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Abstract—We consider a model of so-called hybrid recurrent
neural networks composed with Boolean input and output cells
as well as sigmoid internal cells. When subjected to some infinite
binary input stream, the Boolean output cells necessarily exhibit
some attractor dynamics, which is assumed to be of two possible
kinds, namely either meaningful or spurious, and which underlies
the arising of spatiotemporal patterns of output discharges. In
this context, we show that rational-weighted neural networks
are computationally equivalent to deterministic Muller Turing
machines, whereas all other models of real-weighted or evolving
neural networks are equivalent to each other, and strictly more
powerful than deterministic Muller Turing machines. In this
precise sense, the analog and evolving neural networks are
super-Turing. We further provide some precise mathematical
characterization of the expressive powers of all these neural
models. These results constitute a generalization to the current
computational context of those obtained in the cases of classical
as well as interactive computations. They support the idea
that recurrent neural networks represent a natural model of
computation beyond the Turing limits.

I. INTRODUCTION

In neural computation, understanding the computational
and dynamical capabilities of brain-like models represents an
issue of central importance. In this context, much attention has
been focused on comparing the computational capabilities of
various neural models to those of diverse abstract machines,
see [1]–[20]. As a consequence, the computational power of
neural networks has been shown to be intimately related to the
nature of their synaptic weights and activation functions, and
capable to range from finite state automata up to super-Turing
capabilities.

Besides, the hypothesis that neuronal information is pro-
cessed in time both individually and jointly following precise
time intervals was initially postulated when the nervous sys-
tem was conceptualized as dynamic networks of interacting
neurons [1], and experimentally demonstrated few years later
[21]. The combined activity in the neurons that are afferent to
a cell are necessaryily affecting its activity. Re-entrant activity
is likely to occur in most brain circuits due to the existence of
recurrent connections within most biological neural networks.
Thus, certain pathways within the networks are likely to be
potentiated or weakened by developmental and/or learning
processes, by affecting the number or the efficacy of synaptic
interactions between the neurons. It is rationale to suppose that
at short time scale, despite the plasticity of these phenomena,
the same input information presented in the network is evoking

very similar, if not identical, patterns of activity in a cell
assembly, referred here as a small circuit of functionally
interconnected neurons. Such recurring, ordered, and precise
patterns of activity correspond to ordered sequences of in-
terspike intervals, referred to as spatiotemporal patterns of
discharges or preferred firing sequences. Notably, the arising
of such spatiotemporal patterns of discharges is assumed to be
related to the attractor dynamics of the neural networks.

Following this global line of thought, Cabessa and Villa
initiated the study of the expressive power of recurrent neural
networks from the perspective of their attractor dynamics [12]–
[15]. They proved that Boolean recurrent neural networks
provided with some assignment of their attractors into two
different kinds are computationally equivalent to Muller au-
tomata, and hence recognize precisely the so-called ω-regular
neural languages. Consequently, the most refined topological
classification of ω-languages can be transposed from the
automaton to the neural network context, and yield to some
transfinite hierarchical classification of Boolean neural network
according to their attractor dynamics, which in turn represents
a new attractor-based complexity measurement for Boolean
recurrent neural networks [15].

Here, this precise research direction is pursued. More
precisely, we consider a model of so-called hybrid recurrent
neural networks composed with Boolean input and output
cells as well as sigmoid internal cells. When subjected to
some infinite binary input stream, the Boolean output cells
necessarily exhibit some attractor dynamics, which is assumed
to be of two possible kinds, namely either meaningful or
spurious, and which underlies the arising of spatiotemporal
patterns of output discharges. In this context, we show that
rational-weighted hybrid neural networks are computationally
equivalent to deterministic Muller Turing machines, whereas
all other models of real-weighted or evolving hybrid networks
are equivalent to each other, and strictly more powerful than
deterministic Muller Turing machines. In this precise sense,
the analog and evolving hybrid neural networks are super-
Turing. These results provide a precise generalization to the
current computational context of those obtained in the cases
of classical and interactive computations [10], [11], [16], [18]–
[20]. They further provide a step forward in the study of the
computational capabilities of brain-like models.
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II. PRELIMINARIES

For any k > 0, the space of k-dimensional Boolean vectors
is denoted by Bk. The spaces of finite and infinite sequences
of k-dimensional Boolean vectors are denoted by (Bk)∗ and
(Bk)ω , respectively. Any finite sequence s ∈ (Bk)∗ of length n
will be denoted by an expression of the form s = ~s(0) · · ·~s(n−
1), and any infinite sequence s ∈ (Bk)ω will be denoted by s =
~s(0)~s(1)~s(2) · · · , where each ~s(i) ∈ Bk. If s has length more
than n, we let s[0:n] denote the sequence consisting of the n
first elements of s, with the convention that s[0:0] is the empty
word. Moreover, for any x ∈ (Bk)∗ and y ∈ (Bk)∗ ∪ (Bk)ω ,
the fact that x is a prefix (resp. strict prefix) of y will be
denoted by x ⊆ y (resp. x ( y). Then, for any finite sequence
p ∈ (Bk)∗, we set p · (Bk)ω = {x ∈ (Bk)ω : p ( x}. In words,
p · (Bk)∗ is the set of infinite sequences which contain p as a
prefix.

As for the case of infinite words of bits [22], the space
(Bk)ω can naturally be equipped with the product topology
of the discrete topology on Bk. Accordingly, the basic open
sets of (Bk)ω are the sets of the form p · (Bk)ω , for some
prefix p ∈ (Bk)∗, and the general open sets of (Bk)ω are the
countable unions of basic open sets, namely the sets of the
form

⋃
i∈I pi · (Bk)ω , where I ⊆ N and each pi ∈ (Bk)∗.

The class of Borel subsets of (Bk)ω consists of the smallest
collection of subsets of (Bk)ω containing all open sets and
closed under countable union and complementation. The two
first levels Σ0

1 and Π0
1 of the Borel hierarchy consist of the

collections of all open and closed sets, namely:

Σ0
1 = {X ⊆ (Bk)ω : X is open}

Π0
1 = {X ⊆ (Bk)ω : Xc ∈ Σ0

1}

The two second levels Σ0
2 and Π0

2 of the Borel hierarchy are
the collections of countable unions of closed sets and countable
intersections of open sets, i.e.:

Σ0
2 = {X ⊆ (Bk)ω : X =

⋃

n∈N
Xn, Xn ∈ Π0

1}

Π0
2 = {X ⊆ (Bk)ω : X =

⋂

n∈N
Xn, Xn ∈ Σ0

1}

In this context, any Π0
2-set X of (Bk)ω can be written in the

form
X =

⋂

i≥0

⋃

j≥0

pi,j · (Bk)ω,

where each pi,j ∈ (Bk)∗. The Boolean combinations of Π0
2-

sets, denoted by BC(Π0
2), is the closure of the class Π0

2 by
finite Boolean operations on sets (i.e. union, intersection, and
complementation). The class BC(Σ0

2) is defined analogously,
and one clearly has BC(Π0

2) = BC(Σ0
2).

Besides, the space of infinite sequence of bits is denoted
by {0, 1}ω , and an element w ∈ {0, 1}ω is denoted by
w = w(0)w(1)w(2) · · · , where each w(i) ∈ {0, 1}. The space
{0, 1}ω can also be equipped with the product topology of
the discrete topology on {0, 1}, and the collection of open,
closed, and Borel sets can naturally be defined. In this infinite
word context, a Muller Turing machine M consists of a
Turing machine (TM) equipped with a so-called Muller table
T = {T1, . . . , Tk}, where each Ti is a subset of the states of

M. An infinite word w ∈ {0, 1}ω is said to be recognized by
M if the set of states visited infinitely often by M during
the processing of w belongs to its table T . The language
recognized by M, denoted by L(M), consists of the set of
all words recognized by M. It is known that any language
recognized by some deterministic Muller Turing machine
belongs to the class BC(Π0

2) of {0, 1}ω [22]. However, a
simple cardinality argument shows that not all BC(Π0

2)-sets
of {0, 1}ω can be recognized by some deterministic Muller
Turing machine.1 These results can be directly transposed in
the context of Turing machines working on (Bk)ω instead of
{0, 1}ω . Finally, in the sequel, any function or procedure that
can be computed or performed by some Turing machine will
be called recursive.

III. THE MODEL

We introduce a model of so-called hybrid recurrent neural
network which involves the consideration of both Boolean and
sigmoid cells, and whose output significance is related to the
attractor dynamics of its Boolean output cells.

A hybrid (or Boolean/sigmoid) recurrent neural network
(B/S-RNN) consists of a synchronous network of neurons
related together in a general architecture. The network contains
N internal sigmoid neurons (xi)

N
i=1, M Boolean input cells

(ui)
M
i=1, and P Boolean output cells (yi)Pi=1. The dynamics of

the network is computed as follows: given the activation values
of the input and internal neurons (uj)

M
j=1 and (xj)

N
j=1 at time

t, the activation values of each internal neuron xi and each
output neuron yi at time t + 1 are updated by the following
equations, respectively

xi(t+ 1) =

σ




N∑

j=1

aij(t) · xj(t) +
M∑

j=1

bij(t) · uj(t) + ci(t)


 ,

for i = 1, . . . , N (1)

yi(t+ 1) =

θ




N∑

j=1

aij(t) · xj(t) +
M∑

j=1

bij(t) · uj(t) + ci(t)


 ,

for i = 1, . . . , P (2)

where the aij(t), bij(t), and ci(t) are time dependent values
describing the weighted synaptic connections and weighted
bias of the network, σ is the classical saturated-linear activation
function defined by

σ(x) =





0 if x < 0

x if 0 ≤ x ≤ 1

1 if x > 1

and θ is the hard-threshold function defined by

θ(x) =

{
0 if x < 1

1 if x ≥ 1

1Indeed, there are ℵ0 Muller Turing machines and 2ℵ0 sets in BC(Π0
2).
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Hence, the dynamics of any B/S-RNN N is given by the
function fN : BM × BN → BN × BP naturally defined by

fN (~u(t), ~x(t)) = (~x(t+ 1), ~y(t+ 1)). (3)

where the components of ~x(t+ 1) and ~y(t+ 1) are given by
Equations (1) and (2), respectively.

Throughout this paper, six different models of B/S-RNNs
are considered according to whether the synaptic weights of
the networks are modelled by rational or real numbers, and to
whether these synaptic weights are either of a static nature, or
able to evolve over time among only two possible values, or
able to evolve over time among any possible values between
two designated bounds s and s′.

Accordingly, a B/S-RNN will be called rational if its
synaptic weights aij(t), bij(t), ci(t) are modelled by rational
numbers, and real or analog if its weights are modelled by
real numbers. It will be called static if its synaptic weights
remains constant over time, bi-valued evolving if its synaptic
weights might evolve among only two possible values over
time (for instance 0 and 1), and general evolving (or simply
evolving) if its synaptic weights might evolve among every
possible values between two bounds s and s′ imposed by the
biological constitution of the synapses. In order to designate
these six different neural models, the notations mentioned in
Table I will be employed.

TABLE I: The six models of B/S-RNNs according to whether
the synaptic weights of the network are modelled by rational
or real numbers of either a static or a bi-valued evolving or a
general evolving nature.

STATIC BI-VALUED EVOLVING EVOLVING

Q B/S-RNN[Q] Ev2-B/S-RNN[Q] Ev-B/S-RNN[Q]

R B/S-RNN[R] Ev2-B/S-RNN[R] Ev-B/S-RNN[R]

Note that since rational numbers are real numbers, any
rational B/S-RNN is a special case of a real B/S-RNN by
definition. Moreover, since static synaptic weights are evolving
weights that remain constant over time, any static B/S-RNN is
a special case of an evolving (bi-valued of general) B/S-RNN.
Also, any bi-valued evolving B/S-RNN is a special case of a
general evolving B/S-RNN. According to these considerations,
the relationships between the computational powers of the six
models of B/S-RNNs illustrated in Figure 1 hold.

Consider some B/S-RNN N provided with N sigmoid
cells, M Boolean input cells, and P Boolean output cells. For
each time step t ≥ 0, the Boolean vector

~u(t) = (u1(t), . . . , uM (t)) ∈ BM

describing the spiking configurations of the input units of N
at time t is the input submitted to N at time t. The pair

〈~x(t), ~y(t)〉 ∈ [0, 1]N × BP

describing the activation values and spiking configuration of
the internal and output cells at time t is the state of N at time
t. The second element of this pair, namely ~y(t), is the Boolean
state of N at time t.

B/S-RNN[Q]s

B/S-RNN[R]s

Ev-B/S-RNN[R]s

Ev2-B/S-RNN[R]s

Ev2-B/S-RNN[Q]s

Ev-B/S-RNN[Q]s

Equivalent to
det. Muller TMs
(inside BC(⇧0

2))

Strictly more powerful
than det. Muller TMs

(all BC(⇧0
2))

Fig. 1: Relationships between the computational powers of the
six models of B/S-RNNs. There is an arrow from one model
to the other if the former is less powerful than or equally
powerful to the latter. The relation represented by these arrows
is clearly transitive. In this paper, we show that B/S-RNN[Q]s
are computationally equivalent to deterministic Muller Tur-
ing machines (Theorem 1), and that the five other models
of Ev2-B/S-RNN[Q]s, Ev-B/S-RNN[Q]s, B/S-RNN[R]s, Ev2-
B/S-RNN[R]s, Ev-B/S-RNN[R]s are equivalent to each other,
and strictly more powerful than deterministic Muller Turing
machines (Theorem 2).

Assuming the initial state of the network to be
〈~x(0), ~y(0)〉 = 〈~0,~0〉, any infinite input stream

s = (~u(i))i∈N = ~u(0)~u(1)~u(2) · · · ∈ (BM )ω

induces via Equations (1) and (2) an infinite sequence of
consecutive states

cs = (〈~x(i), ~y(i)〉)i∈N
= 〈~x(0), ~y(0)〉〈~x(1), ~y(1)〉〈~x(2), ~y(2)〉 · · ·

∈ ([0, 1]N × BP )ω

called the computation of N induced by the input stream s.
The infinite sequence of Boolean states

c′s = (~y(i))i∈N = ~y(0)~y(1)~y(2) · · · ∈ (BP )ω

is the Boolean computation of N induced by the input stream
s.

Note that any B/S-RNN N necessarily contains finitely
many possible Boolean states (indeed, if N possesses P
Boolean output cells, then it contains at most 2P distinct
Boolean states). Consequently, for any Boolean computation
c′s, there necessarily exists at least one Boolean state that
recurs infinitely often in c′s. According to this observation,
any Boolean computation c′s consists of a finite prefix of
Boolean states followed by an infinite suffix of Boolean states
that repeat infinitely often – yet not necessarily in a periodic
manner. The non-empty set of all the Boolean states that repeat
infinitely often in c′s will be denoted by ∞(c′s). Now, a set of
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Boolean states of the form ∞(c′s) for some computation c′s
will be called an attractor for N [23]. A precise definition
can be given as follows:

Definition 1. Let N be some B/S-RNN. A set of Boolean
states A = {~y0, . . . , ~yk} ⊆ BP is an attractor for N if there
exists an input stream s such that the corresponding Boolean
computation c′s satisfies ∞(c′s) = A.

In words, an attractor ofN is a set of Boolean states into which
the network could become forever trapped – yet not necessarily
in a periodic manner –, for some Boolean computation c′s.

In this work, we suppose that attractors can be of two
distinct types, namely either meaningful or spurious. For
instance, the type of each attractor could be determined by its
topological features or by its neurophysiological significance
with respect to measurable observations, e.g. associated with
certain behaviors or sensory discriminations. For a referenced
discussion about meaningful and spurious attractors in bio-
logical neural networks, see [15, Section “Neurophysiological
Meaningfulness”]. The issue of the classification of the attrac-
tors into meaningful and spurious types is not the topic of
this paper. Rather, from this point onwards, we assume that
any B/S-RNN is already provided with a corresponding clas-
sification of all of its attractors into meaningful and spurious
types.

An infinite input stream s ∈ (BM )ω of N is then called
meaningful if ∞(c′s) is a meaningful attractor, and it is called
spurious if ∞(c′s) is a spurious attractor. The set of all
meaningful input streams ofN is called the neural language of
N and is denoted by L(N ). An arbitrary set of input streams
L ⊆ (BM )ω is said to be recognizable by some B/S-RNN if
there exists a network N such that L(N ) = L.

Finally, note that the concept of an attractor, when visited
in a periodic way, is directly related to that of a spatiotemporal
pattern. To illustrate this, suppose that a S/N-RNN N contains
three Boolean output cells y0, y1, y2, and that some infinite
input stream s induces the corresponding Boolean computation

c′s =
(

0
0
0

)(
1
1
1

) [(
0
0
1

)(
1
0
0

)(
0
1
1

)]ω

For this Boolean computation c′s, the corresponding attractor
is ∞(c′s) = {(0, 0, 1)T , (1, 0, 0)T , (0, 1, 1)T } and it is visited
in a periodic way. The visit of this attractor by the Boolean
computation c′s corresponds precisely to the spatiotemporal
pattern illustrated in Figure 2.

IV. RESULTS

In this section, we provide a precise characterization of the
computational powers of the six models of B/S-RNNs under
consideration. More precisely, we first show that the neural
languages recognized by B/S-RNN[Q]s are equivalent to those
recognized by deterministic Muller Turing machines, and thus
belong to the BC(Π0

2) of (BM )ω (Theorem 1). Next, we
prove that the five other models of Ev2-B/S-RNN[Q]s, Ev-B/S-
RNN[Q]s, B/S-RNN[R]s, Ev2-B/S-RNN[R]s, and Ev-B/S-
RNN[R]s are equivalent to each other, recognize the whole
class of BC(Π0

2) of (BM )ω , and therefore, are all strictly more
powerful than deterministic Muller Turing machines (Theorem
2). In this sense, these five neural models of computation are

y0(t)

y1(t)

y2(t)

0
@

1
0
0

1
A
0
@

0
1
1

1
A

0
@

0
0
1

1
A

Fig. 2: The spatiotemporal pattern corresponding to pe-
riodic suffix of the Boolean computation c′s. This spa-
tiotemporal pattern corresponds to the periodic occur-
rences of the Boolean states of the attractor ∞(c′s) =
{(0, 0, 1)T , (1, 0, 0)T , (0, 1, 1)T }. The lines under the spike
raster plots indicate the successive occurrences of the spa-
tiotemporal pattern.

super-Turing. These results are illustrated in Figure 1 above
and Table II below.

TABLE II: Computational power of the six models of B/S-
RNNs.

STATIC BI-VALUED EVOLVING EVOLVING

B/S-RNN[Q]s Ev2-B/S-RNN[Q]s Ev-B/S-RNN[Q]s

Q Turing (Muller) super-Turing super-Turing

∈ BC(Π0
2) = BC(Π0

2) = BC(Π0
2)

B/S-RNN[R]s Ev2-B/S-RNN[R]s Ev-B/S-RNN[R]s

R super-Turing super-Turing super-Turing

= BC(Π0
2) = BC(Π0

2) = BC(Π0
2)

We first characterize the computational power of (static)
B/S-RNN[Q]s.

Theorem 1. Let L ⊆ (BM )ω be some language. Then L
is recognizable by some B/S-RNN[Q] if and only if L is
recognizable by some Muller deterministic TM. In particular,
if L is recognizable by some B/S-RNN[Q], then L ∈ BC(Π0

2).

Proof: Let N be some B/S-RNN[Q] recognizing the language
L(N ). Since the synaptic weights of N are rational and
remain constant over time, Equations (1) and (2) are recursive,
and hence, the function fN described in Point (3) is also
clearly recursive. Consequently, there exists some TM M
with N + P work tapes which can simulate the behavior
of N by writing on its tapes the successive rational and
Boolean activations values of the N and P internal and
output cells of N , respectively. We next provide M with 2P

additional designated states q1, . . . , q2P , and we modify its
program in such a way that, after each simulation step, M
enters state qi iff N is in the i-th Boolean state ~bi ∈ BP ,
according to the lexicographic order. In this way, each infinite
input stream s ∈ (BM )ω induces on the one side, in the
network N , a computation cs with an associated attractor
∞(c′s) ⊆ BP , and on the other side, in the machine M,
an infinite run rs with an associated set of sates that are
visited infinitely often ∞(rs) of the form ∞(rs) = Q ∪ Q′,
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with Q′ ⊆ {q1, . . . , q2P } and Q′ 6= ∅. By construction,
for any infinite input streams s, s′ ∈ (BM )ω , the relation
∞(c′s) 6= ∞(c′s′) ⇒ ∞(rs) 6= ∞(rs′) holds. We can thus
define the following Muller table ofM, namely T = {∞(rs) :
∞(c′s) is a meaningful attractor for N , for any s ∈ (BM )ω}.2
According to this construction, one has s ∈ L(N ) iff ∞(c′s)
is a meaningful attractor iff ∞(rs) ∈ T iff s ∈ L(M).
Therefore, L(N ) = L(M), showing that L(N ) is recognized
by the deterministic Muller TM M.

Conversely, let M be some deterministic Muller TM with
table T = {T1, . . . , Tk} and with associated language L(M).
By the construction given in [6], there exists some sigmoid
rational-weighted RNNN which simulates the behavior ofM.
More precisely, if M contains n states q1, . . . , qn, we provide
N with P additional Boolean output cells y1, . . . , yP , with P
satisfying 2P ≥ n, and we update the simulation process such
that, during the processing of the input stream, the machine
M visits the state qk iff the network N activates the k-th
Boolean state ~bk, according to the lexicographic order, for k =
1, . . . , n. Next, for each element Ti = {qi1 , . . . , qik(i)

} of the
Muller table T of M, we set the meaningful attractor Ai =
{~bi1 , . . . ,~bik(i)

} in the network N . All other possible attractors
of N are considered to be spurious. In this way, for any infinite
input stream s ∈ (BM )ω , the infinite run rs of M satisfies
∞(rs) ∈ T iff the Boolean computation c′s of N satisfies that
∞(c′s) is a meaningful attractor. In other words, s ∈ L(M) iff
s ∈ L(N ). Therefore, L(M) = L(N ), showing that L(M) is
recognized by the B/S-RNN[Q] N .

Finally, the second part of the Theorem comes from the
previous equivalence and the fact that any language recognized
by some deterministic Muller TM is in BC(Π0

2) [22].

We now characterize the computational powers of the five
remaining models of B/S-RNNs.

Theorem 2. The five models of Ev2-B/S-RNN[Q]s, Ev-
B/S-RNN[Q]s, B/S-RNN[R]s, Ev2-B/S-RNN[R]s, and Ev-B/S-
RNN[R]s are all super-Turing equivalent. More precisely,
for any language L ⊆ (BM )ω , the following conditions are
equivalent:

1) L ∈ BC(Π0
2)

2) L is recognizable by some Ev2-B/S-RNN[Q]
3) L is recognizable by some Ev-B/S-RNN[Q]
4) L is recognizable by some B/S-RNN[R]
5) L is recognizable by some Ev2-B/S-RNN[R]
6) L is recognizable by some Ev-B/S-RNN[R]

The proof of Theorem 2 is achieved via the two following
Lemmas 1 and 2.

Lemma 1. Let L ⊆ (BM )ω . If L ∈ BC(Π0
2), then L is

recognizable by some B/S-RNN[R] and by some Ev2-B/S-
RNN[Q].

Proof: This proof is a generalization of the one given in [14,
Proposition 2]. We first consider the case of a B/S-RNN[R],
and then that of an Ev2-B/S-RNN[Q].

2Note that the relation ∞(c′s) 6= ∞(c′
s′ ) ⇒ ∞(rs) 6= ∞(rs′ ) ensures

that the table T is well defined, since it is impossible to have a situation
where ∞(c′s) is meaningful, ∞(c′

s′ ) is spurious, and ∞(rs) = ∞(rs′ ),
which would mean that ∞(rs) ∈ T , ∞(rs′ ) 6∈ T .

First of all, let L ⊆ (BM )ω such that L ∈ Π0
2. We will

consider the case of L ∈ BC(Π0
2) afterwards. Then L can be

written as
L =

⋂

i≥0

⋃

j≥0

pi,j · (BM )ω

where each pi,j ∈ (BM )∗. Hence, a given infinite input
s ∈ (BM )ω belongs to L iff for all index i ≥ 0 there exists
an index j ≥ 0 such that s ∈ pi,j · (BM )ω , or equivalently, iff
for all i ≥ 0 there exists j ≥ 0 such that pi,j ( s. Besides, as
described in details in [14], one can show that the infinite
sequence (pi,j)i,j∈N can be encoded into some single real
number rL such that, for any pair of indices (i, j) ∈ N×N, the
decoding procedure of (rL, i, j) 7→ pi,j is actually recursive.

According to these considerations, the problem of deter-
mining whether some input s ∈ (BM )ω provided step by
step belongs to L or not can be decided in infinite time by
the Algorithm 1 given below. This algorithm consists of two
subroutines performed in parallel. It uses the designated real
number rL (on line 12), and it is designed in such a precise
way that, on every input s ∈ (BM )ω , it returns infinitely many
1’s iff s ∈

⋂
i≥0
⋃

j≥0 pi,j · (BM )ω = L. Moreover, note that
if the designated real number rL is provided in advance, then
every step of Algorithm 1 is actually recursive.

Consequently, according to the real time computational
equivalence between rational-weighted RNNs and TMs [7],
there exists some RNN[Q] N1 such that, if the real number rL
is given in advance as the activation value of one of its neuron
x, then N1 is actually capable of simulating the behavior of
Algorithm 1. In particular, to perform line 4, one uses M
distinct cells in order to store the M Boolean components
of ~s(t) (see [7] for further details). Consequently, if one adds
to x a background synaptic connection of real intensity rL,
one obtains a RNN[R] N2 capable of simulating Algorithm 1.
Hence, if one further adds to N2 an additional binary output
cell y which is designed to take value 1 every time Algorithm
1 returns a 1, one obtains a B/S-RNN[R] N such that, on
every input s ∈ (BM )ω , the only output cell y will produce
infinitely many 1’s iff Algorithm 1 will return infinitely many
1’s, namely iff s ∈

⋂
i≥0
⋃

j≥0 pi,j ·(BM )ω = L. Consequently,
by taking {(1)} and {(0), (1)} as the two sole meaningful
attractors of N , one has L(N ) = L, meaning that L is
recognized by some B/S-RNN[R].

We now modify the proof in order to capture the case of
an Ev2-B/S-RNN[Q]. Towards, this purpose, we first mention
that the infinite sequence (pi,j)i,j∈N can be encoded into some
infinite word wL ∈ {0, 1}ω such that, for any pair of indices
(i, j) ∈ N × N, the decoding procedure of (wL, i, j) 7→ pi,j
is actually recursive. According to these considerations, we
modify Algorithm 1 by assuming that it receives the designated
infinite word wL bit by bit instead of having the designated
real number rL be provided in advance. One then replaces
lines 11 and 12 by the following two ones:

11: wait until pi,j has been encoded in wL and until c ≥ |pi,j |
12: decode pi,j from wL

Algorithm 1 can be performed by some Ev2-B/S-RNN[Q].
Indeed, in the B/S-RNN[R] N described above, one replaces
the static background activity of neuron x of real intensity
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Algorithm 1 Procedure which uses the designated real number rL

Require: Input s = ~s(0)~s(1)~s(2) · · · ∈ (BM )ω provided step by step at successive time steps t = 0, 1, 2, . . .

1: SUBROUTINE 1
2: c← 0 // c counts the number of letters of s
3: for all time step t ≥ 0 do
4: store each incoming Boolean vector ~s(t) ∈ BM

5: c← c+ 1
6: end for
7: END SUBROUTINE 1

8: SUBROUTINE 2
9: i← 0, j ← 0

10: loop
11: wait until c ≥ |pi,j | // wait until input s becomes at least as long as pi,j
12: decode pi,j from rL // recursive procedure if rL is given in advance, cf. [14]
13: if pi,j ⊆ s[0:c] then // in this case, s ∈ pi,j · (BM )ω

14: return 1 // for this i, there exists a j such that s ∈ pi,j · (BM )ω

15: i← i+ 1, j ← 0 // begin to test if s ∈ pi+1,0 · (BM )ω

16: else // in this case, s 6∈ pi,j · (BM )ω

17: return 0 // for this i, there is up to now no j such that s ∈ pi,j · (BM )ω

18: i← i, j ← j + 1 // begin to test if s ∈ pi,j+1 · (BM )ω

19: end if
20: end loop
21: END SUBROUTINE 2

rL by an evolving background activity of intensities wL =
wL(0)wL(1)wL(2) · · · ∈ {0, 1}ω . In this way, one obtains a
network N ′ whose all static synaptic weights are rational and
whose only evolving synaptic weight is bi-valued. We next
slightly modify this networks in order to perform correctly the
recursive updated lines 11 and 12 of Algorithm 1. One obtains
an Ev2-B/S-RNN[Q] N ′ such that, on every input s ∈ (BM )ω ,
the only output cell y of N ′ will produce infinitely many 1’s iff
updated Algorithm 1 will return infinitely many 1’s, namely
iff s ∈

⋂
i≥0
⋃

j≥0 pi,j · (BM )ω = L. Therefore, by taking
{(1)} and {(0), (1)} as the two sole meaningful attractors of
N ′, one obtains L(N ′) = L, meaning that L is recognized by
some Ev2-B/S-RNN[Q].

This concludes the proof for the case of L ∈ Π0
2. We finally

extend the proof for the case of L ∈ BC(Π0
2). Towards this

purpose, we show that any finite union and complementation
of a Π0

2 set can also be recognized by some B/S-RNN[R] and
by some Ev2-B/S-RNN[Q].

Firstly, let L = L1 ∪ L2 such that Li ∈ Π0
2, for i = 1, 2.

By the previous arguments, there exist two B/S-RNN[R]s (or
two Ev2-B/S-RNN[Q]s) N1 and N2 which recognize L1 and
L2, respectively. By suitably merging N1 and N2 into some
new network N , and by setting as meaningful attractors of
N all those involving at least one Boolean state for which at
least one of the two output cells is spiking, one obtains a B/S-
RNN[R] (or an Ev2-B/S-RNN[Q]) N that recognizes L1∪L2.
In other words, one has L(N ) = L1 ∪ L2 = L.

Secondly, let L ∈ Σ0
2. Then by definition, L{ ∈ Π0

2. By
the previous arguments, there exists a B/S-RNN[R] (or an
Ev2-B/S-RNN[Q]) N which recognizes L{ via some relevant
simulation of Algorithm 1. We now update N in a way
that its only binary output cell y takes value 1 every time
Algorithm 1 returns a 0 (instead of 1). One thus obtains

a B/S-RNN[R] (or an Ev2-B/S-RNN[Q]) N ′ such that, on
every input s ∈ (BM )ω , the only output cell y of N ′ will
produce infinitely many 1’s as well as only finitely many 0’s iff
Algorithm 1 will return infinitely many 0’s and finitely many
1’s, i.e. iff s 6∈ L{, i.e. iff s ∈ L. Consequently, by taking
{(1)} as the sole meaningful attractor of N ′, one obtains a
B/S-RNN[R] (or an Ev2-B/S-RNN[Q]) N ′ that recognizes L.
In other terms, L(N ′) = L.

Consequently, any finite union and complementation of a
Π0

2 set can be recognized by some B/S-RNN[R] and by some
Ev2-B/S-RNN[Q]. In other words, if L ∈ BC(Π0

2), then L
is recognizable by some B/S-RNN[R] and by some Ev2-B/S-
RNN[Q].

Lemma 2. Let L ⊆ (BM )ω . If is recognizable by some Ev-
B/S-RNN[R], then L ∈ BC(Π0

2).

Proof: Let L ⊆ (BM )ω be recognizable by some Ev-B/S-
RNN[R] N . Suppose that N contains the K meaningful
attractors Ai = {~bi1 , . . . ,~bik(i)

}, for i = 1, . . . ,K, where
1 ≤ i1 < . . . < ik(i) ≤ 2P , and where ~bn denotes the n-
th Boolean vector of BP according to the lexicographic order.

Note that the dynamics of N can naturally be associ-
ated with the function gN : (BM )ω → (BP )ω defined by
gN (s) = c′s, where c′s is the Boolean computation generated
by N when the infinite input stream s is received. The nature
of our dynamics ensures that this function is sequential, i.e.,
for any time step t ≥ 0, the Boolean vectors ~s(t) and ~c′s(t)
are generated simultaneously. Hence, gN is Lipschitz and
thus continuous, cf. [14, Lemma 1]. Besides, we recall for
the sequel that the preimage of a Π0

2 or a Σ0
2 set by some

continuous functions is also a Π0
2 or a Σ0

2 set, respectively.

According to these considerations, the language L(N ) can
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be expressed by the following sequence of equations:

L(N ) =
{
s ∈ (BM

)
ω

:∞(c
′
s) is a meaningful attractor

}
=
{
s ∈ (BM

)
ω

:∞(c
′
s) = Ai for some i = 1, . . . , K

}
=

K⋃
i=1

{
s ∈ (BM

)
ω

:∞(c
′
s) = Ai

}

=
K⋃

i=1

{
s ∈ (BM

)
ω

: for all j ∈ {i1, . . . , ik(i)},

gN (s) contains infinitely many ~bj ’s, and

for all j ∈ {1, . . . , 2P } \ {i1, . . . , ik(i)},

gN (s) contains finitely many ~bj ’s
}

=
K⋃

i=1

[ ⋂
j∈{i1,...,ik(i)}

{
s ∈ (BM

)
ω

: gN (s) has infinitely many ~bj ’s
}
∩

⋂
j∈
{1,...,2P }\
{i1,...,ik(i)}

{
s ∈ (BM

)
ω

: gN (s) has finitely many ~bj ’s
}]

=

K⋃
i=1

[ ⋂
j∈{i1,...,ik(i)}

{
s ∈ (BM

)
ω

:

gN (s) ∈
⋂
n≥0

⋃
m≥0

(BP
)
n+m ·~bj · (BP

)
ω

︸ ︷︷ ︸
c′s contains infinitely many ~bj ’s, i.e.

∀n ≥ 0 ∃m ≥ n ~c′s(n + m) = ~bj
thus in Π0

2

}
∩

⋂
j∈
{1,...,2P }\
{i1,...,ik(i)}

{
s ∈ (BM

)
ω

:

gN (s) ∈
( ⋂

n≥0

⋃
m≥0

(BP
)
n+m ·~bj · (BP

)
ω
){

︸ ︷︷ ︸
c′s contains only finitely many ~bj ’s, i.e.

complement of a Π0
2 -set

thus in Σ0
2

}]

=

K⋃
i=1

[ ⋂
j∈{i1,...,ik(i)}

g
−1
N

( ⋂
n≥0

⋃
m≥0

(BP
)
n+m ·~bj · (BP

)
ω
)

︸ ︷︷ ︸
preimage by a continuous function of a Π0

2 -set, thus in Π0
2

∩

⋂
j∈
{1,...,2P }\
{i1,...,ik(i)}

g
−1
N

(( ⋂
n≥0

⋃
m≥0

(BP
)
n+m ·~bj · (BP

)
ω
){)

︸ ︷︷ ︸
preimage by a continuous function of a Σ0

2 -set, thus in Σ0
2

]

It follows that L(N ) ∈ BC(Π0
2), since it consists of finite

unions and finite intersections of Π0
2 and Σ0

2 sets.

Proof of Theorem 2: Let L ⊆ (BM )ω such that L ∈ BC(Π0
2).

By Lemma 1, L is recognized by some Ev2-B/S-RNN[Q]
and by some B/S-RNN[R]. According to the relationships
between the computational powers of B/S-RNNs described in
Figure 1, L is also recognizable by some Ev-B/S-RNN[Q],
Ev2-B/S-RNN[R], and Ev-B/S-RNN[R]. This proves the five
implications from Point (1) to Points (2), (3), (4), (5), and (6).

Conversely, let L be recognized by some Ev2-B/S-
RNN[Q], some Ev-B/S-RNN[Q], some B/S-RNN[R], or some
Ev2-B/S-RNN[R]. By the relationships between the compu-
tational powers of B/S-RNNs described in Figure 1, L is
also recognizable by some Ev-B/S-RNN[R]. By Lemma 2,
L ∈ BC(Π0

2). This proves the five other implications from
Points (2), (3), (4), (5), and (6) to Point (1).

V. DISCUSSION

We have introduced the concept of a hybrid recurrent
neural network – or Boolean/sigmoid recurrent neural network

(B/S-RNN) – composed with Boolean input and output cells as
well as sigmoid internal cells. When subjected to some infinite
binary input stream, the Boolean output cells necessarily
exhibit some attractor dynamics, which is assumed to be of two
possible kinds, i.e. either meaningful or spurious, determined
for instance by some neurophysiological significance with
respect to measurable observations. The attractor dynamics are
the precise phenomena that underly the arising of spatiotempo-
ral patterns of discharges elicited by the output Boolean cells.
We have characterized the computational power of the hybrid
neural networks in terms of their attractor dynamics.

More precisely, we have considered six different models
of B/S-RNNs according to whether their synaptic weights are
modelled by rational or real numbers, and to whether the these
synaptic weights are either of a static nature, or able to evolve
over time among only two possible values, or able to evolve
over time among any possible values between two designated
bounds. We have characterized the computational power of
these recurrent neural networks as the topological complexity
of the set of input streams – referred to as their neural language
– which lead them to the visit of some meaningful attractors. In
this context, we have proven that rational-weighted static B/S-
RNNs are equivalent to deterministic Muller Turing machines
(Theorem 1), and that the five other models of B/S-RNNs
are, on the one hand, computationally equivalent one to the
other, and, on the other hand, strictly more powerful than
deterministic Muller Turing machines, hence capable of a
super-Turing computational power (Theorem 2). Precise math-
ematical characterizations of the neural languages recognized
by those B/S-RNNs are further provided. These results are
summarized in Figure 1 and Table II. They extend those
undertaken in [14].

Our achievements show that the incorporation of only
bi-valued evolving capabilities into rational recurrent neural
networks suffices to break the Turing barrier and achieve the
super-Turing level of computation. The consideration of any
more general mechanisms of architectural evolvability or the
incorporation of real synaptic weights in the model would actu-
ally not further increase the capabilities of the neural networks.
Consequently, these considerations allow us to drop any kind
of analogue or complex evolving-based assumption, and keep
only bi-valued synaptic plasticity in the neural models under
consideration, in order to achieve a maximal computational
power. These results provide a precise generalization to the
current computational context of those obtained for the cases
of classical as well as interactive computations [10], [11], [16],
[18]–[20]. They further support the idea that recurrent neural
networks provide a natural model of computation beyond the
Turing limits [17].

Our attractor-based approach to the computational capabil-
ities of recurrent neural networks is justified by the fact that, in
our model, the attractor dynamics of the neural networks are
the precise phenomena that underly the arising of spatiotem-
poral patterns of discharges – a feature that we consider to be
significantly involved in the processing of information in the
brain. In fact, several evidence exist of spatiotemporal firing
patterns in behaving animals, from rats to primates [24], [25],
where preferred firing sequences can be associated to specific
types of stimuli and behaviours. Such patterns have also been
observed in large scale neural network simulations [26] as the
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outcome of dynamical changes in synaptic weights, e.g. see
Figure 3. Besides, periodic attractors that are simple cases
of limit cycles, as well as attractors with non-integer, frac-
tal dimensions have been observed in experimental neuronal
data [27], [28], as well as in neuronal network simulations
[29]. Hence, despite being totally associated to deterministic
dynamics, the nonlinearities and the sensitivity to the initial
conditions make the trajectories of these fractal attractors
totally chaotic and let emerge strange attractors.

For future work, practical studies concerning the compu-
tational capabilities of biological or artificial neural networks
based on their attractor dynamics are envisioned to be carried
on in light of the present theoretical results. Furthermore, the
study of the computational capabilities of more biologically-
oriented neural models involved in more bio-inspired compu-
tational frameworks is expected to be pursued.

From a general perspective, we believe that such compar-
ative studies between the computational capabilities of neural
models and abstract machines might bring further insight to
the understanding of the intrinsic natures of both biological as
well as artificial intelligences.
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Fig. 3: The spatiotemporal pattern corresponding to a recurrent
sequence of the Boolean computation c′s. In this case the
recurrent occurrences of each state of the attractor ∞(c′s) =
{(., ., 1)T , (1, ., .)T , (., 1, 1)T } are defined following precise
time intervals: 〈y0, y1, y1, y2; 5, 2, 0〉.This pattern corresponds
to a spike of cell y0 followed 5 time units later by a spike of
cell y1, then another spike of cell y1 after 2 more time units
(i.e. t time units from pattern onset), and a spike of cell y2
after 0 t.u. (that means at the same time) from the previous
event.
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