
On Interactively Computable Functions

Jérémie Cabessa1,2 and Alessandro E.P. Villa2

1 Université Paris 2 – Panthéon-Assas
Laboratory of Mathematical Economics (LEMMA)

75006 Paris, France
jcabessa[at]nhrg.org

2 University of Lausanne
Department of Informations Systems

Neuroheuristic Research Group
Ch-1015 Lausanne, Switzerland
alessandro.villa[at]unil.ch

Abstract. Interactive computation refers to the computational frame-
work where systems may react or interact with each other as well as
with their environment during the computation. This paradigm was the-
orised in contrast to classical computation which has been argued to no
longer fully correspond to the current notions of computing in modern
systems. In this context, we provide a complete characterisation of the
so-called ω-translations performed by deterministic interactive systems
of any possible kind. Firstly, we show that the class of interactively com-
putable ω-translations corresponds precisely to the class of continuous
ω-translations. Secondly, we prove that the interactively computable ω-
translations coincide with the ω-translations computable by interactive
Turing machines with advices. These results extend previous character-
isations of interactively computable functions to the case of arbitrary
deterministic interactive systems. They support the interactive exten-
sion of the Church-Turing Thesis which states that any (non-uniform
interactive) computation can be described in terms of interactive Turing
machines with advice.

Keywords: interactive computation, interactive Turing machine, inter-
active Turing machine with advice, ω-translation, computational power.

1 Introduction

Interactive computation refers to the computational framework where systems
may react or interact with each other as well as with their environment during
the computation [17, 5]. This paradigm was theorised in contrast to classical
computation [9] which rather proceeds in a function-based transformation of a
given input to a corresponding output (closed-box and amnesic fashion), and has
been argued to “no longer fully correspond to the current notions of computing
in modern systems” [15]. Interactive computation also provides a particularly

2

appropriate framework for the consideration of natural and bio-inspired complex
information processing systems [11, 15, 2].

Wegner first propose a foundational approach to interactive computation [17].
He claimed that “interaction is more powerful than algorithms”, in the sense that
computations performed in an interactive way are capable of handling a wider
range of problems than those performed in a classical way, namely by standard
algorithms and Turing machines [16, 17].

In this context, Goldin et al. introduced the concept of a persistent Turing
machine (PTM) as a relevant extension of the classical Turing machine model
to the framework of interactive computation [3, 4]. A persistent Turing machine
consists of a multi-tape machines whose inputs and outputs are given as streams
of tokens generated in a dynamical and sequential manner, and whose work
tape is kept preserved during the transition from one interactive step to the
next. In this sense, a PTM computation is sequentially interactive and history
dependent. Goldin et al. further provided a transfinite hierarchical classification
of PTMs according to their expressive power, and established that PTMs are
more expressive (in a precise sense) than amnesic PTMs (an extension of classical
Turing machines in their context of interactive computation), and hence also
than classical Turing machines [3, 4].

All these consideration led Goldin and Wegner to formulate the so-called
Sequential Interaction Thesis, a generalisation of the Church-Turing Thesis in
the realm of interactive computation, claiming that “any sequential interactive
computation can be performed by a persistent Turing machine” [4, 8, 6, 7]. They
argue that this hypothesis, when combined with their result that PTMs are more
expressive than classical TMs, provides a formal proof of Wegner’s conjecture
that “interaction is more powerful than algorithms” [4, 8, 6, 7], and hence refutes
what they call the Strong Church-Turing Thesis – different from the original
Church-Turing Thesis –, stating any possible computation can be captured by
some Turing machine, or in other words, that “models of computation more
expressive than TMs are impossible” [8, 7].

Van Leeuwen and Wiedermann proposed a slightly different interactive frame-
work where a general component interacts with its environment by translating an
incoming input stream of bits into a corresponding output stream of bit in a se-
quential manner [10, 14]. In their study, they restrict themselves to deterministic
components, and provide mathematical characterisations of interactively com-
putable relations, interactively recognisable sets of inputs streams, interactively
generated sets of output streams, and interactively computable translations.

In this context, they further introduced the concepts of an interactive Turing
machines (ITM) [11] and an interactive Turing machine with advice (ITM/A)
(described in Section 4) as a relevant TM extension and non-uniform compu-
tational model in the context of interactive computation, respectively [11, 12].
The computational power of ITMs and ITM/As, as well as the computational
equivalence between ITM/As and several other models of computation has been
studied in [11, 12]. These considerations led van Leeuwen and Wiedermann to
formulate an Interactive Extension of the Church-Turing Thesis which states

3

that “any (non-uniform interactive) computation can be described in terms of
interactive Turing machines with advice” [12].

As opposed to Goldin and Wegner, van Leeuwen and Wiedermann consider
that interactivity alone is not sufficient to break the Turing barrier [11, 13]. They
write [15]:

“From the viewpoint of computability theory, interactive computing e.g.
with ITMs does not lead to super-Turing computing power. Interactive
computing merely extends our view of classically computable functions
over finite domains to computable functions (translations) defined over
infinite domains. Interactive computers simply compute something dif-
ferent from non-interactive ones because they follow a different scenario.”

In this paper, we follow a similar approach to interactive computation as
presented in [10, 14]. We also restrict ourselves to the study of deterministic in-
teractive systems, but make no further assumption about them. In particular,
we do not require for the systems to be driven by a Turing program nor to con-
tain any computable component of whatever kind. In this context, we provide a
complete characterisation of the ω-translations that can be performed by such
interactive systems. Firstly, we show that the class of interactively computable
ω-translations corresponds precisely to the class of continuous ω-translations.
Secondly, we prove that the interactively computable ω-translations coincide
with the ω-translations computable by interactive Turing machines with ad-
vices. These results extend those mentioned in [10, 14] to the class of arbitrary
deterministic interactive systems. They support the Interactive Extension of the
Church-Turing Thesis mentioned above.

2 Preliminaries

Given some finite alphabet Σ, we let Σ∗, Σ+, Σn, and Σω denote respectively
the sets of finite words, non-empty finite words, finite words of length n, and
infinite words, all of them over alphabet Σ. We also let Σ≤ω = Σ∗ ∪Σω be the
set of all possible words (finite or infinite) over Σ. The empty word is denoted
λ.

For any x ∈ Σ≤ω, the length of x is denoted by |x| and corresponds to the
number of letters contained in x. If x is non-empty, we let x(i) denote the (i+1)-
th letter of x, for any 0 ≤ i < |x|. The prefix x(0) · · ·x(i) of x is denoted by
x[0:i], for any 0 ≤ i < |x|. For any x ∈ Σ∗ and y ∈ Σ≤ω, the fact that x is a
prefix (resp. strict prefix) of y is denoted by x ⊆ y (resp. x (y). If x ⊆ y, we let
y − x = y(|x|) · · · y(|y| − 1) be the suffix of y that is not common to x (if x = y,
then y − x = λ). Moreover, the concatenation of x and y is denoted by x · y.

Given some sequence of finite words {xi : i ∈ N} such that xi ⊆ xi+1

for all i ≥ 0, one defines the limit of the xi’s, denoted by limi≥0 xi, as the
unique finite or infinite word which is ultimately approached by the sequence of
growing prefixes {xi : i ≥ 0}. Formally, if the sequence {xi : i ∈ N} is eventually
constant, i.e. there exists an index i0 ∈ N such that xj = xi0 for all j ≥ i0,

4

then limi≥0 xi = xi0 , meaning that limi≥0 xi corresponds to the smallest finite
word containing each word of {xi : i ∈ N} as a finite prefix; if the sequence
{xi : i ∈ N} is not eventually constant, then limi≥0 xi corresponds to the unique
infinite word containing each word of {xi : i ∈ N} as a finite prefix.

A function f : Σ∗ → Σ∗ is called monotone if the relation x ⊆ y implies
f(x) ⊆ f(y), for all x, y ∈ Σ∗. It is called recursive if it can be computed by
some Turing machine. Throughout this paper, any function ϕ : Σω → Σ≤ω

mapping infinite words to finite or infinite words will be referred to as an ω-
translation.

Note that any monotone function f : {0, 1}∗ → {0, 1}∗ induces “in the limit”
an ω-translation fω : {0, 1}ω → {0, 1}≤ω defined by

fω(x) = lim
i≥0

f(x[0:i])

for all x ∈ {0, 1}ω. The monotonicity of f ensures that the value fω(x) is well-
defined for all x ∈ {0, 1}ω. In words, the value fω(x) corresponds to the finite or
infinite word that is ultimately approached by the sequence of growing prefixes
{f(x[0:i]) : i ≥ 0}.

According to these definitions, in this paper, an ω-translation ψ : {0, 1}ω →
{0, 1}≤ω will be called continuous1 if there exists a monotone function f :
{0, 1}∗ → {0, 1}∗ such that fω = ψ; it will be called recursive continuous if
there exists a monotone and recursive (i.e. Turing computable) function f :
{0, 1}∗ → {0, 1}∗ such that fω = ψ.

Note that our notion of a recursive continuous ω-translation ψ : {0, 1}ω →
{0, 1}≤ω is a direct transposition to the present context of the notion of a limit-
continuous function ϕ : {0, 1}ω → {0, 1}ω defined in [10, Definition 12] and [14,
Definition 13].

3 Interactive Computation

The general interactive computational paradigm consists of a step by step ex-
change of information between a system and its environment. In order to capture
the unpredictability of next inputs at any time step, the dynamically generated
input streams need to be modelled by potentially infinite sequences of symbols
(indeed, any interactive computation over a finite input stream can a posteriori
be replayed in a non-interactive way producing the same output) [17, 6, 15].

Throughout this paper, we consider a basic interactive computational sce-
nario similar to that described for instance in [14]. At every time step, the
environment first sends a non-empty input bit to the system (full environment
activity condition), the system next updates its current state accordingly, and
then answers by either producing a corresponding output bit or remaining silent.

1 The choice of this name comes from the fact that continuous functions over the Can-
tor space C = {0, 1}ω can be precisely characterised as limits of monotone functions.
We then chose to extend this definition in the present broader context of functions
from {0, 1}ω to {0, 1}≤ω that can also be expressed as limits of monotone functions.

5

In other words, the system is not obliged to provide corresponding output bits at
every time step, but might instead stay silent for a while (to express the need of
some internal computational phase before producing a new output bit), or even
staying silent forever (to express the case that it has died). Consequently, after
infinitely many time steps, the system will have received an infinite sequence of
consecutive input bits and translated it into a corresponding finite or infinite
sequence of not necessarily consecutive output bits. Throughout this paper, we
assume that every interactive system is deterministic.

Formally, given some interactive deterministic system S, for any infinite input
stream s ∈ {0, 1}ω, we define the corresponding output stream os ∈ {0, 1}≤ω of
S as the finite or infinite subsequence of (non-λ) output bits produced by S
after having processed input s. The deterministic nature of S ensures that the
output stream os is unique. In this way, any interactive system S realises an ω-
translation ϕS : {0, 1}ω → {0, 1}≤ω defined by ϕS(s) = os, for each s ∈ {0, 1}ω.

An ω-translation ψ is then called interactively deterministically computable,
or simply interactively computable in this paper, iff there exists an interactive
deterministic system S such that ϕS = ψ. Note that in this definition, we do
absolutely not require for the system S to be driven by a Turing program nor
to contain any computable component of whatever kind. We simply require that
S is deterministic and performs ω-translations in conformity with our interac-
tive paradigm, namely in a sequential interactive manner, as precisely described
above.

4 Interactive Turing Machines and Interactive Turing
Machines with Advices

Goldin et al. introduced the concept of a persistent Turing machine (PTM)
as a relevant extension of the classical Turing machine model in the context
of interactive computation [3, 4]. Driven by similar motivations, van Leeuwen
and Wiedermann introduced a related concept of interactive Turing machines
(ITM) [11].

An interactive Turing machine (ITM) consists of an interactive abstract de-
vice driven by a standard Turing machine program. In other words, the machine
receives an infinite stream of bits as input step by step, performs read-write
operations on a semi-infinite work tape – exactly like in the case of classical Tur-
ing machines – and produces a corresponding finite or infinite stream of bits as
output, step by step. The input and output bits are processed via corresponding
input and output ports rather than tapes. Consequently, at every time step, the
machine cannot operate anymore on the output bits that have already been pro-
cessed.2 According to our interactive scenario, it is assumed that at every time
step, the environment sends a non-silent input bit to the machine, and the ma-
chine answers by either producing some corresponding output bit or remaining
silent.
2 In fact, allowing the machine to erase or modify its previous output bits would lead

to the consideration of much more complicated ω-translations.

6

Van Leeuwen and Wiedermann also introduced the concept of interactive
Turing machine with advice (ITM/A) as a relevant non-uniform computational
model in the context of interactive computation [11, 12]. An interactive Turing
machine with advice (ITM/A) consists of an interactive Turing machine provided
with an advice mechanism, which takes the form of an advice function α : N→
{0, 1}∗. The machine uses two auxiliary special tapes, an advice input tape
and an advice output tape, as well as a designated advice state. During its
computation, the machine can write the binary representation of an integer m
on its advice input tape, one bit at a time. Yet at time step n, the number m
is not allowed to exceed n. Then, at any chosen time, the machine can enter
its designated advice state, and then have the string α(m) be written on the
advice output tape in one time step, replacing the previous content of the tape.
The machine can repeat this process as often as necessary during its infinite
computation.

Interactive Turing machines with advice are strictly more powerful than
their classical counterpart (i.e., interactive Turing machines without advice) [12,
Proposition 5] and [11, Lemma 1], and they were shown to be computationally
equivalent to several other non-uniform models of interactive computation, like
sequences of interactive finite automata, site machines, web Turing machines [11],
and more recently to interactive analog neural networks and interactive evolving
neural networks [1, 2]. These considerations led van Leeuwen and Wiedermann
to propose the following extension of the Church-Turing Thesis in the context of
interactive computation [12]: “Any (non-uniform interactive) computation can
be described in terms of interactive Turing machines with advice.”

According to these considerations, an ω-translation ψ is said to be ITM-
computable iff there exists some deterministic ITM M such that ϕM = ψ. It
is called ITM/A-computable iff there exists some deterministic ITM/A M such
that ϕM = ψ.

The following result provide a complete mathematical characterisation of the
ω-translations performed by ITMs and ITM/As. The first point of this result
is a translation in the present computational context of [10, theorems 4 and 5]
and [14, theorems 7 and 8]. The following result in its current form is proven in
detail in [1, theorems 3 and 4].

Theorem 1. 1. An ω-translation ψ is ITM-computable iff it is recursive con-
tinuous.

2. An ω-translation ψ is ITM/A-computable iff it is continuous.

Proof (sketch). 1: Let ψ be ITM-computable. Then, there exists an ITM M
such that ϕM = ψ. Consider the function f : {0, 1}∗ → {0, 1}∗ which maps
every finite word u to the unique corresponding finite word produced byM after
exactly |u| steps of computation over input stream u provided bit by bit. We
can show that f is recursive. Moreover, by an exact transposition of the proof of
Theorem 2 below, we can prove that f is monotone and satisfies fω = ϕM = ψ.
This means precisely that ψ is recursive continuous.

Conversely, let ψ be recursive continuous. Then there exists a monotone
recursive function f such that fω = ψ. Now, consider the ITMM which proceeds

7

as follows: on every new input bit bt+1 received at time step t+ 1,M computes
the value f(b0 · · · bt+1), looks if this word extends f(b0 · · · bt), and if this is the
case, output the extension f(b0 · · · bt+1) − f(b0 · · · bt) bit by bit. We can show
that ϕM = fω = ψ, meaning that ψ is ITM-computable.

2: If ψ is ITM/A-computable, then it is interactively computable, and by
Theorem 2 below, it is continuous.

Conversely, suppose that ψ is continuous, then there exists a monotone func-
tion f such that fω = ψ. Now, consider the ITM/A M which contains some
encoding of f is its advice function, and which proceeds as follows: on every new
input bit bt+1 received at time step t + 1, M calls its advice to determine the
value f(b0 · · · bt+1), looks if this word extends f(b0 · · · bt), and if this is the case,
output the extension f(b0 · · · bt+1) − f(b0 · · · bt) bit by bit. We can show that
ϕM = fω = ψ, meaning that ψ is ITM/A-computable. ut

5 Interactively computable ω-translations

The sequential interactive nature of our computational paradigm provides strong
restrictions on the ω-translations that can be performed by deterministic systems
working in this interactive framework. The following result provides a complete
mathematical characterisation of these interactively computable ω-translations.
It is a generalisation of [10, Theorem 5] and [14, Theorem 8] to the case of
arbitrary interactive deterministic systems, rather than those driven by a Turing
program.

Theorem 2. An ω-translation ψ is interactively computable iff it is continuous.

Proof. Let ψ be an interactively computable ω-translation. Then by definition,
there exists a deterministic interactive system S such that ϕS = ψ. Now, consider
the function f : {0, 1}∗ → {0, 1}∗ which maps every finite word u to the unique
corresponding finite word produced by S after exactly |u| steps of computation
over input stream u provided bit by bit. Note that the deterministic nature of
S ensures that the finite word f(u) is indeed unique, and thus that the function
f is well-defined.

We show that f is monotone. Suppose that u ⊆ v. It follow that v = u·(v−u).
Hence, according to our interactive paradigm, the output strings produced by
S after |v| time steps of computation over input stream v, namely f(v), simply
consists of the output strings produced after |u| time steps of computation over
input u, namely f(u), followed by the output strings produced after |v−u| time
steps of computation over input v−u. Consequently, f(u) ⊆ f(v), and therefore
f is monotone.

We now prove that the ω-translation ϕS performed by the interactive system
S corresponds to the the “limit” (in the sense of Section 2) of the monotone
function f , i.e. we show that ϕS = fω. Towards this purpose, given some infinite
input stream s ∈ {0, 1}ω, we consider in turn the two possible cases where either
ϕS(s) ∈ {0, 1}ω or ϕS(s) ∈ {0, 1}∗.

8

Firstly, suppose that ϕS(s) ∈ {0, 1}ω. According to our interactive scenario,
f(s[0:i]) is a prefix of ϕS(s), for all i ≥ 0 (indeed, once again, what has been
produced by S on s after infinitely many time steps, namely ϕS(s), consists of
what has been produced by S on s[0:i] after i+ 1 time steps, namely f(s[0:i]) ,
followed by what has been produced by S on s−s[0:i] after infinitely many time
steps). Moreover, since ϕS(s) ∈ {0, 1}ω, it means that the sequence of partial
output strings produced by S on input s after i time steps of computation cannot
be eventually constant, i.e. limi→∞ |f(s[0:i])| = ∞. Hence, the two properties
f(s[0:i]) ⊆ ϕS(s) ∈ {0, 1}ω for all i ≥ 0 and limi→∞ |f(s[0:i])| =∞ ensure that
ϕS(s) is the unique infinite word containing each word of {f(s[0:i]) : i ≥ 0} as a
finite prefix, which is to say by definition that ϕS(s) = limi≥0 f(s[0:i]) = fω(s).

Secondly, suppose that ϕS(s) ∈ {0, 1}∗. By the very same argument as in
the previous case, f(s[0:i]) is a prefix of ϕS(s), for all i ≥ 0. Moreover, since
ϕS(s) ∈ {0, 1}∗, the sequence of partial output strings produced by S on in-
put s after i time steps of computation must become stationary from some
time step j onwards, i.e. limi→∞ |f(s[0:i])| < ∞. Hence, the entire finite out-
put stream ϕS(s) must necessarily have been produced after a finite amount
of time, and thus ϕS(s) ∈ {f(s[0:i]) : i ≥ 0}. Consequently, the three prop-
erties f(s[0:i]) ⊆ ϕS(s) ∈ {0, 1}∗ for all i ≥ 0, limi→∞ |f(s[0:i])| < ∞, and
ϕS(s) ∈ {f(s[0:i]) : i ≥ 0} ensure that ϕS(s) is the smallest finite word that
contains each word of {f(s[0:i]) : i ≥ 0} as a finite prefix, which is to say by
definition that ϕS(s) = limi≥0 f(s[0:i]) = fω(s). Consequently, ϕS(s) = fω(s)
for any s ∈ {0, 1}ω, meaning that ϕS = fω.

We proved in turn that f is a recursive and monotone function satisfying
ϕS = fω. This means by definition that ϕS is continuous. Since ϕS = ψ, it
follows that ψ is also continuous.

Conversely, let ψ be a continuous ω-translation. By Theorem 1 point 2 below,
ψ is ITM/A-computable, and thus is interactively computable. ut

The following theorem further shows that any possible ω-translation per-
formed by some deterministic interactive system (according to the interactive
paradigm described above) can actually be described in terms of interactive
Turing machines with advice. This result supports the Church-Turing Thesis
of Interactive Computation which states that “any (non-uniform interactive)
computation can be described in terms of interactive Turing machines with ad-
vice” [12].

Theorem 3. An ω-translation ψ is interactively computable iff it is ITM/A-
computable.

Proof. A direct consequence of Theorem 1 point 2 and Theorem 2. ut

Finally, by putting together theorems 1 and 3, we obtain the following math-
ematical and machine-based characterisations of interactively computable ω-
translations.

Theorem 4. Let ψ be some ω-translation. The following conditions are equiv-
alent:

9

1. ψ is interactively computable;
2. ψ is continuous;
3. ψ is ITM/A-computable

6 Conclusion

In this paper, we provide a mathematical as well as a machine-based charac-
terisation of the ω-translations performed by arbitrary deterministic interactive
systems (theorems 2 and 3, summarised in Theorem 4).

Theorem 2 shows that the class of interactively computable ω-translations
coincides with that of continuous ω-translations. It provides a generalisation
of the results [10, Theorem 5] and [14, Theorem 8] to the case of arbitrary
deterministic interactive systems, rather than those driven by a Turing program,
or more precisely, as said in [14], those whose “behaviour can be effectively
simulated, in the context of a simulation of any behaviour of their environment”.

Note that [10, 14] also provides mathematical characterisations of interac-
tively recognisable sets of inputs streams [14, Theorem 5 and Corollary 2] as
well as interactively generated sets of output streams [14, Theorem 6], still in
the context of deterministic interactive systems driven by a Turing program. For
future work, we expect to study the generalisation of these results to our case of
arbitrary deterministic interactive systems.

Theorem 3 shows that any computable ω-translation can be performed by
some ITM/A. This results supports the Church-Turing Thesis of Interactive
Computation which states that “any (non-uniform interactive) computation can
be described in terms of interactive Turing machines with advice” [12].

Theorem 3 can be understood as follows: similarly to the classical context,
where every possible function from integers to integers can be computed by
some Turing machine with oracle [9], in the interactive context, every possible ω-
translation performed in an interactive way can be computed by some interactive
Turing machine with advice. Alternatively put, in the interactive context, the
model of an interactive machine with advice exhausts the class of all possible ω-
translations performed in an interactive way, exactly like in the classical context,
the model of a Turing machine with oracle exhausts the class of all possible
functions from integers to integers.

For future work, we expect to extend the present study to the case of non-
deterministic interactive systems of any kind. In this context, the relation be-
tween an input stream and its corresponding output stream is no more func-
tional, but relational, since a given input stream might be translated into dif-
ferent output streams. It would be of interest to provide a complete mathemat-
ical and machine-based characterisation of the so-called ω-relations (subsets of
{0, 1}≤ω × {0, 1}ω) computed by non-deterministic interactive systems of any
possible kind. We conjecture that the class of interactively ω-relations corre-
sponds precisely to those performed by non-deterministic ITM/As.

Conjecture 1. An ω-relation is interactively computable iff it is non-determinis-
tically ITM/A-computable.

10

Finally, we believe that interactive computation provides a suitable frame-
work to describe many current notions of computation. We also think that the
super-Turing model of a ITM/A introduced by van Leeuwen and Wiedermann
captures in a particularly relevant way the behaviour of several moderns, natu-
ral, and bio-inspired computing systems. The present paper aims to make a step
forward in the theoretical approach to interactive computation.

References

1. Jérémie Cabessa and Hava T. Siegelmann. The computational power of interactive
recurrent neural networks. Neural Computation, 24(4):996–1019, 2012.

2. Jérémie Cabessa and Alessandro E. P. Villa. The super-turing computational
power of interactive evolving recurrent neural networks. Lecture Notes in Computer
Science, volume 8131, pp. 58–65. Springer-Verlag, 2013.

3. Dina Goldin. Persistent turing machines as a model of interactive computation.
Lecture Notes in Computer Science, volume 1762, pp. 116–135. Springer-Verlag,
2000.

4. Dina Goldin, Scott A. Smolka, Paul C. Attie, and Elaine L. Sonderegger. Turing
machines, transition systems, and interaction. Inf. Comput., 194:101–128, 2004.

5. Dina Goldin, Scott A. Smolka, and Peter Wegner. Interactive Computation: The
New Paradigm. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

6. Dina Goldin and Peter Wegner. Principles of interactive computation. In , In-
teractive Computation, Dina Goldin, Scott A. Smolka, and Peter Wegner, Eds.,
pp. 25–37. Springer-Verlag, 2006.

7. Dina Goldin and Peter Wegner. The interactive nature of computing: Refuting the
strong church–turing thesis. Minds Mach., 18:17–38, 2008.

8. Dina Q. Goldin and Peter Wegner. The church-turing thesis: Breaking the myth.
Lecture Notes in Computer Science, volume 3526, pp. 152–168. Springer-Verlag,
2005.

9. Alan M. Turing. On computable numbers, with an application to the Entschei-
dungsproblem. Proc. London Math. Soc., 2(42):230–265, 1936.

10. Jan van Leeuwen and Jǐr̀ı Wiedermann. On algorithms and interaction. Lecture
Notes in Computer Science, volume 1893, pp. 99–113. Springer-Verlag, 2000.

11. Jan van Leeuwen and Jǐr̀ı Wiedermann. Beyond the Turing limit: Evolving in-
teractive systems. Lecture Notes in Computer Science, volume 2234, pp. 90–109.
Springer-Verlag, 2001.

12. Jan van Leeuwen and Jǐr̀ı Wiedermann. The Turing machine paradigm in contem-
porary computing. In Mathematics Unlimited - 2001 and Beyond, Björn Engquist
and Wilfried Schmid, Eds., pp. 1139–1155. Springer-Verlag, 2001.

13. Jan van Leeuwen and Jǐr̀ı Wiedermann. The emergent computational potential of
evolving artificial living systems. AI Commun., 15:205–215, 2002.

14. Jan van Leeuwen and Jǐr̀ı Wiedermann. A theory of interactive computation. In
Interactive Computation, Dina Goldin, Scott A. Smolka, and Peter Wegner, Eds.,
pp. 119–142. Springer-Verlag, 2006.

15. Jan van Leeuwen and Jǐr̀ı Wiedermann. How we think of computing today. Lecture
Notes in Computer Science, volume 5028, pp. 579–593. Springer-Verlag, 2008.

16. Peter Wegner. Why interaction is more powerful than algorithms. Commun. ACM,
40:80–91, 1997.

17. Peter Wegner. Interactive foundations of computing. Theor. Comput. Sci.,
192:315–351, 1998.

