
Interactive Evolving Recurrent Neural Networks

Are Super-Turing Universal

Jérémie Cabessa1,2 and Alessandro E.P. Villa2

1 Laboratory of Mathematical Economics (LEMMA),
University of Paris 2 – Panthéon-Assas,

4 Rue Blaise Desgoffe,
75006 Paris, France

2 Neuroheuristic Research Group,
Department of Information Systems,

University of Lausanne,
1015 Lausanne, Switzerland

Abstract. Understanding the dynamical and computational capabili-
ties of neural models represents an issue of central importance. In this
context, recent results show that interactive evolving recurrent neural
networks are super-Turing, irrespective of whether their synaptic weights
are rational or real. We extend these results by showing that interactive
evolving recurrent neural networks are not only super-Turing, but also
capable of simulating any other possible interactive deterministic system.
In this sense, interactive evolving recurrent neural networks represents
a super-Turing universal model of computation, irrespective of whether
their synaptic weights are rational or real.

Keywords: evolving recurrent neural networks, neural computation, in-
teractive computation, analog computation, Turing machines with ad-
vice, super-Turing.

1 Introduction

Understanding the dynamical and computational capabilities of neural models
represents an issue of central importance. In this context, much interest has been
focused on comparing the computational capabilities of diverse theoretical neural
models to those of abstract computing devices, see [9,17,8,11,10,13,14,12,2] as
well as [15]. As a consequence, the computational power of neural networks has
been shown to be intimately related to the nature of their synaptic weights
and activation functions, and capable to range from finite state automata up to
super-Turing capabilities.

In this global line of thinking, the computational capabilities of neural models
have generally been characterised with respect to the classical computational
framework introduced by Turing [16]. But this approach is inherently restrictive,
and has nowadays been argued to “no longer fully corresponds to the current
notion of computing in modern systems” [21], especially when it refers to bio-
inspired complex information processing systems [18,21]. Indeed, in the brain (or

S. Wermter et al. (Eds.): ICANN 2014, LNCS 8681, pp. 57–64, 2014.
c© Springer International Publishing Switzerland 2014

58 J. Cabessa and A.E.P. Villa

in organic life in general), information is rather processed in an interactive way,
where previous experience must affect the perception of future inputs, and where
older memories may themselves change with response to new inputs. Accordingly,
the computational power of recurrent neural networks should rather be conceived
from the perspective of interactive computation [22,7,20].

In this context, the capabilities of neural networks involved in an interactive
computational paradigm have recently been studied [3,1,4,5]. It was proven that
interactive static rational- and real-weighted recurrent neural networks are Tur-
ing equivalent and super-Turing, respectively [3,4], and that interactive evolving
recurrent neural networks are super-Turing, irrespective of whether their synap-
tic weights are rational or real [1,5].

The present paper extends these results by showing that interactive evolving
recurrent neural networks are not only super-Turing, but also capable of simulat-
ing any other possible interactive deterministic system. In this sense, interactive
evolving recurrent neural networks represents a universal super-Turing model
of computation, irrespective of whether their synaptic weights are modelled by
rational or real numbers.

2 Preliminaries

Given some finite alphabet Σ, we let Σ∗, Σ+, Σn, and Σω denote respectively
the sets of finite words, non-empty finite words, finite words of length n, and
infinite words, all of them over alphabet Σ. Let also Σ≤ω = Σ∗ ∪Σω be the set
of all possible words (finite or infinite) over Σ. The empty word is denoted λ.

For any x ∈ Σ≤ω, the length of x is denoted by |x| and corresponds to the
number of letters contained in x. If x is non-empty, we let x(i) denote the (i+1)-
th letter of x, for any 0 ≤ i < |x|. The prefix x(0) · · ·x(i) of x is denoted by
x[0:i], for any 0 ≤ i < |x|. For any x ∈ Σ∗ and y ∈ Σ≤ω, the fact that x is a
prefix (resp. strict prefix) of y is denoted by x ⊆ y (resp. x � y). If x ⊆ y, we let
y − x = y(|x|) · · · y(|y| − 1) be the suffix of y that is not common to x (if x = y,
then y − x = λ). Moreover, the concatenation of x and y is denoted by x · y or
sometimes simply by xy. The word xn consists of n copies of x concatenated
together, with the convention that x0 = λ.

Given some sequence of finite words {xi : i ∈ N} such that xi ⊆ xi+1 for
all i ≥ 0, one defines the limit of the xi’s, denoted by limi≥0 xi, as the unique
finite or infinite word which is ultimately approached by the sequence of growing
prefixes {xi : i ≥ 0}. Formally, if the sequence {xi : i ∈ N} is eventually
constant, i.e. there exists an index i0 ∈ N such that xj = xi0 for all j ≥ i0,
then limi≥0 xi = xi0 , meaning that limi≥0 xi corresponds to the smallest finite
word containing each word of {xi : i ∈ N} as a finite prefix; if the sequence
{xi : i ∈ N} is not eventually constant, then limi≥0 xi corresponds to the unique
infinite word containing each word of {xi : i ∈ N} as a finite prefix.

Besides, a function f : Σ∗ → Σ∗ is called monotone if the relation x ⊆ y
implies f(x) ⊆ f(y), for all x, y ∈ Σ∗. Any function ϕ : Σω → Σ≤ω mapping
infinite words to finite or infinite words will be referred to as an ω-translation.

Interactive Evolving RNNs Are Super-Turing Universal 59

Note that any monotone function f : {0, 1}∗ → {0, 1}∗ induces “in the limit” an
ω-translation fω : {0, 1}ω → {0, 1}≤ω defined by fω(x) = limi≥0 f(x[0:i]) for all
x ∈ {0, 1}ω. The monotonicity of f ensures that the value fω(x) is well-defined for
all x ∈ {0, 1}ω. In words, the value fω(x) corresponds to the finite or infinite word
ultimately approached by the sequence of growing prefixes {f(x[0:i]) : i ≥ 0}.
Finally, an ω-translation ψ : {0, 1}ω → {0, 1}≤ω will be called continuous if there
exists a monotone function f : {0, 1}∗ → {0, 1}∗ such that fω = ψ.

3 Interactive Computation

The general interactive computational paradigm consists of a step by step ex-
change of information between a system and its environment. In order to capture
the unpredictability of next inputs at any time step, the dynamically generated
input streams need to be modelled by potentially infinite sequences of symbols
(the case of finite sequences of symbols would necessarily reduce to the classical
computational framework) [22,7,21].

Throughout this paper, we consider a basic interactive computational scenario
where, at every time step, the environment sends a non-empty input bit to
the system (full environment activity condition), the system next updates its
current state accordingly, and then either produces a corresponding output bit,
or remains silent for a while to express the need of some internal computational
phase before outputting a new bit, or remains silent forever to express the fact
that it has died [20]. Consequently, after infinitely many time steps, the system
will have received an infinite sequence of consecutive input bits s and translated
it into a corresponding finite or infinite sequence of not necessarily consecutive
(non-λ) output bits os. Note that when the system is deterministic, the output
stream os associated to the input stream s is necessarily unique.

Accordingly, any interactive deterministic system S realises an ω-translation
ϕS : {0, 1}ω → {0, 1}≤ω defined by ϕS(s) = os, for every s ∈ {0, 1}ω. An ω-
translation ψ is then called interactively computable iff there exists an interactive
deterministic system S such that ϕS = ψ. Note that in this definition, we do
absolutely not require for the system S to be driven by a Turing program nor to
contain any computable component of whatever kind. We simply require that S
is deterministic and performs ω-translations in conformity with our interactive
paradigm described above.

Van Leeuwen and Widermann introduced the concepts of an interactive Tur-
ing machine (I-TM) and an interactive Turing machine with advice (I-TM/A)
as relevant extensions of their classical counterparts to the context of interactive
computation. Interactive Turing machines with advice were shown to be strictly
more powerful than interactive Turing machines (without advice) [18,19], and
computationally equivalent to several other non-uniform models of interactive
computation, like sequences of interactive finite automata, site machines, web
Turing machines [18], and more recently to interactive analog neural networks
and interactive evolving neural networks [3,5].

60 J. Cabessa and A.E.P. Villa

4 Interactive Evolving Recurrent Neural Networks

An evolving recurrent neural network (Ev-RNN) consists of a synchronous net-
work of neurons (or processors) related together in a general architecture. The
network contains N internal neurons (xi)

N
i=1, M parallel input cells (ui)

M
i=1, and

P designated output neurons among the N . The dynamics of the network is
computed as follows: given the activation values of the internal and input neu-
rons (xj)

N
j=1 and (uj)

M
j=1 at time t, the activation value of each neuron xi at

time t+ 1 is updated by the following equation

xi(t+ 1) = σ

⎛
⎝

N∑
j=1

aij(t) · xj(t) +
M∑
j=1

bij(t) · uj(t) + ci(t)

⎞
⎠ (1)

for i = 1, . . . , N , where all aij(t), bij(t), and ci(t) are time dependent values
describing the evolving weighted synaptic connections and weighted bias of the
network, and σ is the classical saturated-linear activation function defined by
σ(x) = 0 if x < 0, σ(x) = x if 0 ≤ x ≤ 1, and σ(x) = 1 if x > 1.

An interactive evolving recurrent neural network (I-Ev-RNN) N consists of
an Ev-RNN provided with a single binary input cell u as well as two binary
output cells: a data cell yd and a validation cell yv. Any infinite input stream s =
s(0)s(1)s(2) · · · ∈ {0, 1}ω transmitted to the input cell u induces via Equation (1)
a corresponding pair of infinite streams (yd(0)yd(1)yd(2) · · · , yv(0)yv(1)yv(2) · · ·)
∈ {0, 1}ω×{0, 1}ω. The output stream of N according to input s is then given by
the finite or infinite subsequence os of successive data bits that occur simulta-
neously with positive validation bits, namely os = 〈yd(i) : i ∈ N and yv(i) =
1〉 ∈ {0, 1}≤ω. Hence, any I-Ev-RNN N naturally induces an ω-translation
ϕN : {0, 1}ω → {0, 1}≤ω defined by ϕN (s) = os, for each s ∈ {0, 1}ω. An
ω-translation ψ : {0, 1}ω → {0, 1}≤ω is said to be realisable by some I-Ev-RNN
iff there exists some I-Ev-RNN N such that ϕN = ψ.

Throughout this paper, two models of interactive evolving recurrent neural
networks are considered according to whether their underlying synaptic weights
are confined to the class of rational or real numbers. Rational- and real-weighted
interactive evolving recurrent neural network will be dented by I-Ev-RNN[Q]
and I-Ev-RNN[R], respectively. Note that since rational numbers are included in
real numbers, every I-Ev-RNN[Q] is also a particular I-Ev-RNN[R] by definition.

5 The Super-Turing Universal Computational Power
of Interactive Evolving Recurrent Neural Networks

In a previous paper [5], we proved that interactive evolving recurrent neural
networks were computationally equivalent to interactive Turing machines with
advice, hence capable of a super-Turing computational power. Here, we extend
this result by showing that interactive evolving recurrent neural networks are
super-Turing universal, in the sense of being capable to realise any possible
interactively computable ω-translation. Formally, for any possible interactively

Interactive Evolving RNNs Are Super-Turing Universal 61

computable ω-translation ψ, there exists some I-Ev-RNN N such that ϕN = ψ.
Equivalently, for any interactive deterministic system S, there exists some I-Ev-
RNN N such that ϕN = ϕS . In words, any interactive deterministic system can
be simulated by some interactive evolving recurrent neural networks.

Theorem 1. Interactive evolving recurrent neural networks are super-Turing
universal, irrespective of whether their synaptic weights are rational or real.

Proof. We prove the result in two steps. Firstly, we show that any interactively
computable ω-translation is continuous. Secondly, we prove that any continuous
ω-translation is realisable by some I-Ev-RNN[Q]. Consequently, for any inter-
actively computable ω-translation ψ, there exists some I-Ev-RNN[Q] N such
that ϕN = ψ, meaning that I-Ev-RNN[Q]s are super-Turing universal. Finally,
if I-Ev-RNN[Q]s are super-Turing universal, then so are I-Ev-RNN[R]s, since
I-Ev-RNN[R]s are more powerful than I-Ev-RNN[Q]s. We now give the proofs
of steps 1 and 2.

Step 1: Let ψ be some interactively computable ω-translation. Then by def-
inition, there exists an interactive deterministic system S such that ϕS = ψ.
Now, consider the function f : {0, 1}∗ → {0, 1}∗ which maps every finite word u
to the unique corresponding finite word produced by S after exactly |u| steps of
computation over input stream u provided bit by bit. The deterministic nature
of S ensures that the finite word f(u) is unique, and thus that f is well-defined.

We show that f is monotone. Suppose that u ⊆ v. It follow that v = u ·(v−u).
Hence, according to our interactive paradigm, the output strings produced by
S after |v| time steps of computation over input stream v, namely f(v), simply
consists of the output string produced after |u| time steps of computation over
input u, namely f(u), followed by the output string produced after |v − u| time
steps of computation over input v − u. Consequently, f(u) ⊆ f(v).

We now prove that the ω-translation ϕS performed by S satisfies ϕS = fω.
Towards this purpose, given some infinite input stream s ∈ {0, 1}ω, we consider
in turn the two possible cases where either ϕS(s) ∈ {0, 1}ω or ϕS(s) ∈ {0, 1}∗.

Firstly, suppose that ϕS(s) ∈ {0, 1}ω. According to our interactive scenario,
f(s[0:i]) is a prefix of ϕS(s), for all i ≥ 0. Moreover, since ϕS(s) ∈ {0, 1}ω,
the sequence of partial output strings produced by S on input s after i time
steps of computation cannot be eventually constant, i.e. limi→∞ |f(s[0:i])| =
∞. Hence, the two properties f(s[0:i]) ⊆ ϕS(s) ∈ {0, 1}ω for all i ≥ 0 and
limi→∞ |f(s[0:i])| =∞ ensure that ϕS(s) is the unique infinite word containing
each word of {f(s[0:i]) : i ≥ 0} as a finite prefix, which is to say by definition
that ϕS(s) = limi≥0 f(s[0:i]) = fω(s).

Secondly, suppose that ϕS(s) ∈ {0, 1}∗. Once again, one has that f(s[0:i]) is
a prefix of ϕS(s), for all i ≥ 0. Moreover, since ϕS(s) ∈ {0, 1}∗, the sequence of
partial output strings produced by S on input s after i time steps of computation
must become stationary from some time step j onwards, i.e. limi→∞ |f(s[0:i])| <
∞. Hence, the entire finite output stream ϕS(s) must necessarily have been
produced after a finite amount of time, and thus ϕS(s) ∈ {f(s[0:i]) : i ≥ 0}.
Consequently, the three properties f(s[0:i]) ⊆ ϕS(s) ∈ {0, 1}∗ for all i ≥ 0,
limi→∞ |f(s[0:i])| < ∞, and ϕS(s) ∈ {f(s[0:i]) : i ≥ 0} ensure that ϕS(s) is

62 J. Cabessa and A.E.P. Villa

the smallest finite word that contains each word of {f(s[0:i]) : i ≥ 0} as a
finite prefix, which is to say by definition that ϕS(s) = limi≥0 f(s[0:i]) = fω(s).
Consequently, ϕS(s) = fω(s) for any s ∈ {0, 1}ω, meaning that ϕS = fω.

We proved that f is a monotone function such that ϕS = fω. Hence, ϕS is
continuous. Since ϕS = ψ, it follows that ψ is also continuous.

Step 2: Let ψ be a continuous ω-translation. Then there exists some monotone
function f : {0, 1}∗ → {0, 1}∗ such that fω = ψ. We begin by encoding all
possible values of f into successive distinct rational numbers. For any n > 0,
let wn,1, . . . , wn,2n be the lexicographical enumeration of {0, 1}n, and let wn ∈
{0, 1, 2}∗ be the finite word given by wn = 2 · f(wn,1) · 2 · f(wn,2) · 2 · · · 2 ·
f(wn,2n) · 2. Then, consider the rational encoding qn of the word wn given by

qn =
∑|wn|

i=1
2·wn(i)+1

6i . Note that for all n > 0, one has qn ∈]0, 1[and qn �= qn+1,
since wn �= wn+1. Moreover, it can be shown that wn can be decoded from
qn by some Turing machine, or equivalently, by some rational recurrent neural
network [13,14].

Now, consider Procedure 1 below. Note that its only non-recursive instruc-
tion is “wait for next value qi+1 to come”. We show that there exists some
I-Ev-RNN[Q] N that performs Procedure 1. The network N consists of one
evolving and one non-evolving rational sub-network connected together. The
evolving rational-weighted part of N is made up of a single processor xe re-
ceiving a background activity of evolving intensity ce(t). The synaptic weight
ce(t) takes the successive values q1, q2, q3, . . ., by switching from value qk to qk+1

after every Nk time steps, for some large enough Nk > 0 to be described. The
non-evolving rational-weighted part of N is designed in order to perform the
successive recursive steps of Procedure 1 every time neuron xe receives some
new activation value qk [14]. For each k > 0, the time interval Nk is chosen large
enough in order for N to be able to perform all such successive steps before
the apparition of the next value qk+1. Moreover, the network N outputs the
current pair (v − u, 1|v−u|) bit by bit every time it reaches up the instructions
“ps ← ps · (v − u)” and “qs ← qs · 1|v−u|”, and it keeps outputting pairs of bits
(0, 0)s meanwhile.

Procedure 1.
Infinite input stream s = s(0)s(1)s(2) · · · ∈ {0, 1}ω provided bit by bit
i← 0; u← λ; v ← λ; ps ← λ; qs ← λ;
loop

Wait for next value qi+1 to come; Decode f(s[0:i]) from qi+1; v ← f(s[0:i]);
if u � v then

ps ← ps · (v − u); qs ← qs · 1|v−u|;
else

ps ← ps · 0; qs ← qs · 0;
end if
i← i+ 1; u← v;

end loop

Interactive Evolving RNNs Are Super-Turing Universal 63

It remains to prove that ϕN = ψ. Note that, for any input stream s ∈ {0, 1}ω,
the finite word that has been output by N at the end of each instruction “output
v−u bit by bit” corresponds precisely to the finite word f(s[0:i]) currently stored
in the variable v. Hence, after infinitely many time steps, the finite or infinite
word ϕN (s) output by N contains all words of {f(x[0:i]) : i ≥ 0} as a finite
prefix. Moreover, if ϕN (s) is finite, its value necessarily corresponds to some
current content of the variable v, i.e to some finite word f(s[0:j]), for some
j ≥ 0. Hence, irrespective of whether ϕN (s) is finite or infinite, one always has
ϕN (s) = limi≥0 f(x[0:i]) = fω(s), for any s ∈ {0, 1}ω. Therefore, ϕN = fω = ψ,
meaning that ψ is realised by N . �

By putting together previous Theorem 1 and Theorem 1 of [5], one obtains
the following complete characterisation of the computational power of interactive
evolving recurrent neural networks.

Theorem 2. Let ψ : {0, 1}ω → {0, 1}≤ω be an ω-translation. The following
conditions are equivalent:

1. ψ is interactively computable;
2. ψ is realisable by some I-Ev-RNN[Q];
3. ψ is realisable by some I-Ev-RNN[R];
4. ψ is realisable by some I-TM/A;
5. ψ is continuous.

Proof. The equivalences between 2, 3, 4, and 5 are proven in [5]. The implication
1⇒ 2 is stated in Theorem 1, and the implication 2⇒ 1 holds by definition. �

6 Discussion

Interactive evolving neural networks (I-Ev-RNNs) are computationally equiv-
alent to interactive machines with advice (I-TM/As), hence capable of super-
Turing potentialities, irrespective of whether their synaptic weights are rational
or real [5]. They are also capable of simulating any other possible interactive de-
terministic system. In this sense, I-Ev-RNNs and I-TM/As represent two equiv-
alent super-Turing universal models of computation.

These results can be understood as follows: similarly to the classical context,
where every possible partial function from integers to integers can be computed
by some Turing machine with oracle [16], in the interactive context, every possi-
ble ω-translation performed in an interactive way can be computed by some
interactive Turing machine with advice, or equivalently, by some interactive
evolving recurrent neural network. These results support the extension of the
Church-Turing Thesis to the context of interactive computation stated by van
Leeuwen andWiedermann [19]: “Any (non-uniform interactive) computation can
be described in terms of interactive Turing machines with advice.”

The question of the possible achievement of such super-Turing capabilities
by real biological neural networks remains beyond the scope of this paper. We
refer to Copeland’s extensive work for deeper philosophical considerations about
hypercomputation in general [6].

64 J. Cabessa and A.E.P. Villa

References

1. Cabessa, J.: Interactive evolving recurrent neural networks are super-Turing. In:
ICAART 2012, pp. 328–333. SciTePress (2012)

2. Cabessa, J., Siegelmann, H.T.: Evolving recurrent neural networks are super-
turing. In: IJCNN 2011, pp. 3200–3206. IEEE (2011)

3. Cabessa, J., Siegelmann, H.T.: The computational power of interactive recurrent
neural networks. Neural Computation 24(4), 996–1019 (2012)

4. Cabessa, J., Villa, A.E.P.: The expressive power of analog recurrent neural networks
on infinite input streams. Theor. Comput. Sci. 436, 23–34 (2012)

5. Cabessa, J., Villa, A.E.P.: The super-turing computational power of interactive
evolving recurrent neural networks. In: Mladenov, V., Koprinkova-Hristova, P.,
Palm, G., Villa, A.E.P., Appollini, B., Kasabov, N. (eds.) ICANN 2013. LNCS,
vol. 8131, pp. 58–65. Springer, Heidelberg (2013)

6. Copeland, B.J.: Hypercomputation. Minds Mach. 12(4), 461–502 (2002)
7. Goldin, D., Wegner, P.: Principles of interactive computation. In: Goldin, D.,

Smolka, S.A., Wegner, P. (eds.) Interactive Computation, pp. 25–37. Springer
(2006)

8. Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Shan-
non, C., McCarthy, J. (eds.) Automata Studies, pp. 3–41. Princeton University
Press (1956)

9. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous
activity. Bulletin of Mathematical Biophysic 5, 115–133 (1943)

10. Minsky, M.L.: Computation: finite and infinite machines. Prentice-Hall, Inc. (1967)
11. von Neumann, J.: The computer and the brain. Yale University Press (1958)
12. Siegelmann, H.T.: Neural networks and analog computation: beyond the Turing

limit. Birkhauser Boston Inc. (1999)
13. Siegelmann, H.T., Sontag, E.D.: Analog computation via neural networks. Theor.

Comput. Sci. 131(2), 331–360 (1994)
14. Siegelmann, H.T., Sontag, E.D.: On the computational power of neural nets. J.

Comput. Syst. Sci. 50(1), 132–150 (1995)
15. Śıma, J., Orponen, P.: General-purpose computation with neural networks: A sur-

vey of complexity theoretic results. Neural Comput. 15(12), 2727–2778 (2003)
16. Turing, A.M.: On computable numbers, with an application to the Entschei-

dungsproblem. Proc. London Math. Soc. 2(42), 230–265 (1936)
17. Turing, A.M.: Intelligent machinery. Technical report, National Physical Labora-

tory, Teddington, UK (1948)
18. van Leeuwen, J., Wiedermann, J.: Beyond the Turing limit: Evolving interactive

systems. In: Pacholski, L., Ružička, P. (eds.) SOFSEM 2001. LNCS, vol. 2234, pp.
90–109. Springer, Heidelberg (2001)

19. van Leeuwen, J., Wiedermann, J.: The Turing machine paradigm in contemporary
computing. In: Engquist, B., Schmid, W. (eds.) Mathematics Unlimited - 2001 and
Beyond, pp. 1139–1155. Springer (2001)

20. van Leeuwen, J., Wiedermann, J.: A theory of interactive computation. In: Goldin,
D., Smolka, S.A., Wegner, P. (eds.) Interactive Computation, pp. 119–142. Springer
(2006)

21. Wiedermann, J., van Leeuwen, J.: How we think of computing today. In: Beckmann,
A., Dimitracopoulos, C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 579–593.
Springer, Heidelberg (2008)

22. Wegner, P.: Interactive foundations of computing. Theor. Comput. Sci. 192,
315–351 (1998)

	Interactive Evolving Recurrent Neural NetworksAre Super-Turing Universal
	1 Introduction
	2 Preliminaries
	3 Interactive Computation
	4 Interactive Evolving Recurrent Neural Networks
	5 The Super-Turing Universal Computational Power of Interactive Evolving Recurrent Neural Networks
	6 Discussion
	References

