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Abstract. The basal ganglia-thalamocortical (BGT) network has been
investigated for many years, in particular in relation to disorders of the
motor system and of the sleep-waking cycle. Its attractor dynamics is
related to significant aspects of processing and coding of information,
the most important of which being associative memories. The consider-
ation of a simplified Boolean model of the BGT network allows for an
exhaustive analysis of its attractor dynamics. In this context, it has been
shown that both global and local changes in the synaptic weights could
strongly influence the attractor-based complexity of the network. We
propose a novel adaptive spike-timing dependent plasticity (STDP) rule
which allows the network to improve and stabilize its attractor complex-
ity during its computational process. The rule is based on an adaptive
learning rate which varies according to the attractor dynamics that the
network continuously visits.

Keywords: Boolean recurrent neural networks · Learning
Attractors · STDP · Plasticity · Interactivity
Basal ganglia-thalamocortical circuit · Limbic system

1 Introduction

The basal ganglia-thalamocortical (BGT) network has been investigated for
many years, in particular in relation to disorders of the motor system and of
the sleep-waking cycle [8,11,13]. Its attractor dynamics is related to significant
aspects of processing and coding of information, the most important of which
being associative memories [2,10]. The consideration of a simplified Boolean
model of the BGT network allows for a complete analysis of its attractor dynam-
ics. Indeed, the attractors of the network correspond precisely to the cycles of
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its corresponding automaton, and therefore, can be computed explicitly and
exhaustively.

It has been shown that local and global changes in the synaptic weights
could strongly influence the attractor-based complexity of the BGT network.
Moreover, modifications of the non-interactive and interactive weights can com-
pensate and/or be combined to each other to drive the network into stable
attractor dynamics of high complexity [4–6].

Based on these considerations, we propose a novel adaptive spike-timing
dependent plasticity (STDP) rule which allows the BGT network to improve
and stabilize its attractor complexity during its computational process. The rule
is based on an adaptive learning rate which varies according to the attractor
dynamics that the network continuously visits.

2 Boolean Model of the Basal Ganglia-Thalamocortical
Network

The basal ganglia-thalamocortical (BGT) network is formed by several parallel
and segregated circuits involving different areas of the cerebral cortex, striatum,
pallidum, thalamus, subthalamic nucleus and midbrain [1,7]. A characteristic of
the pathways of this network is a combination of “open” and “closed” loops,
with ascending sensory afferences reaching the thalamus and the midbrain and
descending motor efferences from the midbrain (the tectospinal tract) and the
cortex (the corticospinal tract).

We consider a Boolean model of the BGT network where each brain area
is modeled by a Boolean node. The Boolean model is formed by 9 nodes:
the superior colliculus (SC), the thalamus (Thalamus), the thalamic reticular
nucleus (NRT), the cerebral cortex (Cerebral Cortex), the striatopallidal and
the striatonigral components of the striatum (Str-D1 and Str-D2), the subthala-
mic nucleus (STN), the external part of the pallidum (GPe), and the output
nuclei of the basal ganglia formed by the GABAergic projection neurons of
the intermediate part of the pallidum and of the substantia nigra pars retic-
ulata (GPi/SNR). The closed-loop architecture of the network is implemented
via feedback connections—or interactive connections—from the efferent output
(OUT) to the input (IN). The network is illustrated in Fig. 1A and its weight
matrix given in Table 1. This pattern of connectivity corresponds to the wealth
of data reported in the literature [1,7].

The context of Boolean neural networks, although relatively simple, has the
advantage of allowing for a complete analysis of the attractor dynamics of the
networks. In fact, Boolean recurrent neural networks are known to be compu-
tationally equivalent to finite state automata [9,12], and the attractors of the
networks correspond precisely to the cycles in the graphs of their corresponding
automata [3]. The attractor dynamics can therefore be computed explicitly and
exhaustively. The finite automaton associated to the BGT network of Fig. 1A is
illustrated in Fig. 1B [3].
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An attractor-based measure of complexity for the Boolean model of the BGT
network has been introduced [3]. This complexity measure is related to the num-
ber of attractors of the network as well as to their classification into meaningful
or spurious types. In the present study, we define the attractor-based complexity
of the network to be its number of attractors. The BGT network of Fig. 1 with
weights of Table 1 has an attractor complexity of 22.

Cerebral Cortex

Str STN

NRT
GPe

GPi/SNr

SC

Thalamus

IN

ASCENDING
SENSORY PATHWAY

OUT OUT

int1 int2

A B

Fig. 1. A. Simplified Boolean model of the BGT network. Each brain area is rep-
resented by a single Boolean unit. The network is formed by 9 Boolean nodes: SC,
Thalamus, NRT, Cerebral Cortex, Str-D1, Str-D2, STN, GPe, GPi/SNR. The inputs
from the ascending sensory pathway (IN) is also a Boolean unit and the efferent outputs
(OUT) are coming out of the cerebral cortex and superior colliculus. The excitatory
and inhibitory pathways are labeled in blue and orange, respectively. The interactive
connections int1 and int2 implement the closed-loop architecture. B. Finite automaton
associated to the Boolean model of the BGT network. Each node of the automaton is
a Boolean state of the network. There is a blue or red transition from node i to node j
if and only if the network switches from state i to state j when receiving input 0 or 1,
respectively. The attractors of the network correspond to the cycles in the automaton.

3 Adaptive STDP Rule

We introduce an adaptive spike-timing dependent plasticity (STDP) rule aimed
at improving and stabilizing the attractor-based complexity of the BGT net-
work during its computational process. This STDP rule modifies the connection
strengths of the network not only as a function of the timing between the acti-
vations of the pre- and post-synaptic neurons, but also as a function of the
attractors encountered throughout the computation.
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Table 1. Adjacency matrix of the Boolean model of the BGT network of Fig. 1A.

Source Target Node #

Node # Name 0 1 2 3 4 5 6 7 8 9

0 IN · 1 1 · · · · · · ·
1 SC int1 · 1 · · · · · · ·
2 Thalamus · · · 1 · 1 1 1 1 1

3 NRT · · −1 · · · · · · ·
4 GPi/SNr · −1 −1 −1 · · · · · ·
5 STN · · · · 2 · 2 · · 2

6 GPe · · · −1/2 −1/2 −1/2 · −1/2 −1/2 ·
7 Str-D2 · · · · · · −1 · · ·
8 Str-D1 · · · · −1/2 · −1/2 · · ·
9 C. Cortex int2 1/2 1 1/2 · 1/2 · 1/2 1/2 ·

Formally, we consider the following adaptive STDP rule bounded by a definite
weight interval I = [I1, I2]:

aij(t + 1) =

⎧
⎪⎨

⎪⎩

I1 if aij(t + 1) < I1

R if I1 ≤ aij(t + 1) ≤ I2

I2 if aij(t + 1) > I2

with
R = aij(t) + λ(t)

[
xi(t + 1)xj(t) − C(xi(t)xj(t + 1))

]
(1)

and where xi(t) and xj(t) are the activation values of cells xi and xj at time t,
aij(t) is the synaptic weight from xj to xi at time t, C is a constant modulating
the weight decrease (with default value equal to 1), and λ(t) is the adaptive
learning rate whose evolution is described below.

The adaptive learning rate λ(t) remains to be defined. Towards this purpose,
given some constant M > 0, we let n(t) be the number of attractors of the
network at time t, and nmin(t) and nmax(t) be the minimal and maximal number
of attractors that the network has encountered during the last M time steps:

n(t) = number of attractors of the network at time t

nmin(t) = min{n(t′) : max(0, t − M) < t′ ≤ t} (2)
nmax(t) = max{n(t′) : max(0, t − M) < t′ ≤ t}.

The constant M is called the memory of the network. It corresponds to the time
window during which the network “remembers” the minimum and maximum
number of attractors that it has encountered.

The adaptive learning rate λ(t) is then defined as the image of n(t) by the
linear interpolation between the two points (nmin(t), λmax) and (nmax(t), λmin),
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where λmin, λmax ∈ R are two bounds such that λmin < λmax. Formally,

λ(t) =

⎧
⎨

⎩

λmax + (n(t) − nmin(t))(λmin − λmax)
nmax(t) − nmin(t) if nmin(t) �= nmax(t)

λmax otherwise.
(3)

The computation of λ(t) is illustrated in Fig. 2. The learning rate λ(t) has to
be understood as follows. If n(t) = nmin(t) (resp. n(t) = nmax(t)), it means
that the current number of attractors of the network is at a minimal (resp.
maximal) level. In this case, λ(t) = λmax (resp. λ(t) = λmin). This large (resp.
low) learning rate will induce large (resp. low) variations of the synaptic weights
(cf. Eq. 1) with the aim of destabilizing (resp. stabilizing) the network’s current
dynamics. If nmin(t) < n(t) < nmax(t), then λmax > λ(t) > λmin according
to the linear interpolation. The closer n(t) is to nmin(t) (resp. to nmax(t)), the
closer λ(t) is to λmax(t) (resp. to λmin(t)). If nmin(t) = nmax(t), the network
has settled into the same attractor dynamics during the M last steps. In this
case, we set λ(t) = λmax with the aim of destabilizing the current dynamics.

Observe that, since nmin(t) and nmax(t) are functions of the memory M (cf.
Eq. 2), then so is λ(t) (cf. Eq. 3), and hence so is the STDP rule (cf. Eq. 1). Note
also that if the network has no memory, i.e. M = 1, then nmin(t) = nmax(t)
(cf. Eq. 2), and thus λ(t) = λmax for all t > 0 (cf. Eq. 3), meaning that the
network dynamics is driven by a fixed-rate STDP rule. By contrast, as soon as
the network has a positive memory, i.e. M > 1, the learning rate λ(t) becomes
time dependent, meaning that the network dynamics is driven by an adaptive
STDP rule. This adaptive feature is crucial towards the achievement of reaching
a high and stable attractor-based complexity.

Fig. 2. Computation of the adaptive learning rate λ(.) at two different time steps t (blue
construction) and t′ (red construction). The rate λ(.) is defined as the image of n(.) by
the linear interpolation between the two points (nmin(.), λmax) and (nmax(.), λmin).
(Color figure online)
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4 Results

We now study the effect of the adaptive STDP rule on the attractor-based com-
plexity of the BGT network. For this purpose, we implemented the adaptive
STDP rule of Eq. 1 for the Boolean BGT network of Fig. 1. The learning interval
of each weight aij of Table 1 was set to Iij = [aij − 0.025; aij + 0.8]. The bounds
of the intervals Iij were chosen on the basis of an empirical analysis. The mini-
mal and maximal learning rates were set to λmin = 0.002 and λmax = 0.12. We
then performed simulations where we first jittered (each weight of) the matrix of
Table 1 by random uniform noise εij ∼ U(−0.025, 0.8), and then submitted the
network to a random input stream and recorded the variation of its attractor-
based complexity throughout its computational process.

In order to emphasise the effect of the network memory on its attractor-
based complexity, we performed 10 simulations (of 300 time steps each) where
memory M = 1, 10 simulations where memory M = 120 and 10 simulations
where memory M = 240. For each lot of 10 simulations, we used the same
seed to ensure that the same random jittering and random input streams were
considered at each time, and therefore, that the differences observed are entirely
due to the variations M . The results are displayed in Fig. 3.

Recall that M = 1 means that the network has non memory and the STDP
rule is fixed-rate rather than adaptive (cf. Sect. 3). In this case of M = 1 (black
dotted trace), the attractor-based complexity is usually unstable, with sporadic
peaks of higher intensities interspersed by plateaus of lower values. This situation
is particularly manifest in simulations 1, 3, 4, 8. Simulations 2, 5. 9, 10 are less
peaky, but still unstable. Simulations 6 and 7 are by contrast very stable, with
long plateaus of 10 and 1 attractors, respectively. The highest peak of complexity
is reached at the beginning of simulation 10, with 154 attractors (pay attention
to the x-axis of simulation 10).

For M = 120 (blue dashed trace), the attractor complexity is clearly more
stable, and in general, it doesn’t get stuck into minimal values. Note that the
length of the plateaus are of the same order as that of the memory, namely 120
time steps. In all simulations, the network is able to maintain a high complexity
during a fairly long period of time. In simulations 2, 6, 7, 9, 10 however, the
network also stabilizes into plateaus of low complexity. In simulations 1, 3, 8 (to
some extent), 9, the complexity is constantly improving along the computation.
Simulations 4 and 5 still alternate between stable and unstable behaviors. The
highest complexity of 377 is reached in simulation 10, and it is maintained during
exactly 120 time steps.

For M = 240 (red solid trace), the attractor complexity is even more stable,
and it almost never gets stuck into minimal values. Here again, the length of the
plateaus are of the same order as the memory length, namely 240 time steps.
In all but the 9-th simulations, the network is able to stabilize in a complexity
that is higher than for M = 120, and for a longer period of time. However, in
simulations 6, 7, 9, 10, the network also stabilizes into plateaus of low complexity.
Simulation 4 is the only one to still presents some instability, at its beginning.
The highest complexity of 377 is reached in simulation 10, and it is maintained
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during 193 time steps until the end of the simulation (it but would have probably
be maintained for a longer period of time if the simulation would have continued).
Overall, we see that as M increases, the network becomes more and more able
to stabilize into attractor-based complexities of high intensities.

It has been shown tiny decreases in the weights of the three specific connec-
tions (Thalamus, STN), (GPe, STN) and CCortex, STN) (from their original
values of Table 1) drastically increases the number of attractors of the BGT
network from 22 to 143 [5,6]. Therefore, it is rational to think that a targeted
modification of these weights by the adaptive STDP rule might drive the net-
work dynamics into a higher attractor complexity. This hypothesis is explored
by implementing a larger decrease-update exclusively for those specific connec-
tion strengths. Formally, the value of constant C = 5 in Eq. (1) was set to 5 for
these connections and kept to its default value of 1 for other connections. The
effect of this targeted adaptive STDP rule on the attractor-based complexity of
the network is illustrated in Fig. 4.

In this case, the attractor-based complexity of the network is indeed drasti-
cally higher by few orders of magnitude, but the stabilization process associated
with the increase of M has deteriorated. For M = 1 (black dotted trace), the
complexity is highly unstable, except in simulations 5, 7, 8, where the network
gets trapped into a minimal complexity of 1. The highest complexity of 1170
attractors is reached at the beginning of simulation 9. For M = 120, the com-
plexity is clearly more stable than for M = 1, but the stabilization is not as clear
as it was for the previous case of Fig. 3. We less systematically see plateaus of
stability that are of the same order as the memory length of 120 time steps. This
situation nevertheless occurs in simulations 3 (two plateaus of 25 and 42 attrac-
tors of 120 time steps). in simulations 6 (two plateaus of 89 and 198 attractors
of 120 and 121 time steps) and in simulation 8(two plateaus of 32 attractors of
durations 123 and 129 time steps). The network also sometimes gets trapped into
a minimal complexity of 1, like in simulations 9 and 10. The highest complexity
of 1735 attractors is reached at the beginning of simulation 10 and is maintained
during 11 time steps. For M = 240, the complexity is not significantly more
stable than for M = 120, and this contrasts with the previous case of Fig. 3.
However, except for simulation 1, the network is able to reach complexities that
are always equal or higher than for M = 120. The network remains trapped into
a minimal complexity of 1 in simulations 9 and 10. In simulation 6, the huge
complexity of 6126 attractors is reached maintained during 17 time steps.

5 Conclusion

We have proposed a novel adaptive STDP rule which allows the BGT network
to improve and stabilize its attractor-based complexity during its computational
process. The rule is based on an adaptive learning rate which varies according
to the attractor dynamics that the network continuously visits. We have shown
that the stability of the attractor complexity tends to increase as the network’s
memory becomes larger. We have also shown that a targeted adaptive STDP
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Fig. 3. Results of 10 simulations representing the variations of the attractor-based
complexity of the BGT network over time. For each simulation, the weight matrix of
the BGT network is initially randomly jittered. Then, the network is subjected to a
random input stream and its attractor based complexity computed at each time step.
The results for the network memory M = 1, 120, 240 are represented.

rule is able to drastically increase the complexity of the network, but at the
price of a less stable attractor dynamics.

For future work, the relationship between the synaptic patterns and the
attractor dynamics of neural networks is envisioned to be studied in more general
architectures, beyond the case study represented by the Boolean BGT network.
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Fig. 4. Results of 10 simulations representing the variations of the attractor-based
complexity of the BGT network over time. In this case, the network is subjected to a
targeted adaptive STDP rule where constant C = 5 for the three weights (Thalamus,
STN), (GPe, STN) and CCortex, STN) and C = 1 for all other weights (cf. Eq. 1). The
results for the network memory M = 1, 120, 240 are represented.
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