STDP rule, Fig. 11(a)
shows the same simulation run presented in Fig. 10(b), i.e.,
with peak complexities equal to 117 for M = 1 and M = 60,
and to 89 for M = 120. In Figs. 11(b), 11(c), and 11(d), we
note a huge increase in complexity due to the targeted adaptive
STDP rule applied to connections w2,5, w6,5, and w9,5 (with
the same random seed and initial conditions). The level of
complexity during the first 300 time steps increased to 1003
[Fig. 11(b)], 1335 [Fig. 11(c)], and 1735 distinct attractors
[Fig. 11(d)] with M = 1, M = 60, and M = 120, respectively.
The outcome of applying the targeted adaptive STDP rule
was very variable and depended on particular initial condi-
tions. In a different simulation run, we observed a complexity
level increasing to 6126 distinct attractors, but in other runs,
the complexity of the attractor dynamics stabilized to lower
levels.

VI. DISCUSSION

Synchronous discrete-time first-order recurrent neural
networks made up of classical McCulloch and Pitts cells67

represent the classic framework for the implementation of
Boolean neural systems with the advantage of a complete
analysis of the attractor dynamics of the networks. In this
framework, the attractors of the networks correspond to
the cycles of their corresponding automata and thus can
be computed explicitly and exhaustively. We studied the
attractor dynamics of a Boolean model of the basal ganglia-
thalamocortical network as a function of properties related to
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the whole network, such as neuronal excitability and modula-
tion of the strength of its local connectivity. The complexity
of attractor dynamics computed here is determined by the
number of distinct attractors of the network and their stability
throughout the computational processes.

In the absence of changes in synaptic strengths, we have
provided evidence that the attractor dynamics can be adjusted
by the feedback connections to the sensory input in order to
maintain the dynamics into basins of high levels of complex-
ity. In a similar way, given constrained feedback connectivity,
the network dynamics can be adjusted to move toward stable
basins of high complexity levels by adjusting whole net-
work properties. Experimental evidence exists for decades
that the absence of one feature in neuronal dynamics relevant
to spike-triggering may be compensated for by the presence
of another.3 In our study, we considered a Boolean model of
the basal ganglia-thalamocortical network,32 a circuit formed
by several parallel and segregated circuits involving different
areas of the brain linking sensorimotor information processing
with emotion and memory.60 In the real world, the neuro-
modulatory inputs to the basal ganglia-thalamocortical circuit
affect the overall excitability of the network in relation to sen-
sory processing, arousal, sleep-waking cycle, and cognitive
evaluation of reward and aversion.68–72. Therefore, the general
conjecture that the neural dynamics “may guide activity-
dependent learning processes in such a way that synaptic
strengths, firing thresholds, the physical connections between
neurons, and the size of the network are automatically set in an
optimal, interrelated fashion”45 is supported by this study. Our
results are also in agreement with the hypothesis that global
attractors would be an indivisible set of circuit structures gen-
erated by membrane and synapse activation and silencing
that are associated with the firing-rate dynamics specific of
developmental stages.16,73,74.

Our results showed that decreases in selected connection
strengths in the basal ganglia-thalamocortical network pro-
voke the strongest influence in shifting the attractor dynamics
to extreme high levels. Dependence of both the induction and
expression of STDP on the type of postsynaptic interneurons
has been experimentally observed to contributing differential
processing by corticostriatal projections storage of informa-
tion in local cortical circuits.75–77 This complexity highlights
the extraordinary potential of inhibitory STDP as a major reg-
ulatory mechanism, controlled by neuromodulators (such as
dopaminergic inputs in the basal ganglia) for higher cognitive
functions.78–81 The projections producing the main effect in
our results are converging on the node corresponding to the
subthalamic nucleus. A decrease in activation, or an increase
in depression, of node STN provokes an increase in the com-
plexity level of attractor dynamics. The particular location of
the STN node in the circuit topology is such that it is highly
sensitive to the Excitatory and Inhibitory (E/I) balance. The
inhibitory hub of the basal ganglia, GPe, inhibits STN, while
it receives excitatory inputs from the cerebral cortex. The del-
icate interplay of these combined projections determines the
faith of the pattern of activity in STN and, eventually, of the
complexity of the attractor dynamics of the whole circuit.

The STN is implicated in the limbic/cognitive functions
of the basal ganglia,82 and it plays a key role in controlling

the balance between funneling information via the hyperdirect
cortico-subthalamic pathway and parallel processing through
the parallel cortico-basal ganglia-subthalamic pathways, both
of which are necessary for selected motor behaviors.83 Indeed,
depression of STN activity by deep brain stimulation is
considered the major therapeutic intervention in order to
decrease the symptoms produced by Parkinson’s disease84,85

and absence epilepsy seizure.86 Combining modulation of
membrane excitability and gain control of feedback inhibition
enables thalamic circuits to finely tune the gating of activity
from sensory organs to the cortex and switch between oscilla-
tory activity—periodic orbits in the limit cycles—and wakeful
unawareness—chaotic dynamics—either by direct excitation
of an arousal nucleus or by inhibition of a sleep-promoting
centre in the basal forebrain.87–90 Hence, converging wealth
of evidence emphasizes that spatially and temporally struc-
tured inhibition via recurrent networks is likely to play a key
role in sequence generation.91,92

We have introduced a new connectivity strength adaptive
rule based on the timing between the activation of pre- and
the post-synaptic neurons, inspired by the STDP rule56–58 and
by the successive attractor dynamics that the network encoun-
ters throughout its computation. Then, it was not surprising
to observe that, when the rule applies to all the connections
in the same way, the stabilization of the attractor dynam-
ics depends on the memory parameter of the adaptivity rule,
i.e., akin of a membrane time constant. Initial conditions, as
usually in nonlinear dynamical systems, are extremely impor-
tant, and several simulation runs could not reach the highest
levels of complexity. The new adaptive STDP rule imple-
ments a twofold evolving process: the connection strengths
evolve according to the STDP rule, but the STDP rule itself
also evolves over time according to the “attractor history”
of the network dynamics, by modifying its rate according
to Eq. (5). These interwoven evolving processes emphasize
the effect of time-dependency, which is crucial to our study.
A time-dependency rule modifies significantly the computa-
tional power of Boolean recurrent neural networks and brings
it to a super-Turing level, irrespective of its rational value,
that is to the level achieved with static real-weighted synap-
tic connections.93,94 It is necessary to remind that the time
scale of the model studied here does not correspond to the
0.1–1 ms discrete time scales, which are often reported in
many simulations. A model closer to the physiological reality
should incorporate additional data related to the latencies and
axonal delays of the connections between the brain areas of
the model. The literature is extremely vast, but the experimen-
tal values depend on the species being investigated (mostly
rats and primates) and the animal preparation (e.g., behav-
ing, unanesthetized, the type of anesthetics). We can estimate
that 1 time step in the current model of the basal ganglia-
thalamocortical circuit might correspond to a physiological
interval in the order of 4–10 ms.

The overall idea presented here is that an adaptive STDP
rule modifies the network’s topology—by changing its synap-
tic weights—in order to stabilize into an architecture char-
acterized by a large number of attractors. These numerous
attractors could then be made available to the network for
the implementation of numerous cognitive processes (e.g.,
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efficient memory processes). The larger the number of attrac-
tors at disposal, the larger the possibilities to enable complex
cognitive processes. We observe that targeted STDP rule,
applied to a selected subset of the connections, is able to
increase the complexity of attractor dynamics by few orders of
magnitude, consistent with the hypothesis that dynamic net-
work reorganization requires modifications of selected neu-
ronal gains, revealing a mechanism that networks may use to
selectively transfer neural response properties.95 The attractor
dynamics adaptive plasticity rule modifying the local connec-
tion strengths is able to drive the computational process of
network dynamics toward high levels of complexity, but the
rule itself is not able to maintain an attractor dynamics of high
complexity for an interval lasting more than the memory of
the network.

It is important to consider that the presence of a mul-
tistable system according to perceptual alternation (imple-
mented by interactivity) allows transitions between attractor
states that might represent an advantage for the neural system,
as more favorable functional outcomes could appear under
certain conditions. On the other hand, the stabilization pro-
cesses of the attractor dynamics also represent an advantage
for the implementation of robust neural functionalities. These
considerations could suggest that the dynamics of the network
is confronted to seek a compromise between the advantage of
a chaotic itinerancy and the stability of its attractors. It is nec-
essary to extend our study in order to include a reinforcement
process and memory consolidation, that is, a process adapt-
ing the memory parameter in targeted connections, because
no learning occurs without, or independent of, reward.80,96

The inclusion of a reward circuit in future studies would intro-
duce a conditional multistability, capable to let emerge robust,
though flexible, attractor dynamics, in agreement with the
latest experimental studies.97

In conclusion, our results suggest that multiple parame-
ters controlling the attractor dynamics of boolean recurrent
networks can compensate one another in order to shift or to
maintain the attractor dynamics at certain levels of complex-
ity. By either potentiating or depressing targeted connection
strengths, the networks could either switch from one attrac-
tor dynamics to a very different one or, on the contrary, settle
themselves into stable domains that remain invariant under
perturbations of small intensity.
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