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Abstract. The attractor-based complexity of a Boolean neural network
refers to its ability to discriminate among the possible input streams, by
means of alternations between meaningful and spurious attractor dynam-
ics. The higher the complexity, the greater the computational power of
the network. The fine tuning of the interactivity – the network’s feedback
output combined with the current input stream – can maintain a high
degree of complexity within stable domains of the parameters’ space.
In addition, the attractor-based complexity of the network is related
to the degree of discrimination of specific input streams. We present a
novel supervised attractor-based learning procedure aimed at achieving
a maximal discriminability degree of a selected input stream. With a
predefined target value of discriminability degree and in the absence of
changes in the internal connectivity matrix of the network, the learning
procedure updates solely the weights of the feedback projections. In a
Boolean model of the basal ganglia-thalamocortical circuit, we show how
the learning trajectories starting from different configurations can con-
verge to final configurations associated with same high discriminability
degree. We discuss the possibility that the limbic system may play the
role of the interactive feedback to the network studied here.

Keywords: Boolean recurrent neural networks · Learning · Attractors ·
Plasticity · Interactivity · Basal ganglia-thalamocortical circuit · Limbic
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1 Introduction

Attractor dynamics or quasi-attractor dynamics have been associated to percep-
tions, thoughts and memories, and the chaotic itinerancy between those with
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sequences in thinking, speaking and writing [1–3]. Specific spike trains – time
series defined by the epochs of neuronal discharges – were experimentally shown
to be associated with such (chaotic) attractor dynamics [4–8]. Moreover, exper-
imental neurophysiological studies suggest that spatiotemporal patterns of dis-
charges repeating more often than expected by chance may be associated to
processing and coding of information in the brain, in particular in association
with specific behaviors [9–14]. Spatiotemporal patterns have also been observed
in simulations of nonlinear dynamical systems [15,16] as well as in simulations
of large scale neuronal networks [17]. Hence, the correlation between attractor
dynamics and recurrent spatiotemporal patterns of discharges has been sug-
gested as an alternative model to synfire chains [3,9,18]. Neural coding of per-
ceptual and contextual information may be performed by underlying attractor
dynamics, with the advantage of implicit transmission and storage of memory
traces in the network connectivity [19].

We introduced an attractor-based complexity measure for Boolean recurrent
neural networks, which refers to the ability of the networks to discriminate among
their possible input streams, by means of alternations between meaningful and
spurious attractor dynamics [18,20,21]. This complexity measure is assumed to
be related to some aspects of the computational capabilities of Boolean neural
networks. It was applied to study the attractor dynamics of a Boolean model
of the basal ganglia-thalamocortical circuit [18]. In this model, the attractor
dynamics and its associated complexity measure are highly sensitive to local
and global modifications of the coupling strength between network’s nodes. The
fine tuning of synaptic weights, global threshold and interactive feedback can
maintain a high degree of complexity within stable domains of the parameters’
space [22,23].

In this study, we first show that the attractor-based complexity of a Boolean
network is related to the discriminability degree of specific input streams. We
present a supervised attractor-based learning procedure aimed at achieving
a maximal discriminability degree of a selected input stream. This procedure
updates the interactive weights – the feedback projections which are combined
with the external input – according to a target value of attractor-based com-
plexity. We illustrate this learning procedure on a Boolean model of the basal
ganglia-thalamocortical circuit. This circuit is known to be crucially involved in
the processing and coding of information in the brain [24,25]. We discuss the
possibility that the role of interactivity played by the modifiable feedback projec-
tions might correspond to the functional connectivity of the limbic system [26].

2 Attractor-Based Complexity of Boolean Recurrent
Neural Networks

We briefly summarize the theoretical background exposed in detail in [18]. Any
recurrent neural network N composed of Boolean integrate-and-fire (IF) units
can be simulated by a corresponding finite state automaton A(N ), and vice
versa. The nodes of A(N ) correspond to the different states (i.e., the spiking
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configurations) of N . There exists a transition from node i to node j labelled by
u in A(N ) if and only if N switches from state i to state j when receiving input
u. Accordingly, the possible dynamics of a given network N correspond to the
different paths in the graph of the associated automaton A(N ).

Let us consider the Boolean network N of the basal ganglia-thalamocortical
circuit (Fig. 1A) and its connectivity matrix [18] together with its corresponding
finite automaton A(N ) (Fig. 1B). Each node of the automaton represents a spe-
cific state of the network. For instance, node 384 corresponds to firing activity
exclusively in the units representing the thalamus and superior colliculus (SC). If
input u = 0 is received, which corresponds to unit ‘IN’ being not active, then the
automaton switches from node 384 to node 223, which corresponds to activity in
the units representing the thalamus, the thalamic reticular nucleus (NRT), the

Fig. 1. A. Simplified Boolean model of the basal ganglia-thalamocortical circuit. Each
brain area is represented by a single Boolean unit: superior colliculus (SC), Thala-
mus, thalamic reticular nucleus (NRT), Cerebral Cortex, the striatopallidal and the
striatonigral components of the striatum (Str), the subthalamic nucleus (STN), the
external part of the pallidum (GPe), and the output nuclei of the basal ganglia formed
by the GABAergic projection neurons of the intermediate part of the pallidum and
of the substantia nigra pars reticulata (GPi/SNR). We consider also the inputs (IN)
from the ascending sensory pathway and the efferent outputs (OUT). The excitatory
pathways are labeled in blue and the inhibitory ones in orange. We considered a closed-
loop model with a recurrent connection from the efferent output to the input unit via
‘interactive’ connections int1 and int2. B. Finite automaton associated to the Boolean
model of the basal ganglia-thalamocortical circuit. Each node of the automaton is a
state of the circuit. There is a blue or red transition from node i to node j if and only
if the network switches from state i to state j when receiving input 0 or 1, respectively.
The cycles in the automaton correspond to the attractors of the network. (Color figure
online)
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pallidum (both internal GPi and external GPe parts), the striatum (Str), the
subthalamic nucleus (STN) and the cerebral cortex. If the next input is u = 1,
which corresponds to unit ‘IN’ being active, then the automaton switches from
node 223 switches to node 511, which corresponds to firing activity in all units
of the circuit. And so on, with each distinct node corresponding to a distinct
unique activity pattern in the circuit.

According to this construction, the attractors of N – i.e., those dynamics
which eventually become trapped into the repetition of a same set of states –
correspond to the cycles in the graph of A(N ). The set of attractors of network N
can therefore be computed effectively, by constructing the associated automaton
A(N ) and listing the cycles of this latter. Note that any periodic attractor of N
will necessarily elicit some recurrent spatiotemporal pattern of discharges which
corresponds to the set of states visited periodically.

In this context, we introduced an attractor-based measure of complexity [18],
which corresponds to the translation of a refined automata-theoretic notion [27]
to the Boolean neural network context. Formally, suppose that N is a Boolean
network provided with a classification of all of its attractors according to their
meaningfulness – i.e., an attractor is classified as meaningful or spurious depend-
ing on the meaningfulness of its composing states (see [18] for more details). The
attractor-based complexity of N is the integer n associated to a maximal sequence
of cycles C = (C0, . . . , Cn) of A(N ) – i.e., of attractors of N – which satisfies:

• Ci is included in Ci+1, for i = 0, . . . , n − 1; (1)
• Ci and Ci+1 have opposite meaningfulness, for i = 0, . . . , n − 1. (2)

Conditions (1) and (2) state that the complexity measure is related to sequences
of attractors that are included one into the next and of alternating meaningful-
ness. The general idea behind this complexity measure is that the meaningful
and spurious attractors of a network are interpreted as the dynamical behaviors
encoding the “acceptation” or “rejection” of the continual input received. Hence,
a switch from one attractor to another of opposite meaningfulness corresponds
to a moment when the network shifts from an “acceptation” to a “rejection” (or
vice-versa) of its continual input. Accordingly, the attractor-based complexity
of the network refers to its ability to discriminate between its input streams, by
means of alternations between meaningful and spurious attractor dynamics [18].
This feature has been argued to be related to the computational power of the
network (cf. [18] and Sect. 4).

The Boolean network of Fig. 1A has an attractor-based complexity of 6 with
its connectivity matrix described elsewhere [18]. This value is highly depen-
dent from both local and global variations of the synaptic strengths [22,23]. In
fact, small perturbations of the connectivity weights and firing threshold might
lead to completely distinct associated automata (with completely different cycle
structures), and therefore, to very different attractor-based complexities. Fur-
thermore, the interactive feedback (Fig. 1A, weights int1 and int2) plays a key
role in the regulation of the network’s attractor-based complexity. The parame-
ter space defined by the variations of int1 and int2 shows the existence of stable
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domains characterized by same values of the network’s complexity, as illustrated
by the different colored areas of Fig. 2.

Note that short input streams would induce the network’s dynamics to visit
only few (or no) attractors. By contrast, longer input streams will necessarily
bring the network’s dynamics into multiple successive attractors. For any such
long input stream s, let Cs = (C0, . . . , Cn) be a corresponding sequence of attrac-
tors visited by the network receiving input s (note that Cs is not unique). We
will say that s is discriminated by Cs whenever Cs satisfies the above conditions
(1) and (2). Accordingly, the discriminability degree of s, denoted as d∗(s), is
the largest number of attractor alternations that can be found in a sequence Cs

which discriminates s. In other words, s has a discriminability degree of k if s
is discriminated by some sequence Cs = (C0, . . . , Ck), but by no larger sequence
C′
s = (C0, . . . , Cl) with l > k. Notice that by definition, if some input stream s

has a discriminability degree of k in N , then the attractor-based complexity of

Fig. 2. Illustration of four trajectories of the attractor-based learning proce-
dure. The color scale indicates the attractor-based complexity of the network of Fig. 1
as a function of its two interactive weights, with an optimal domain of complexity 6.
Each trajectory describes a specific learning procedure updating the interactive weights
at each step. The start and end points of the trajectories are the initial and final values
of the interactive weights, and the intermediate points correspond to the successive
updates of the weights achieved by the learning procedure. (Color figure online)
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N is at least k (since A(N ) contains at least the sequence Cs = (C0, . . . , Ck−1)
discriminating s).

In the sequel, we will consider a specific input stream s̄ having discriminabil-
ity degree 6 for the circuit of Fig. 1A. Due to limited space available, we do not
provide here the full description of that input.

3 Attractor-Based Learning

We consider a learning task consisting in the discrimination of a selected percep-
tual input fed into the basal ganglia-thalamocortical circuit via the ascending
sensory pathway. The optimal learning is achieved if the dynamics associated
with the reading of that perceptual input reaches the largest discriminability
degree (in the sense of Sect. 2). In summary, the attractor-based learning proce-
dure defined here performs updating of the network’s weights with the aim of
achieving a maximal discriminability degree of a selected input stream s. In our
case, we assume that the connectivity matrix of the circuit is fixed and that the
learning procedure only modifies the feedback weights int1 and int2 (Fig. 1A).
The updating of the weights int1 and int2 depends on whether the network’s
dynamics induced by the given input stream s visits mainly spurious or mean-
ingful attractors, and on the number of alternations between such attractors.
The learning procedure is supervised in the sense that a target value for the
discriminability degree is set at the begin.

More precisely, let s be an input stream, let wk for k = 1, . . . , N be the
modifiable weights of the network, and let N∗ be the target value of the discrim-
inability degree of s. Let Cs be a sequence of attractors visited by the network
reading input s, and such that Cs contains a maximal subsequence that discrim-
inates s. Let also ms ∈ {−1, 1}len(Cs) be the “meaningfulness of Cs”, simply
defined as: ms(i) = −1 if Cs(i) is spurious and ms(i) = 1 if Cs(i) is meaningful.
Finally, let d∗(s) be the current discriminability degree of s. If the discriminabil-
ity degree d∗(s) < N∗, the weights wk are updated according to the following
rule:

f(wk) = wk + step · −sum(ms)
len(ms)

·
(

1 +
len(ms) − d∗(s)

len(ms)

)
+ ε

where sum(ms), len(ms) are the sum and length of ms, ε is a uniform noise
in the range [−0.1, 0.1], and step = 0.3. Note that if the reading of s induces a
sequence Cs of only spurious (resp. of only meaningful) attractors, then d∗(s) = 0
and |sum(ms)| = len(ms), and thus an update of maximal amplitude f(w) =
w+2 ·step+ε (resp. f(w) = w−2 ·step+ε) ensues. In words, the weight’s update
is increased when the number of alternations and the discriminability degree are
lower (i.e., |sum(ms)| is high and d∗(s) is small). The learning procedure based
on this updating rule is given in Algorithm 1.

We illustrate this learning procedure in the case of the neural circuit pre-
sented in Sect. 2. For this purpose, we have considered s̄ as the selected input



340 J. Cabessa and A.E.P. Villa

Algorithm 1. Attractor-based learning procedure
Require: input stream s; initial weights w1, w2; target discriminability degree N∗

1: compute d∗(s)
2: while d∗(s) < N∗ do
3: wk ← f(wk), for k = 1, . . . , N weights’ updating

4: compute d∗(s) for the network with updated weights wk, for k = 1, . . . , N
5: end while
6: return wk, for k = 1, . . . , N

stream (cf. Sect. 2) and set the target discriminability degree to N∗ = 6. We ana-
lyzed the learning procedure over the parameter space defined by the interactive
weights int1 and int2 in the range [−0.5, 1.5] by steps of 0.1 (Fig. 2). For each
point in this space, we simulated the procedure from this point and followed
its trajectory until it stopped. In the majority of the simulations (427/441),
the procedure converged to novel interactive weights such that d∗(s̄) = N∗ = 6.
Notice that during the procedure, the update of the weights int1 and int2 tended
to be on the same direction (both increased or both decreased), which favored
trajectories with angles between 30◦ and 60◦.

4 Discussion

We have introduced an attractor-based learning procedure which modifies the
modifiable weights of a network in order to achieve the optimal discrimina-
tion of a selected input stream. In our simplified model of the basal ganglia-
thalamocortical circuit, we showed that interactive weights can be updated to
reach a high level of discriminability of a given input stream, and in turn, to drive
the dynamics of the network to a basin of attractions with a high level of com-
plexity. Hence, the higher the level of discriminability, the larger the sequence of
attractors visited by the dynamics, and accordingly, the larger amount of spa-
tiotemporal patterns, and the higher the storage capacity of dynamic memories.
We suggest that this correlation between attractor-based complexity and storage
capacity of dynamic memories also prevails in real brain networks. Experimen-
tal evidence for bump attractor dynamics underlying spatial working memory
has been provided by data from oculomotor delayed response tasks in awake
behaving monkeys [28]. This study shows that persistent activity reinforcement
is associated with a continuous prefrontal representation of memorized space,
which is in agreement with other experimental data showing the emergence of
recurrent spatiotemporal firing patterns associated with persistent activity in
the inferotemporal cortex of behaving monkeys [11]. Hence, despite the oversim-
plification of our model (e.g. the brain probably is not behaving as a boolean
network), the attractor-based complexity defined here may be considered an
indicator of some aspects of the computational capabilities of neural networks.

General forms of synaptic plasticity and interactive architecture play a crucial
role in regulating and controlling the computational and dynamical capabilities
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of Boolean neural networks [22,23]. In the brain, the role assumed by the feed-
back might be played by the connections to and from the limbic system [26]. Such
interaction reflects a dynamic adaptation to the learning situation. Dysfunctions
of synaptic plasticity and functioning of the hippocampal formation and basal
ganglia-thalamocortical loops may lead to impairment of learning, memory, and
attention evoked by sleep deprivation.

References

1. Skarda, C.A., Freeman, W.J.: How brains make chaos in order to make sense of
the world. Behav. Brain Sci. 10, 161–173 (1987)

2. Tsuda, I.: Chaotic itinerancy as a dynamical basis of hermeneutics of brain and
mind. World Futures 32, 167–185 (1991)

3. Villa, A.E.P.: Empirical evidence about temporal structure in multi-unit record-
ings. In: Miller, R. (ed.) Time and the Brain. Conceptual Advances in Brain
Research, vol. 3, pp. 1–61. CRC Press, London (2000)

4. Mpitsos, G.J., Burton, R.M., Creech, H.C., Soinila, S.O.: Evidence for chaos in
spike trains of neurons that generate rhythmic motor patterns. Brain Res. Bull.
21(3), 529–38 (1988)

5. Hoppensteadt, F.C.: Intermittent chaos, self-organization, and learning from syn-
chronous synaptic activity in model neuron networks. Proc. Natl. Acad. Sci. U.S.A.
86(9), 2991–2995 (1989)

6. Celletti, A., Villa, A.E.P.: Low-dimensional chaotic attractors in the rat brain.
Biol. Cybern. 74(5), 387–393 (1996)

7. Villa, A.E.P., Tetko, I.V., Celletti, A., Riehle, A.: Chaotic dynamics in the primate
motor cortex depend on motor preparation in a reaction-time task. Cah. Psychol.
Cogn. 17, 763–780 (1998)

8. Segundo, J.P.: Nonlinear dynamics of point process systems and data. Int. J. Bifur-
cat. Chaos 13(08), 2035–2116 (2003)

9. Abeles, M.: Local Cortical Circuits: An Electrophysiological Study. Studies of Brain
Function, vol. 6. Springer, New York (1982)

10. Vaadia, E., Bergman, H., Abeles, M.: Neuronal activities related to higher brain
functions-theoretical and experimental implications. IEEE Trans. Biomed. Eng.
36(1), 25–35 (1989)

11. Villa, A., Fuster, J.: Temporal correlates of information processing during visual
short-term memory. Neuroreport 3(1), 113–116 (1992)

12. Vaadia, E., Haalman, I., Abeles, M., Bergman, H., Prut, Y., Slovin, H., Aertsen,
A.: Dynamics of neuronal interactions in monkey cortex in relation to behavioural
events. Nature 373(6514), 515–518 (1995)

13. Prut, Y., Vaadia, E., Bergman, H., Haalman, I., Slovin, H., Abeles, M.: Spatiotem-
poral structure of cortical activity: properties and behavioral relevance. J. Neuro-
physiol. 79(6), 2857–2874 (1998)

14. Villa, A.E.P., Tetko, I.V., Hyland, B., Najem, A.: Spatiotemporal activity patterns
of rat cortical neurons predict responses in a conditioned task. Proc. Natl. Acad.
Sci. U.S.A. 96(3), 1106–1111 (1999)

15. Asai, Y., Villa, A.E.: Reconstruction of underlying nonlinear deterministic dynam-
ics embedded in noisy spike trains. J. Biol. Phys. 34(3–4), 325–340 (2008)

16. Asai, Y., Villa, A.: Integration and transmission of distributed deterministic neural
activity in feed-forward networks. Brain Res. 1434, 17–33 (2012)



342 J. Cabessa and A.E.P. Villa

17. Iglesias, J., Villa, A.E.: Recurrent spatiotemporal firing patterns in large spik-
ing neural networks with ontogenetic and epigenetic processes. J. Physiol. Paris
104(3–4), 137–146 (2010)

18. Cabessa, J., Villa, A.E.P.: An attractor-based complexity measurement for boolean
recurrent neural networks. PLoS ONE 9(4), e94204 (2014)

19. Masulli, P., Villa, A.E.P.: The topology of the directed clique complex as a network
invariant. Springerplus 5, 388 (2016)

20. Cabessa, J., Villa, A.E.P.: The expressive power of analog recurrent neural net-
works on infinite input streams. Theor. Comput. Sci. 436, 23–34 (2012)

21. Cabessa, J., Villa, A.E.P.: Expressive power of first-order recurrent neural net-
works determined by their attractor dynamics. J. Comput. Syst. Sci. 82, 1232–1250
(2016)

22. Cabessa, J., Villa, A.E.P.: Attractor-based complexity of a boolean model of the
basal ganglia-thalamocortical network. In: 2016 International Joint Conference on
Neural Networks (IJCNN), pp. 4664–4671. IEEE, July 2016

23. Cabessa, J., Villa, A.E.P.: Attractor dynamics driven by interactivity in boolean
recurrent neural networks. In: Villa, A.E.P., Masulli, P., Pons Rivero, A.J. (eds.)
ICANN 2016. LNCS, vol. 9886, pp. 115–122. Springer, Cham (2016). doi:10.1007/
978-3-319-44778-0 14

24. Nakahara, H., Amari Si, S., Hikosaka, O.: Self-organization in the basal ganglia
with modulation of reinforcement signals. Neural Comput. 14(4), 819–844 (2002)

25. Guthrie, M., Leblois, A., Garenne, A., Boraud, T.: Interaction between cognitive
and motor cortico-basal ganglia loops during decision making: a computational
study. J. Neurophysiol. 109(12), 3025–3040 (2013)

26. Leblois, A., Boraud, T., Meissner, W., Bergman, H., Hansel, D.: Competition
between feedback loops underlies normal and pathological dynamics in the basal
ganglia. J. Neurosci. 26(13), 3567–3583 (2006)

27. Wagner, K.: On ω-regular sets. Inf. Control 43(2), 123–177 (1979)
28. Wimmer, K., Nykamp, D.Q., Constantinidis, C., Compte, A.: Bump attractor

dynamics in prefrontal cortex explains behavioral precision in spatial working mem-
ory. Nat. Neurosci. 17(3), 431–439 (2014)

29. Packard, M.G., Goodman, J.: Factors that influence the relative use of multiple
memory systems. Hippocampus 23(11), 1044–1052 (2013)

30. Lintas, A.: Discharge properties of neurons recorded in the parvalbumin-positive
(pv1) nucleus of the rat lateral hypothalamus. Neurosci. Lett. 571, 29–33 (2014)

31. Atallah, H.E., Frank, M.J., O’Reilly, R.C.: Hippocampus, cortex, and basal ganglia:
insights from computational models of complementary learning systems. Neurobiol.
Learn Mem. 82(3), 253–267 (2004)

32. Perrig, S., Iglesias, J., Shaposhnyk, V., Chibirova, O., Dutoit, P., Cabessa, J.,
Espa-Cervena, K., Pelletier, L., Berger, F., Villa, A.E.P.: Functional interactions
in hierarchically organized neural networks studied with spatiotemporal firing pat-
terns and phase-coupling frequencies. Chin. J. Physiol. 53(6), 382–395 (2010)

http://dx.doi.org/10.1007/978-3-319-44778-0_14
http://dx.doi.org/10.1007/978-3-319-44778-0_14

	Interactive Control of Computational Power in a Model of the Basal Ganglia-Thalamocortical Circuit by a Supervised Attractor-Based Learning Procedure
	1 Introduction
	2 Attractor-Based Complexity of Boolean Recurrent Neural Networks
	3 Attractor-Based Learning
	4 Discussion
	References


