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Abstract

We provide a decidable hierarchical classification of first-order recurrent neural networks made
up of McCulloch and Pitts cells.  This classification is achieved by proving an equivalence result between
such neural networks and deterministic Büuchi automata, and then translating the Wadge classification
theory from the abstract machine to the neural network context.  The obtained hierarchy of neural
networks is proved to have width 2 and height ω + 1, and a decidability procedure of this hierarchy is
provided.  Notably, this classification is shown to be intimately related to the attractive properties of the
considered networks.
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Introduction

The characteristic feature of a recurrent neural
network (RNN) is that the connections between the
cells form a directed cycle. In the automata-theoretic
perspective McCulloch and Pitts (9), Kleene (7), and
Minsky (10) proved that the class of first-order RNN
discloses equivalent computational capabilities as
classical finite state automata.  Kremer extended this
result to the class of Elman-style recurrent neural nets
(8) and Sperduti discussed the computational power
of other architecturally constrained classes of net-
works (18).

The computational power of first-order RNN
depend on both the choice of the neuronal activation
function and the nature of the synaptic weights.
Assuming rational synaptic weights and a saturated-
linear sigmoidal activation function, instead of a hard-
threshold, Siegelmann and Sontag showed that the
computational power of the networks drastically
increases from finite state automata up to Turing
capabilities (15, 17).  Moreover, real-weighted net-
works provided with a saturated-linear sigmoidal ac-

tivation function reveal computational capabilities
beyond the Turing limits (13, 14, 16).  Kilian and
Siegelmann extended the Turing universality of neural
networks to a more general class of sigmoidal activation
functions (6).  These results are of primary importance
in order to understand the computational powers of
different classes of neural networks.

In this paper we focus on a given class of neural
networks and then we analyze the computational
capabilities of each individual network of this class,
instead of addressing the issue of the computational
power of a whole given class of neural networks.  More
precisely, we restrict our attention on the class of first-
order RNN made up of McCulloch and Pitts cells, and
provide an internal transfinite hierarchical classifica-
tion of the networks of this class according to their
computational capabilities.  This classification is
achieved by proving an equivalence result between
the considered neural networks and deterministic
Büchi automata, and then translating theWadge
classification theory (2-4, 12, 22) from the abstract
machine to the neural network context.  It is then shown
that the degree of a network in the obtained hierarchy
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corresponds precisely to the maximal capability of
the network to punctually alternate between attractors
of different types along its evolution.

The Model

In this paper, we consider discrete-time first-
order RNN made up of classical McCulloch and Pitts
cells (9).  More precisely, our model consists of a
synchronous network whose architecture is specified
by a general directed graph with edges labelled by
rational weights.  The nodes of the graph are called
cells (or processors) and the labelled edges are the
synaptic connections between those.  At every time
step, the state of each cell can be of only two kinds,
namely either firing or quiet.  When firing, each cell
instantaneously transmits a post-synaptic potential
(p.s.p.) throughout each of its efferent projections
with an amplitude determined by the weight of the
synaptic connection (equal to the label of the edge).
Then, any given cell will be firing at time t + 1 if and
only if (denoted iff) the sum of all p.s.p. transmitted
at time t plus the effect of background activity exceeds
its threshold (which we suppose without loss of
generality to be equal to 1).  From now further the
value of the p.s.p. is referred to as “intensity”.  As
already mentioned, such networks have been proved
to reveal same computational capabilities as finite
state automata (7, 9, 10).  The definition of such a
network can be formalised as follows:

Definition 0.1.  A first-order recurrent neural network
(RNN) consists of a tuple N = (X, S, M, a, b, c), where:
X = {xi : 1 ≤ i ≤ N} is a finite set of N activation cells,
S = {si  : 1 ≤ i ≤ K} is a finite set of K external sensory
cells, M ⊆ X is a distinguished subset of motor cells,
a ∈ QQ X×X and b ∈ QQ X×U describe the weights of the
synaptic connections between all cells, and c ∈ QQ X

describes the afferent background activity, or bias.1

The activation value of cells xj and sj at time t, denoted
by xj(t) and sj(t), respectively, is a boolean value
equal to 1 if the corresponding cell is firing at time t
and to 0 otherwise. Given the activation values xj(t)
and sj(t), the value xi(t + 1) is then updated by the
following equation

xi(t + 1) = σ ai, jx j(t)Σ
j = 1

N
+ b i, js j(t) + ciΣ

j = 1

K
,

i = 1, ..., N [1]

where σ is the classical hard threshold activation
function defined by σ(α) = 1 if α ≥ 1 and σ(α) = 0
otherwise.

Note that Equation [1] ensures that the dynamics
of any RNN N can be equivalently described by a
discrete dynamical system of the form

x(t + 1) = σ (A · x(t) + B · s(t) + c), [2]

where x(t) = (x1(t), ···, xN(t)) and s(t) = (s1(t), ···, sK(t))
are boolean vectors, A, B, and c are rational matrices
of sizes N × N, N × K, and N × 1, respectively, and σ
denotes the classical hard threshold activation function
applied component by component.  An example of
such a network is given below.

Example 0.2.  Consider the network N  depicted in
Fig. 1.  This network consists of two sensory cells s1
and s2, three activation cells x1, x2, and x3, among
which only x3 is a motor cell.  The network contains
five connections, as well as a constant background
activity, or bias, of intensity 1/2 transmitted to x1 and
x2.  The dynamics of this network is then governed by
the following system of equations:

x1(t + 1)
x2(t + 1)
x3(t + 1)

= σ

0 – 1
2 0

1
2 0 0
1
2 0 0

⋅
x1(t)
x2(t)
x3(t)

+

1
2 0

0 0

0 1
2

⋅ s1(t)
s2(t) +

1
2
1
2
0

Meaningful and Spurious Attractors

Given some RNN N with N  activation cells and
K sensory cells, the boolean vector x(t) = (x1(t), ···,
xN(t)) describing the spiking configuration of the
activation cells of N  at time t is called the state of N
at time t.  The K-dimensional boolean vector s(t) =

1From this point forward, for every indices i and j, the terms a(xi, xj), b(xi, sj) and c(xi) will be denoted by ai, j, bi, j, and ci, respectively.

Fig. 1.  A simple first-order recurrent neural network.
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(s1(t), ···,  sK(t)) describing the spiking configuration
of the sensory cells of N  at time t is called the stimulus
submitted to N  at time t.  The set of all K-dimensional
boolean vectors BB K then corresponds to the set of all
possible stimuli of N .  A stimulation of N  is then de-
fined as an infinite sequence of consecutive stimuli
s = (s(i))i∈NN = s(0)s(1)s(2)···.  The set of all infinite
sequences of K-dimensional boolean vectors, denoted
by [BB K]ω, thus corresponds to the set of all possible
stimulations of N .  Let us assume the initial state to
be x(0) = 0, any stimulation s = (s(i))i∈NN = s(0)s(1)
s(2)··· induces via Equation [2] an infinite sequence
of consecutive states es = (x(i))i∈NN = x(0)x(1)x(2)···
that will be called the evolution of N  under stimula-
tion s.

Along some evolution es = x(0)x(1)x(2)···,
irrespective of the fact that this sequence is periodic
or not, some state will repeat finitely often whereas
other will repeat infinitely often.  The (finite) set of
states occurring infinitely often in the sequence es

will then be denoted by inf (es).  It is worth noting that,
for any evolution es, there exists a time step k after
which the evolution es will necessarily remain confined
in the set of states inf (es), or in other words, there
exists an index k such that x(i) ∈ inf (es) for all i ≥ k.
However, along evolution es, the recurrent visit of
states in inf (es) after time step k does not necessarily
occur in a periodic manner.

In this work, the attractive behaviours of neural
networks is an issue of key importance, and networks
will further be classified according to their ability to
switch between attractors of different types.  Towards
this purpose, the following definition needs to be
introduced.

Definition 0.3.  Given a RNN N  with N activation
cells, a set of N-dimentional boolean vectors A =
{y0, ···, yk} is called an attractor for N  if there exists
a stimulation s such that the corresponding evolution
es satisfies inf (es) = A.

In other words, an attractor is a set of states into which
some evolution of a network could eventually become
confined for ever.  It can be seen as a trap of states into
which the network’s behaviour could eventually get
attracted in a never-ending cyclic but not necessarily
periodic visit.  Note that an attractor necessarily con-
sists of a finite set of states (since the set of all possi-
ble states of N  is finite).

We suppose further that attractors can be of two
distinct types, namely either meaningful or spurious.
More precisely, an attractor A = {y0, ..., yk} of N  is
called meaningful if it contains at least one element yi
describing a spiking configuration of the system where
some motor cell is spiking, i.e. if there exist i ≤ k and
j ≤ N such that xj is a motor cell and the j-th component

of yi is equal to 1.  An attractor A is called spurious
otherwise.  Notice that by the term “motor” we refer
more generally to a cell involved in producing a
behaviour.  Hence, meaningful attractors intuitively
refer to the cyclic activity of the network that induce
some motor/behavioural response of the system,
whereas spurious attractors refer to the cyclic activity
of the network that do not evoke any motor/behavioural
response at all.  More precisely, an evolution es such
that inf (es) is a meaningful attractor will necessarily
induce infinitely many motor responses of the network
during the recurrent visit of the attractive set of states
inf (es).  Conversely, an evolution es such that inf (es)
is a spurious attractor will evoke only finitely many
motor responses of the network that might necessarily
occur before the evolution es gets forever trapped by
the attractor inf (es).

We extend the notions of meaningful and spurious
to the stimulations such that a stimulation s is termed
meaningful if inf (es) is a meaningful attractor, and it
is termed spurious if inf (es) is a spurious attractor.  In
other words, meaningful stimulations are those whose
corresponding evolutions get eventually confined into
meaningful attractors, and spurious stimulations are
those whose corresponding evolutions get eventually
confined into spurious attractors.

The set of all meaningful stimulations of N  is
called the neural language of N  and is denoted by
L(N ).  An arbitrary set of stimulations L is then said
to be recognisable by some neural network if there
exists a network N  such that L(N ) = L.  These defi-
nitions are illustrated in the following example.

Example 0.4.  Consider again the network N  described
in Example 0.2 (illustrated in Fig. 1).  For any finite
sequence s, let sω = ssss··· denote the infinite sequence
obtained by infinitely many concatenations of s.  Ac-
cording to this notation, the periodic stimulation s =

0
0

1
0

0
1

ω
 induces the corresponding evolution

es =
0
0
0

0
0
0

1
0
0

0
1
1

ω

.

Hence, inf (es) = {(0, 0, 0)T, (1, 0, 0)T, (0, 1, 1)T}, and
the evolution es of N  remains confined into a cyclic
visit of the states of inf (es) from time step t = 1.  Thence,
the set inf (es) = {(0, 0, 0)T, (1, 0, 0)T, (0, 1, 1)T} is an
attractor of N .  Moreover, since (0, 1, 1)T is a boolean
vector of inf (es) describing a spiking configuration of
the system where the motor cell x3 is spiking, the
attractor inf (es) is thus meaningful.  Therefore, the
stimulation s is also meaningful, and hence belongs
to the neural language of N , i.e. s ∈ L(N ).  Besides,

the periodic stimulation s′ = 1
1

0
0

ω
 induces the
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corresponding periodic evolution

es′ =
0
0
0

1
0
0

0
1
0

0
0
0

ω

.

Thence inf (es′) = {(0, 0, 0)T, (1, 0, 0)T, (0, 1, 0)T}, and
the evolution es′ of N  begins its cyclic visit of the
states of inf (es′) already from the first time step t = 0.
Yet in this case, since the boolean vectors (0, 0, 0)T ,
(1, 0, 0)T, and (0, 1, 0)T of inf (es′) describe spiking
configurations of the system where the motor cell x3
remains quiet, the attractor inf (es′) is now spurious.  It
follows that the stimulation s′ is also spurious, and
thus s′ ∉ L(N ).

Recurrent Neural Networks and Büchi Automata

In this section, we provide an extension of the
classical result stating the equivalence of the com-
putational capabilities of first-order RNN and finite
state machines (10).  In particular the issue of the ex-
pressive power of neural networks is approached here
from the point of view of the theory of infinite word
reading automata, and it is proved that first-order
RNN as defined in Definition 0.1 actually show the
very same expressive power as finite deterministic
Büchi automata.  Towards this purpose, the following
definitions need to be recalled.

A finite deterministic Büchi automaton is a 5-
tuple A = (Q, A, i, δ, F ), where Q is a finite set called
the set of states, A is a finite alphabet, i is an element
of Q called the initial state, δ is a partial function from
Q × A into Q called the transition function, and F is a
subset of Q called the set of final states.  A finite de-
terministic Büchi automaton is generally represented
by a directed labelled graph whose nodes and labelled
edges respectively represent the states and transitions
of the automaton, and double-circled nodes represent
final states of the automaton.

Given a finite deterministic Büchi automaton
A = (Q, A, i, δ, F ), every triple (q, a, q′) such that
δ(q, a) = q′ is called a transition of A.  A path in A is
then a sequence of consecutive transitions ρ usually
denoted by ρ : q0

a1 q1
a2 q2

a3 q3 ....  The path ρ is
said to successively visit the states q0, q1, ···.  The state
q0 is called the origin of ρ, the word a1a2a3 ··· is the
label of ρ, and the path ρ is said to be initial if q0 = i.
If ρ is an infinite path, the set of states visited infinitely
often by ρ is denoted by inf (ρ).  In addition, an infinite
initial path ρ of A is called successful if it visits
infinitely often states that belong to F, i.e. if inf (ρ) ∩
F ≠ /0.  An infinite word is then said to be recognised
by A if it is the label of a successful infinite path in A,
and the language recognised by A, denoted by L(A),
is the set of all infinite words recognised by A.

Furthermore, a cycle in A consists of a finite set
of states c such that there exists a finite path in A with
same origin and ending state which visits precisely all
the sates of c.  A cycle is called successful if it con-
tains a state that belongs to F, and non-succesful
otherwise.  For any n ∈ NN, an alternating chain (resp.
co-alternating chain) of length n is a finite sequence
of n + 1 distinct cycles (c0, ···, cn) such that c0 is
successful (resp. c0 is non-successful), ci is successful
iff ci+1 is non-successful, ci+1 is accessible from ci,
and ci is not accessible from ci+1, for all i < n.  An
alternating chain of length ω is a sequence of two
cycles (c0, c1) such that c0 is successful, c1 is non-
successful, and both c0 and c1 are accessible one from
the other.  An alternating chain of length α is said to
be maximal in A if there is no alternating chain and no
co-alternating chain in A with a length strictly larger
than α.  A co-alternating chain of length α is said to
be maximal in A if exactly the same condition holds.
These notions of alternating and co-alternaing chains
will appear to be directly related to the complexity of
the considered networks.

We now come up to the equivalence between the
expressive power of recurrent neural networks and
deterministic Büchi automaton.  Firstly, we prove
that any first-order recurrent neural network can be
simulated by some deterministic Büchi automaton.

Proposition 0.5.  Let N  be a RNN.  Then there exists
a deterministic Büchi automaton AN  such that L(N ) =
L(AN ).

Proof.  Let N  be given by the tuple (X, S, M, a, b, c),
with card(X) = N, card(S) = K, and M = {xi1

, ···, xiL
} ⊆

X.  Now, consider the deterministic Büchi automaton
AN  = (Q, Σ, i, δ, F ), where Q = {x ∈ BBN : x is a possible
state of N }, Σ = BB K, i is the N-dimensional zero
vector, δ : Q × Σ → Q is defined by δ(x, s) = x′ iff
x′ = σ(A · x + B · s + c), where A, B, and c are the ma-
trices and vectors corresponding to a, b, and c
respectively, and where F = {x ∈ Q : the ik-th com-
ponent of x is equal to 1 for some 1 ≤ k ≤ L}.  In other
words, the states of AN  correspond to all possible
states of N , the initial state of AN  is the initial resting
state of N , the final states of AN  are the states of N
where at least one motor cell is spiking, the underlying
alphabet of AN  is the set of all possible stimuli of N ,
and AN  contains a transition from x to x′ labelled by
s iff the dynamical equations of N  ensure that N
transits from state x to state x′ when it receives the
stimulus s.  According to this construction, any evolu-
tion es of N  naturally induces a corresponding infinite
initial path ρ(es) in AN  that visits a final state infinitely
often iff es evokes infinitely many motor responses.
Consequently, any stimulation s of N  is meaningful
for N  iff s is recognised by AN .  In other words, s ∈
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L(N ) iff s ∈ L(AN ), and therefore L(N ) = L(AN ). !

According to the construction given in the proof
of Proposition 0.5, any evolution es of network N
naturally induces a corresponding infinite initial path
ρ(es) in the deterministic Büchi automaton AN .
Conversely, any infinite initial path ρ in AN  can be
associated to some evolution es(ρ) of N .  Hence,
given some set of states A of N , there exists a stimula-
tion s of N  such that inf (es) = A iff there exists an
infinite initial path ρ in AN  such that inf (ρ) = A, or
equivalently, iff A is a cycle in AN .  Notably, this ob-
servation ensures the existence of a biunivocal cor-
respondence between the attractors of the network N
and the cycles in the graph of the corresponding Büchi
automaton AN .  Consequently, a procedure to compute
all possible attractors of a given network N  is simply
obtained by constructing at first the corresponding
deterministic Büchi automaton AN  and then listing all
cycles in the graph of AN .

We can prove now that any deterministic Büchi
automaton can be simulated by some first-order RNN.
For the sake of convenience, we choose to restrict our
attention to deterministic Büchi automata over the
binary alphabet BB 1 = {(0), (1)}.  Such a restriction
does not weaken the forthcoming results, for the
expressive power of deterministic Büchi automata is
already completely achieved by deterministic Büchi
automata over binary alphabets.

Proposition 0.6.  Let A be some deterministic Büchi
automaton over the alphabet BB 1.  Then there exists a
RNN N A such that L(A) = L(N A).

Proof.  Let A be given by the tuple (Q, A, q1, δ, F ),
with Q = {q1, ···,  qN} and F = {qi1

, ···, qiK
} ⊆ Q.  Now,

consider the network N A = (X, S, M, a, b, c) defined
by X = Xmain ∪ Xaux, where Xmain = {xi : 1 ≤ i ≤ 2N} and
Xaux = {x′1, x′2, x′3, x′4}, S = {s1}, M = {xij

 : 1 ≤ j ≤ K} ∪
{xN+ij

 : 1 ≤ j ≤ K}, and the functions a, b, and c are
defined as follows.  First of all, both cells x′1 and x′3
receive a background activity of intensity 1, and
receive no other afferent connections.  The cell x′2
receives two afferent connections of intensities –1
and 1 from cells x′1 and s1, and the cell x′4 receives two
afferent connections of same intensity –1 from cells
x′3 and s1 as well as a background activity of intensity
1.  Moreover, each state qi in the automaton A gives
rise to a corresponding cell layer in the network N A

consisting of the two cells xi and xN+i.  For each 1 ≤
i ≤ N, the cell xi receives a weighted connection of
intensity 1

2
 from the input s1, and the cell xN+1 receives

a weighted connection of intensity –1
2
 from the input

s1, as well as a background activity of intensity 1
2
.

Furthermore, let i0 and i1 denote the indices such that
δ(q1, (0)) = qi0

 and δ(q1, (1)) = qi1
, respectively, then

both cells xi0
 and xN+i0

 receive a connection of inten-
sity 1

2
 from cell x′4, and both cells xi1

 and xN+i1
 receive

a connection of intensity 1
2
 from cell x′2, as illustrated

in Fig. 2.  Moreover, for each 1 ≤ i, j ≤ N, there exist
two weighted connections of intensity 1

2
 from cell xi to

both cells xj and xN+j if δ(q1, (1)) = qj, and there exist
two weighted connections of intensity 1

2
 from cell

xN+i to both cells xj and xN+j iff δ(q1, (0)) = qj, as
partially illustrated in Fig. 2 only for the k-th layer.
Finally, the definition of the set of motor cells M
ensures that, for each 1 ≤ i ≤ N, the two cells of the
layer {xi, xN+i} are motor cells of N A iff qi is a final
state of A.  The network N A obtained from A by means
of the aforementioned construction is illustrated in
Fig. 2, where connections between activation cells
are partially represented by full lines, efferent con-

Fig. 2.  Construction of the network N A recognising the same language as a deterministic Büchi automaton A.
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nections from the sensory cell s1 are represented by
dotted lines, and background activity connections are
represented by dashed lines.  According to the this
construction of the network N A, one and only one cell
of Xmain will fire at every time step t ≥ 2, and a cell in
Xmain will fire at time t + 1 iff it receives simultaneously
at time t an activity of intensity 1

2
 from the sensory cell

s1 as well as an activity of intensity 1
2
 from a cell in

Xmain.  More precisely, any infinite sequence s =
s(0)s(1)s(2) ··· ∈ [BB 1]ω induces both a corresponding
infinite path ρs : q1

s(0) q j1
s(1) q j2

s(2) q j3  ··· in A as well
as a stimulation es = x(0)x(1)x(2) ··· in N A.  The
network N A then satisfies precisely the following
property: for every time step t ≥ 2, if s(t – 1) = (1), then
the state x(t) corresponds to a spiking configuration
where only the cells x′1, x′3, and xjt1

 are spiking, and if
s(t – 1) = (0), then the state x(t) corresponds to a
spiking configuration where only the cells x′1, x′3, and
xN+jt–1

 are spiking.  In other words, the infinite path ρs

and the stimulation es evolve in parallel and satisfy
the property that the cell xj is spiking in N A iff the
automaton A is in state qj and reads letter (1), and the
cell xN+j is spiking in N A iff the automaton A is in state
qj and reads letter (0).  Hence, for any infinite infinite
sequence s ∈ [BB1]ω, the infinite path ρs in A visits in-
finitely many final states iff the evolution es in N A

evoked infinitely many motor responses.  This means
that s is recognised by A iff s is meaningful for N A.
Therefore, L(A) = L(N A).

Actually, it can be proved that the translation
between deterministic Büchi automata and RNN
described in Proposition 0.6 can be generalised to
any alphabet BB K with K > 0.  Hence, Proposition 0.5
together with a suitable generalisation of Proposition
0.6 to all alphabets of multidimensional boolean
vectors permit to deduce the following equivalence

between first-order RNN and deterministic Büchi
automata.

Theorem 0.7.  Let K > 0 and let L ⊆ [BBK]ω.  Then L is
recognisable by some first-order RNN iff L is recog-
nisable by some deterministic Büchi automaton.

Finally, the following example provides an
illustration of the two procedures given in the proofs
of Propositions 0.5 and 0.6 describing the translations,
on the one hand, from a given RNN to a corresponding
deterministic Büchi automaton, and on the other hand,
from a given deterministic Büchi automaton to a cor-
responding RNN.

Example 0.8.  The translation from the network N
described in Example 0.2 to its corresponding deter-
ministic Büchi automaton AN  is illustrated in Fig. 3.
Proposition 0.5 ensures that L(N ) = L(N A).  Con-
versely, the translation from some given deterministic
Büchi automaton A over the alphabet BB 1 to its cor-
responding network N A is illustrated in Fig. 4.  Pro-
position 0.6 ensures that L(A) = L(N A).  In both cases,
motor cells of networks as well as final states of
Büchi automata are double-circled.

The RNN Hierarchy

In theoretical computer science, infinite word
reading machines are often classified according the
topological complexity of the languages that they re-
cognise, as for instance in (2-4, 12, 22).  Such classifi-
cations provide an interesting complexity measure of
the expressive power of different kinds of infinite
word reading machines.  Here, this approach is trans-
lated from the ω-automata to the neural network con-
text, and a hierarchical classification of first-order
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Fig. 3.  The translation from some given network N  to its corresponding deterministic Büchi automaton AN.
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RNN is obtained.  Notably, this classification will be
tightly related to the attractive properties of the net-
works.

More precisely, along the sequential presenta-
tion of a stimulation s, the induced evolution es of a
network might seem to successively fall into several
distinct attractors before getting eventually trapped
by the attractor inf (es).  In other words, the sequence
of successive states es might visit the same set of
states for a while, but then escapes from this pattern
and visits another set of states for some while again,
and so forth until it finally gets attracted for ever by
the set of states inf (es).  We specially focus on this
feature and provide a refined hierarchical classification
of first-order RNN according to their capacity to
punctually switch between attractors of different types
along their evolutions.

For this purpose, the following facts and definitions
need to be introduced. To begin with, for any k > 0, the
space of all infinite sequences of k-dimensional boolean
vectors [BBk]ω can naturally be equipped with the product
topology of the discrete topology over BB k.  Thence, a
function f : [BB k]ω → [BB l]ω is said to be continuous iff
the inverse image by f of every open set of [BB l]ω is an
open set of [BB k]ω according to the aforementioned
topologies over [BB l]ω and [BB l]ω.

Now, given two RNN N 1 and N 2 with K1 and K2
sensory cells respectively, we say that N 1 continuously
reduces (or Wadge reduces, or simply reduces) to N 2,
denoted by N 1 ≤W N 2, iff there exists a continuous
function f : [BB K1]ω → [BBK2]ω such that any stimulation
s of N 1 satisfies s ∈ L(N 1) ⇔ f (s) ∈ L(N 2) (21).

Intuitively, N 1 ≤W N 2 iff the problem of deter-
mining whether some stimulation s is meaningful for
N 1 reduces via some simple function f to the prob-
lem of knowing whether f (s) is meaningful for N 2.
Then, the corresponding strict reduction is defined by
N 1 <W N 2 iff N 1 ≤W N 2 ≤| W N 1, the equivalence rela-
tion is defined by N 1 ≡W N 2 iff N 1 ≤W N 2 ≤W N 1, and
the incomparability relation is defined by N 1 ⊥W N 2
iff N 1 ≤| W N 1 ≤| W N 1.  Equivalence classes of net-
works according to Wadge reduction are denoted ≡W-
equivalence classes.  The continuous reduction over
neural networks then naturally induces a hierarchical
classification of neural networks formally defined as
follows:

Definition 0.9.  The collection of all first-order RNN
as defined in Definition 0.1 ordered by the reduction
relation “≤W” will be called the RNN hierarchy.

We can now provide a complete description of
the RNN hierarchy.  Firstly, it can be proved that the
RNN hierarchy is well founded.2  Moreover, it can also
be shown that the maximal chains3 in the RNN hierarchy
have length ω+1, which is to say that the RNN hierarchy
has a height of ω+1.  Furthermore, the maximal anti-
chains4 of the RNN hierarchy have length 2, meaning
that the RNN hierarchy has a width of 2.  More pre-
cisely, the RNN hierarchy actually consists of ω
alternating successions of pairs of incomparable ≡W-
equivalence classes and single ≡W-equivalence classes,
overhung by a ultimate single ≡W-equivalence class, as
illustrated in Fig. 5, where circle represent ≡W-

2The fact that the RNN hierarchy is well founded means that every non-empty set of neural networks has a ≤W-minimal element.
3A chain in the RNN hierarchy is a sequence of neural networks (N k)k∈α such that N i <W N j iff i < j.  A maximal chain is a chain whose length
is at least as large as every other chain.

4An antichain of the RNN hierarchy is a sequence of pairwise incomparable neural networks.  A maximal antichain is an antichain whose
length is at least as large as every other antichain.
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Fig. 4.  Translation from some given deterministic Büchi automaton A to its corresponding network N A.
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equivalence classes of networks and arrows between
circles represent the strict reduction “<W” between all
elements of the corresponding classes.  The pairs of
incomparable ≡W-equivalence classes are called the
non-self-dual levels of the RNN hierarchy and the
single ≡W-equivalence classes are called the self-dual
levels of the RNN hierarchy.  Then, the degree of a
RNN N , denoted by d(N ), is defined as being equal to
n if N  belongs either to the n-th non-self-dual level or
to the n-th self-dual level of the RNN hierarchy, for all
n > 0, and the degree of N  is equal to ω if it belongs
to the ultimate overhanging ≡W-equivalence class.
Besides, it can also be proved that the RNN hierarchy
is actually decidable, in the sense that there exists an
algorithmic procedure computing the degree of any
network in the RNN hierarchy.  All the aforementioned
properties of the RNN hierarchy are now summarised
in the following result.

Theorem 0.10.  The RNN hierarchy is a decidable
pre-well ordering of width 2 and height ω + 1.

Proof.  The collection of all deterministic Büchi au-
tomata ordered by the reduction relation “≤W”, called
the DBA hierarchy, can be proved to be decidable
pre-well ordering of width 2 and height ω+1 (1, 11).
Propositions 0.5 and 0.6 as well as Theorem 0.7
ensure that the RNN hierarchy and DBA hierarchy are
isomorphic, which concludes the proof. !

The following result provides a detailed
description of the decidability procedure of the RNN
hierarchy.  More precisely, it is shown that the degree
of a network N  in the RNN hierarchy corresponds
precisely to the maximal number of times that this
network might switch between punctual evocations
of meaningful and spurious attractors along some
evolution.

Theorem 0.11.  Let n be some strictly positive integer,
N  be a network, and AN be the corresponding deter-
ministic Büchi automaton of N .

• If there exists in AN a maximal alternating chain of
length n and no maximal co-alternating chain of
length n, then d(N ) = n and N  is non-self-dual.

• If there exists in AN a maximal co-alternating chain
of length n but no maximal alternating chain of
length n, then also d(N ) = n and N  is non-self-
dual.

• If there exist in AN a maximal alternating chain of
length n as well as a maximal co-alternating chain
of length n, then d(N ) = n and N  is self-dual.

• If there exist in AN a maximal alternating chain
of length ω, then d(N ) = ω.

Proof.  It can be shown that the translation procedure
described in Proposition 0.5 is actually an isomorphism
from the RNN hierarchy to the DBA hierarchy.  There-
fore, the degree of a network N  in the RNN hierarchy
is equal to the degree of its corresponding deterministic
Büchi automaton AN in the DBA hierarchy.  Moreover,
the degree of a deterministic Büchi automaton in the
DBA hierarchy corresponds precisely to the length
of a maximal alternating or co-alternating chain of
contained this automaton (22, 11). !

By Theorem 0.11, the decidability procedure of
the degree of a network N  in the the RNN hierarchy
thus consists in first translating the network N  into its
corresponding deterministic Büchi automaton AN , as
described in Proposition 0.5, and then returning the
ordinal α < ω + 1 corresponding to the length of the
maximal alternating chains or co-alternating chains
contained in AN .  Note that this procedure can clearly
beachieved by some graph analysis of the automaton
AN , since the graph of AN  is always finite.  Further-
more, since alternating and co-alternating chains are
defined in terms of cycles in the graph of the automa-
ton, and according to the biunivocal correspondence
between cycles in AN  and attractors of N , it can be
deduced that the complexity of a network in the RNN
hierarchy is indeed tightly related to the attractive
properties of this network.

More precisely, it can be observed that the
measure of complexity provided by the RNN hierarchy
actually corresponds precisely to the maximal number
of times that a network might alternate between
punctual evocations of meaningful and spurious
attractors along some evolution.  Indeed, the exist-
ence of a maximal alternating or co-alternating chain
(c0, ···, cn) of length n in AN  means that every infinite
initial path in AN  might alternate at most n times
between punctual visits of successful and non-
successful cycles.  Yet, according to the biunivocal
correspondence between cycles in AN  and attractors
of N , this is precisely equivalent to saying that every
evolution of N  can only alternate at most n times
between punctual evocations of meaningful and
spurious attractors before getting eventually forever
trapped by a last attractor.  In this case, Theorem 0.11
ensures that the degree of N  is equal to n.  2Moreover,

Fig. 5. The RNN hierarchy: an alternating succession of pairs
of incomparable classes and single classes of networks
overhung by a ultimate single class.
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the existence of an alternating chain (c1, c2) of length
ω in AN  is equivalent to the existence of an infinite
initial path in AN  that might alternate infinitely many
times between punctual visits of the cycles c1 and c2.
Yet, this is equivalent to saying that there exists an
evolution of N  that might alternate ω times between
punctual visits of a meaningful and a spurious attractor.
By Theorem 0.11, the degree of N  is equal to ω is
this case.  Therefore, RNN hierarchy provides a new
measure complexity of neural networks according to
their maximal capability to alternate between punctual
evocations of different types of attractors along their
evolutions.  Moreover, it is worth noting that the con-
cept of alternation between different types of attrac-
tors mentioned in our context tightly resembles the
relevant notion of chaotic itinerancy widely studied
by Tsuda et al. (5, 19, 20).  Finally, the following ex-
ample illustrates the decidability procedure of the
RNN hierarchy.

Example 0.12.  Let N  be the network described in
Example 0.2.  The corresponding deterministic Büchi
automaton AN  of N  represented in Fig. 3 contains the
successful cycle c1 = {(0, 0, 0)T, (1, 0, 0)T, (0, 1, 1)T},
the non-successful cycle c2 = {(0, 0, 0)T, (1, 0, 0)T,
(0, 1, 0)T}, and both c1 and c2 are accessible one from
the other.  Hence, (c1, c2) is an alternating chain of
length ω in AN , and Theorem 0.11 ensures that the
degree of N  in the RNN hierarchy is equal to ω.

Discussion

We provided a hierarchical classification of
first-order RNN based on the capability of the networks
to punctually switch between attractors of different
types along their evolutions.  This hierarchy is proved
to be a decidable pre-well ordering of width 2 and
height of ω + 1.  A decidability procedure computing
the degree of a network in this hierarchy is finally
described.  Therefore, the hierarchical classification
that we obtained provides a new measure of complex-
ity of first-order RNN according to their attractive
properties.

Note that a comparable classification of
sigmoidal-threshhold activation function instead
of hard-threshhold neuronal model could also be
obtained.  Indeed, as already mentioned in the intro-
duction of this work, the consideration of saturated-
linear sigmoidal instead of hard-threshold activation
functions drastically increases the computational
capabilities of the respective networks from finite
state automata up to Turing capabilities (15, 17).
Therefore, a similar hierarchical classification of RNN
provided with linear sigmoidal activation functions
might be achieved by translating the Wadge classi-
fication theory from the Turing machine to the neural

network context (12).  In this case, the obtained hier-
archical classification would consist of a very refined
transfinite pre-well ordering of width 2 and height
(ω1

CK)ω, where ω1
CK is the first non-recursice ordinal

known as the Church-Kleene ordinal.  Unfortunately,
the decidability procedure of this hierarchy is still
missing and remains a hard open problem in theoret-
ical computer science.  As long as such a decidability
procedure will not be understood, the precise rela-
tionship between the obtained hierarchical classifi-
cation and the internal and attractive properties of the
networks will also necessarily remain unclear, thus
reducing the sphere of significance of the corre-
sponding classification of neural networks.

The present work can be extended in at least
three directions.  Firstly, it is envisioned to study
similar Wadge-like hierarchical classifications applied
to more biologically oriented neuronal models.  For
instance, Wadge-like classifications of RNN provided
with some simple spike-timing dependent plasticity
rule could be of interest.  Also, Wadge-like classifica-
tions of neural networks characterized by complex
activation function or dynamical governing equations
could be relevant.  However, it is worth mentioning
once again that, as soon as the computational capa-
bilities of the considered neuronal model shall reach
the expressive power of infinite words deterministic
Turing machines, the complexity measure induced by
a corresponding Wadge-like classification of these
networks becomes significantly misunderstood.

Secondly, it is expected to describe hierarchical
classifications of neural networks induced by more
biologically plausible reduction relations than the
continuous (or Wadge) reduction.  Indeed, the hierar-
chical classification described in this paper provides
a classification of networks according to the topo-
logical complexity of the underlying neural language,
but it still remains unclear how this natural mathema-
tical criteria is related to the real biological complexity
of the networks.

Thirdly, from a biological perspective, the
understanding of the complexity of neural networks
should rather be approached from the point of view of
finite words reading machines instead of infinite words
reading machines, as for instance in (8, 13-18).  Un-
fortunately, as opposed to the case of infinite words
reading machines, the classification theory of finite
words reading machines is still a widely undeveloped,
yet promising, issue.
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