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Abstract. We study the attractor dynamics of a Boolean model of the
basal ganglia-thalamocortical network as a function of its interactive
synaptic connections and global threshold. We show that the regulation
of the interactive feedback and global threshold are significantly involved
in the maintenance and robustness of the attractor basin. These results
support the hypothesis that, beyond mere structural architecture, global
plasticity and interactivity play a crucial role in the computational and
dynamical capabilities of biological neural networks.

1 Introduction

Experimental studies suggest that spatiotemporal patterns of discharges, i.e.,
ordered and precise interspike interval relationships [1–3], as well as specific
attractor dynamics [4,5] are likely to be significantly involved in the processing
and coding of information in the brain. The association between attractor dynam-
ics and spatiotemporal patterns has been demonstrated in nonlinear dynamical
systems [6] and in simulations of large scale neuronal networks [7], thus suggest-
ing that spatiotemporal patterns might be considered as witnesses of underlying
attractor dynamics – which itself would be a key feature of neural coding.

On the basis of these bioinspired considerations, we study the attractor
dynamics of a Boolean model of the basal ganglia-thalamocortical network [8].
We investigate the richness of the attractor dynamics of this network as a func-
tion of its interactive synaptic connections – which are assumed to be signif-
icantly involved in the crucial exchange of information between the network
and its environment – as well as of its global threshold – which represents a
global notion of plasticity [9–14]. We show that the regulation of the interactive
feedback and global threshold are significantly involved in the maintenance and
robustness of optimal attractor potentialities. It is noteworthy that experimen-
tal evidence of a context-dependent modifiable central feedback to projection
neurons has been reported in the invertebrate neural circuit [15].
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2 Boolean Recurrent Neural Networks

It has early been observed that Boolean recurrent neural networks are compu-
tationally equivalent to finite state automata [16,17]. More precisely, recurrent
neural networks composed of McCulloch and Piits’s cells [18] can simulate and
be simulated by finite state automata. The translation from a Boolean networks
to a corresponding finite automaton is illustrated in Fig. 1. The converse trans-
lation is not illustrated here.
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Fig. 1. Translation from a given Boolean neural network N to a corresponding finite
automaton A. The nodes of A are the different states of N (represented as colored
triple dots that depict the three internal quiet or firing cells of N ). There is an edge
from node s to node s’ labelled by x in A if and only if the network N moves from
state s to s’ when receiving input x . (Color figure online)

According to the construction of Fig. 1, the possible dynamics of a given
Boolean network correspond precisely to the possible paths in the graph of its
associated automaton. Hence, the attractors of the Boolean network – i.e., the
cyclic dynamics – correspond exactly to the cycles of the automaton. Conse-
quently, in order to compute the attractors of a Boolean network, it suffices
to construct its corresponding automaton and then list all the cycles of this
automaton. Note that in this context, whenever the dynamics of Boolean net-
works is falling into some periodic attractor, the activity of the network units is
necessarily characterized by some associated recurrent spatiotemporal pattern of
discharges, as illustrated in Fig. 2.

This theoretical framework is illustrated by a simulation of a network formed
by interconnected thalamocortical modules of spiking units described else-
where [19]. This model accounts for a first order dynamics of the membrane
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Fig. 2. In a Boolean neural networks, the attractor dynamics of the internal cells are
the precise phenomenon that underly the emergence of spatiotemporal patterns of
discharges. In fact, the raster plot of internal cells involved in some periodic attractor
dynamics corresponds precisely to some spatiotemporal pattern of discharge.

potential characterized by a kinetic constant and for global excitability of the
circuit. These parameters are controlled by the modulatory inputs that act dif-
ferentially on the capacitance and resistance of the cell membrane. Monoamines
and acetylcholine may regulate properties of voltage-sensitive ion channels [20]
through the action of cellular second messengers. These mechanisms affect the
shape of the postsynaptic potentials – i.e., the half-width of the decay – without
modifying the membrane resistance which is related to the membrane potential.
Modulatory projections from the brainstem may also affect the overall excitabil-
ity of the thalamocortical network in relation to arousal, sleep-waking activity,
and their role in modulation of sensory processes has been recognized long time
ago [21,22].

In the absence of background activity and noisy inputs, all the dynamics
is deterministic, such that when an input pattern of activity is provided at the
beginning of the simulation, the network activity stabilizes either to an extinction
of the activity – no more units are firing – or to a cyclic pattern of activity –
an attractor dynamics – which in turn induces a corresponding spatiotemporal
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Fig. 3. Examples of raster displays showing repeating spatiotemporal patterns. The
rows of the rasters correspond to each unit of a circuit composed of two coupled thala-
mocortical modules activation pattern. At time 1 the cells 5, 6, 8 and 25 were initially
set active. The time constant of the membrane potential was fixed at 2.92 ms. Global
excitability parameter was set at a lower level ep = −31 in panel (a) then in panel (b)
where ep = −29. The spatiotemporal pattern started to repeat at time 34 with a cycle
duration of 24 time steps and at time 50 with a cycle duration of 16 for panel (a) and
panel (b), respectively.

pattern of discharges. The period of the attractor and the specificities of the
associated spatiotemporal pattern may change greatly to tiny differences in the
values of the two dynamical parameters for the same initial pattern of activation
as illustrated by Fig. 3. Notice that with the same initial stimulation and same
membrane dynamics, a change in the global excitability parameter may also lead
to the extinction of the activity.

3 Boolean Model of the Basal Ganglia-Thalamocortical
Network

We assume that the encoding of a large amount of the information treated by
the basal ganglia-thalamocortical network is performed by recurrent patterns
of activity circulating in the information transmitting system of this network.
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Fig. 4. (a) Simple Boolean model of the basal ganglia-thalamocortical network and (b)
its adjacency matrix. Each brain area is represented by a single node in the Boolean
neural network model: superior colliculus (SC), Thalamus, thalamic reticular nucleus
(NRT), Cerebral Cortex, the striatopallidal and the striatonigral components of the
striatum (Str), the subthalamic nucleus (STN), the external part of the pallidum (GPe),
and the output nuclei of the basal ganglia formed by the GABAergic projection neurons
of the intermediate part of the pallidum and of the substantia nigra pars reticulata
(GPi/SNR). We consider also the inputs (IN) from the ascending sensory pathway
and the motor outputs (OUT). The excitatory pathways are labeled in blue and the
inhibitory ones in orange. Part of the motor outputs are recurrently connected via the
interactive connections int1 and int2. (Color figure online)

We extend our simplified model of the basal ganglia-thalamocortical network [8]
in order to include interactive connections, enabling a feedback of information
from the network activity to combine with the external inputs, see Fig. 4. We
study the attractor dynamics of this network as a function of its interactive
connections int1 and int2 and of its global excitability.

4 Results

We study the attractor dynamics of our simplified model of the basal ganglia-
thalamocortical network, as a function of perturbations of its interactive con-
nections (int1 and int2) and global threshold (θ). Overall, we notice that the
regulation of the interactive feedback plays a crucial role in the maintenance of
an optimal attractor-based level of complexity. There is always an optimal region
for the interactive weights outside of which the number of attractors of the net-
work significantly decreases. We also show that the network’s attractor dynamics
depends sensitively on the value of its global threshold. Small perturbations of
the threshold significantly affect the attractor dynamics of the network.

More precisely, for each of the four threshold values θ = 0.4, θ = 0.6, θ =
0.8 and θ = 1.0, we preformed 1681 simulations to compute the number of basic
attractors1 of the network as a function of its two interactive weights int1 and int2,
1 The basic attractors of a Boolean network are given by the basic cycles of its corre-

sponding automaton, i.e., the cycles that do not visit the same vertex twice.
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Fig. 5. Number of basic attractors of the network as a function of the interactive
weights int1 and int2, and for different values of the global threshold θ of the cells.
Four patterns of variation are observed and reported in the subfigures (a)–(d). The
green point corresponds to no interactivity. (Color figure online)

where these latter are varying from−2 to 2 by steps of 0.1. The results are reported
in Fig. 5. In each case, we notice the existence of an optimal region for the values
of int1 and int2 where the number of attractors takes maximal values of 22 (in
cases (b), (c), and (d)) or 25 (in case (a)). Around this optimal region, the
number of attractors was much lower. This optimal region is ‘continuous’, in
the sense of forming a well defined block without holes, as opposed to smaller
discontinuous blocks that would be disseminated across the map. Hence, in the
‘center’ of this optimal region, the interactive weights int1 and int2 can vary
in a relatively consequent neighborhood without compromizing the attractor
dynamics of the network.

Furthermore, we notice that the variation of the threshold θ affects signifi-
cantly the attractors dynamics of the network. A higher excitability, i.e. a lower
threshold (θ = 0.4), favors the emergence of richer attractor dynamics in the
optimal region (25 attractors in case (a) as opposed to 22 in the three other
cases). However, this optimal region is surrounded by regions of lower complexi-
ties than in the other cases. Hence, an increase of the excitability (i.e. lowering of
the threshold) acts as a “polarization” of the attractor dynamics: it increases the
complexity of the optimal region and lowers the complexity of its neighbourhood.
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5 Discussion

We have considered a simplified Boolean model of the basal ganglia-thalamocor-
tical network, and provided new evidence of the effects that the global excitabil-
ity and “interactivity” have on its dynamical properties. The interactivity is
expresses in the form of a feedback informational loop, where the network’s
output together with the external environment produce a combined stream of
information which is re-entered into the input layer of the network. This infor-
mation can be assumed to represent precise contextual and explicit information
recorded by the primary ascending (i.e. lemniscal) sensory channels via a thala-
mic relay [23]. The sensory information is also reaching modulatory centers in
the brainstem and hypothalamus that may exert their modulatory influence by
changing the global excitability of the network [24].

More generally, our results show that the interactive connections and global
excitability of Boolean neural networks play a significant role in the maintenance
and robustness of their attractor-based complexity. The networks are consid-
ered as dynamical systems operating in a range of control parameters. A global
change in their excitability combined with selected interactively-generated input
patterns will induce their dynamics to evolve into specific attractor dynamics,
and in turn, into repeating spatiotemporal firing patterns. Those patterns should
not be considered as high-order Morse codes, but rather as co-representations
of contextual information, including a certain “central arousal” modulated by
dopaminergic [25], cholinergic [26] and serotoninergic [27] pathways.
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