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Abstract—The attractor-based complexity of a Boolean neural
network is a measure which refers to the ability of the network
to perform more or less complicated classification tasks of its
inputs via the manifestation of meaningful or spurious attractor
dynamics. Here, we study the attractor-based complexity of a
Boolean model of the basal ganglia-thalamocortical network. We
show that the regulation of the interactive feedback is significantly
involved in the maintenance of an optimal level of complexity. We
also show that the complexity of the network depends sensitively
on the values of its synaptic connections. These considerations
support the general rationale that the synaptic plasticity and the
interactive architecture play a crucial role in the computational
and dynamical capabilities of biological neural networks.

I. INTRODUCTION

In theoretical neural computation, neural networks are
generally considered as abstract computing systems and the
issue of their computational capabilities is investigated from
a theoretical computer scientist perspective [1]. As a conse-
quence, the computational power of various neural models
has been shown range from the finite state automata [2]–[4]
up to the Turing [5], [6] or to the super-Turing levels [7]–
[10]. More recently, the Turing and super-Turing capabilities
of recurrent neural networks have been extended to alternative
bio-inspired paradigms of computation, like reactive-system-
based computation [11]–[16] (i.e., abstract systems working
over infinite input streams) or interactive computation [17]–
[21] (i.e., abstract systems performing sequential exchange of
information with their environment).

In this context, based on biological considerations, Cabessa
and Villa initiated the theoretical study of the expressive power
of recurrent neural networks from the perspective of their
attractor dynamics [14]. They introduced a novel attractor-
based measure of complexity for Boolean recurrent neural
networks, and studied the complexity of a Boolean model of
the basal ganglia-thalamocortical network.

In the present paper, we provide a study of the attractor-
based complexity of a more complex Boolean model of
the basal ganglia-thalamocortical network, which takes into
account the synaptic plasticity by neuromodulators as well as
the bio-inspired interactivity of information processing [22]–
[26]. We show that the regulation of the interactive feedback
is significantly involved in the maintenance of an optimal
level of complexity. We also show that the complexity of
the network depends sensitively on the values of its synaptic
connections. These considerations support the general rationale

that both synaptic plasticity and interactive architecture play
a crucial role in the computational and dynamical capabilities
of biological neural networks.

II. ATTRACTOR-BASED MEASURE OF COMPLEXITY

Cabessa and Villa proposed an attractor-based measure of
complexity for Boolean recurrent neural networks [14]. More
precisely, it was shown that Boolean recurrent neural networks
provided with a classification of their attractors into meaning-
ful and spurious types are computationally equivalent to Muller
automata. The attractors of the Boolean network correspond
precisely to the cycles in the graph of their corresponding
Muller automaton, and, more generally, the possible evolutions
of the Boolean network correspond precisely to the possible
paths in the graph of their corresponding Muller automaton
(cf. Example 1 below). According to this equivalence, the
class of Boolean neural networks subjected to infinite input
streams recognize precisely the class of so-called ω-regular
neural languages. Consequently, the most refined topological
classification of ω-regular languages [27] can be transposed
from the automaton to the neural network context, and in turn,
yields to some hierarchical classification of Boolean neural net-
works according to their attractor dynamics. This classification
naturally induces an attractor-based measure of complexity for
Boolean recurrent neural networks. In short, the complexity
of a neural network corresponds to the length of a maximal
sequence of cycles (C0, . . . , Cn) in its corresponding Muller
automaton which satisfies the two following properties: firstly,
Ci is included in Ci+1, for i = 0, . . . , n− 1; secondly, Ci and
Ci+1 have opposite meaningfulness, for i = 0, . . . , n− 1 (cf.
Example 1) [11], [12], [14].

This complexity measure is therefore more related to the
dynamics of the networks than to their topology, even if the
two features are necessarily related. It notably refers to the
ability of the networks to perform more or less complicated
classification tasks via the manifestation of meaningful or
spurious attractor dynamics [14]–[16].

The following paradigmatic example (taken from [14])
illustrates the computation of the attractor-based complexity
of a Boolean neural network.
Example 1. Consider the Boolean recurrent neural network N
given in Figure 1 below. The network has two input cells u1

and u2 as well as three internal cells x1, x2, and x3. The
dynamics of the network is computed as follows: given the
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activation values of the input and internal neurons (uj)Mj=1 and
(xj)Nj=1 at time t, the activation values of the internal neurons
xi at time t+ 1 are updated by the following equation:

xi(t+ 1) =

θ

⎛

⎝
3∑

j=1

aij · xj(t) +
2∑

j=1

bij · uj(t) + ci

⎞

⎠ ,

for i = 1, 2, 3 (1)

where the aij , bij , and ci are the synaptic weights and bias
of the network, and θ is the classical hard-threshold activation
function defined by

θ(x) =

{
0 if x < 1
1 if x ≥ 1.

The activation states of the input units are represented by
Boolean vectors of the form (u1(t), u2(t))T , and hence, there
are 22 = 4 possible input states. The activation states of the
internal cells are represented by Boolean vectors of the form
(x1(t), x2(t), x3(t))T , and thus, there are 23 = 8 possible
states.

We recall that an attractor of Boolean neural network is
a set of states into which the dynamics of the network could
eventually become forever confined. Formally, an attractor of
N is a set of states A = {y⃗0, . . . , y⃗k} ⊆ B3 such that, for
some infinite input stream, the dynamics of N visits infinitely
often every state of A, and no other ones, from some time
step onwards. For instance, the following infinite periodic input
stream (where the “ω exponent” signifies that the pattern is
repeated ad infinitum)

s = [( 00 ) (
1
0 ) (

0
1 )]

ω

induces via Equation 1 the corresponding infinite sequence of
states of N

es=

(
0
0
0

)

t=0

[(
0
0
0

)(
1
0
0

)(
0
1
1

)]ω

.

t=1 t=2 t=3
t=4 t=5 t=6
t=7 ...

Hence, the set of states {(0, 0, 0)T , (1, 0, 0)T , (0, 1, 1)T } is
an attractor of N , since the dynamics of the networks re-
mains confined in that set of states from time step 1 on-
wards. In this example, we assume that the set of meaningful
and spurious attractors of N has been established by some
criterion, and that the sole meaningful attractor of N is
A = {(0, 0, 0)T , (1, 0, 0)T , (0, 1, 1)T }, all other ones being
spurious.

The Muller automaton AN associated to network N is
illustrated in Figure 2. The nodes of the automaton are the
states of N , and there is an edge from node s⃗i to node s⃗j
labelled by u⃗ if and only if the network switches from state
s⃗i to state s⃗j when it receives input u⃗. According to this
construction, the attractors of N correspond precisely to the
cycles in the graph of AN [14]. For instance, the meaningful
attractor A = {(0, 0, 0)T , (1, 0, 0)T , (0, 1, 1)T } corresponds to
the cycle depicted in boldface in Figure 2. More generally, the
possible evolutions of N correspond precisely to the possible
paths in the graph of AN . According to these considerations,
we define each cycle of AN as being meaningful or spurious

if and only if it corresponds to some meaningful or spurious
attractor of N , respectively.

The attractor-based complexity of the network N corre-
sponds to the length minus one of a maximal sequence of
cycles (C0, . . . , Cn) in the graph of corresponding Muller au-
tomaton AN which satisfies the two following properties [11],
[12], [14]:

1. Ci is included in Ci+1, for i = 0, . . . , n− 1;

2. Ci and Ci+1 have opposite meaningfulness, for i =
0, . . . , n− 1.

(we take the length of the sequence minus one instead of the
length in order to count the number of alternations of cycles
rather than the number of cycles). In this case, the attractor-
based complexity of N is 3−1 = 2, since one has the maximal
sequence of cycles (C0, C1, C2) given by

C0 =
{(

0
0
0

)
,
(

0
0
0

)}

C1 =
{(

0
0
0

)
,
(

1
0
0

)
,
(

0
1
1

)
,
(

0
0
0

)}

C2 =
{(

0
0
0

)
,
(

1
0
0

)
,
(

1
1
1

)
,
(

0
1
1

)
,
(

0
0
0

)}
.

This sequence of cycles satisfies the above conditions, since
C0 ⊆ C1 ⊆ C2, and C0 is a spurious cycles (since it corre-
sponds to some spurious attractor of N ), C1 is a meaningful
one (since it corresponds to the sole meaningful attractor of
N ), and C2 is a spurious one again (since it corresponds to
some spurious attractor of N ). Note that every cycle containing
C2 is also spurious, since it corresponds by definition to some
spurious attractor of N , and hence, the sequence (C0, C1, C2)
is indeed maximal according to the second condition (the suc-
cessive alternations between meaningful and spurious cycles).

x3

x2

x1

u1

u2

−1/21/2

1/2

1/2

1/2

1/2

1/2

Fig. 1. A simple first-order Boolean recurrent neural network with two input
cells u1 and u2 and three internal cells x1, x2 and x3.

III. BOOLEAN MODEL OF THE BASAL
GANGLIA-THALAMOCORTICAL NETWORK

We consider one of the main systems of the brain which
is involved in information processing: the basal ganglia-
thalamocortical network. This network has been investigated
for many years, in particular in relation to disorders of the mo-
tor system and of the sleep-waking cycle, see for instance [28]–
[39]. More generally, we assume that the encoding of a large
amount of the information treated by the brain is performed
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Fig. 2. The Muller automaton AN associated to the Boolean recurrent neural
network N . The nodes of AN are the states of N , and there is an edge from
node s⃗i to node s⃗j labelled by u⃗ if and only if the network N switches from
state s⃗i to state s⃗j when it receives input u⃗. According to this construction,
the cycles in the graph of AN correspond precisely to the attractors of N .
The boldface cycle corresponds to the sole meaningful attractor of N . Every
other cycle corresponds to some spurious attractor of N .

by recurrent patterns of activity circulating in the information
transmitting system of this network. For this reason, we focus
our attention on the complexity of the dynamics that may
emerge from that system. We consider a Boolean recurrent
neural network model of the information transmitting system
of the basal ganglia-thalamocortical network, and study the
attractor-based complexity of this network.

The basal ganglia-thalamocortical network is formed by
several parallel and segregated circuits involving different
areas of the cerebral cortex, striatum, pallidum, thalamus,
subthalamic nucleus and midbrain [40]–[49]. A characteristic
of all the circuits of the basal ganglia-thalamocortical network
is a combination of “open” and “closed” loops with ascending
sensory afferences reaching the thalamus and the midbrain,
and with descending motor efferences from the midbrain (the
tectospinal tract) and the cortex (the corticospinal tract). The
pattern of connectivity corresponds to the wealth of data
reported in the literature [40]–[49].

We assume that each brain area is formed by a neural
network and that the network of brain areas corresponding to
the basal ganglia-thalamocortical network can be modeled by a
Boolean neural network formed by 9 nodes: superior colliculus
(SC), Thalamus, thalamic reticular nucleus (NRT), Cerebral
Cortex, the two functional parts (striatopallidal and the stri-
atonigral components) of the striatum (Str), the subthalamic
nucleus (STN), the external part of the pallidum (GPe), and the
output nuclei of the basal ganglia formed by the GABAergic
projection neurons of the intermediate part of the pallidum and
of the substantia nigra pars reticulata (GPi/SNR).

We consider the ascending sensory pathway (IN), that
reaches SC and the Thalamus. SC sends a projection outside
of the system (OUT), to the motor system. Part of this
outgoing activity can be recurrently transmitted to the system
via the interactive1 connection int1. The thalamus sends exci-
tatory connections within the system via the thalamo-pallidal,
thalamo-striatal and thalamo-cortical projections. Notice that

1Here, an interactive connection refers to some connection that permits an
exchange of information between the network and its environment.

STN receives also an excitatory projection from the Thalamus.
NRT receives excitatory collateral projections from both the
thalamo-cortical and cortico-thalamic projections. In turn, NRT
sends an inhibitory projection to the Thalamus. The Cerebral
Cortex receives also an excitatory input from STN and sends
corticofugal projections to the basal ganglia (striatum and
STN), to the thalamus, to the midbrain and to the motor
system (OUT). Part of the activity sent out to the motor
system can be recurrently transmitted to the system via the
interactive connection int2. The only excitatory nucleus of the
basal ganglia is STN, that sends projections to the Cerebral
Cortex, to GPe and to GPi/SNR. In the striatum (Str) the stri-
atopallidal neurons send inhibitory projections to GPe and the
striatonigral neurons send inhibitory projections to GPi/SNR,
via the so-called “direct” pathway. The pallidum (GPe) plays
a paramount role because it is an inhibitory nucleus, with
reciprocal connections back to the striatum and to STN and a
downstream inhibitory projection to GPi/SNR via the so-called
“indirect” pathway. It is interesting to notice the presence of
inhibitory projections that inhibit the inhibitory nuclei within
the basal ganglia, thus leading to a kind of “facilitation”,
but also inhibitory projections that inhibit RTN, that is a
major nucleus in regulating the activity of the thalamus. We
emphasize the importance of the recurrent connections int1 and
int2, for they allow to capture the interactive dynamics of the
basal ganglia-thalamocortical network, which is assumed to
be significantly involved in the processing of information. Our
Boolean model of the basal ganglia-thalamocortical network
is illustrated in Figure 3 and its connectivity patterns given in
Table I.

IV. RESULTS

We study the attractor-based complexity of the Boolean
basal ganglia-thalamocortical network as a function of small
perturbations of its constitutive connections (i.e., those not
associated with any interactivity) as well as larger variations of
its interactive connections (int1 and int2). Overall, we notice
that the regulation of the interactive feedback plays a crucial
role in the maintenance of an optimal level of complexity.
There is always an optimal region for the interactive weights
outside of which the complexity of the network significantly
decreases. We also show that the network’s complexity de-
pends sensitively on the values of its constitutive connections.
Small perturbations of these weighted connections can highly
decrease, increase or subtly modify the overall complexity of
the network.

More precisely, fist of all, we preformed 1681 simulations
to compute the attractor-based complexity of the network as
a function of its two interactive weights int1 and int2, where
these latter are varying from −2 to 2 by steps of 0.1. The
results are reported in Figure 4.

We notice the existence of an optimal region for the
values of int1 and int2 where the complexity of the network
takes a maximal value of 6. Around this optimal region, the
complexity significantly falls to 0, 1, 2 or 3. Note that this
optimal region is ‘continuous’, in the sense of forming a well
defined block without holes, as opposed to smaller discon-
tinuous blocks of complexity 6 that would be disseminated
across the map. Hence, in the ‘middle’ of this optimal region,
for instance around the point (int1, int2) = (−0.5, 0.5), the
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Fig. 3. Boolean model of the basal ganglia-thalamocortical network. The
network is constituted of 9 different interconnected brain areas, each one
represented by a single node in the Boolean neural network model: superior
colliculus (SC), Thalamus, thalamic reticular nucleus (NRT), Cerebral Cortex,
the striatopallidal and the striatonigral components of the striatum (Str), the
subthalamic nucleus (STN), the external part of the pallidum (GPe), and
the output nuclei of the basal ganglia formed by the GABAergic projection
neurons of the intermediate part of the pallidum and of the substantia nigra
pars reticulata (GPi/SNR). We consider also the inputs (IN) from the ascending
sensory pathway and the motor outputs (OUT). The excitatory pathways are
labeled in blue and the inhibitory ones in orange. Part of the motor outputs can
be recurrently transmitted to the system via the two interactive connections
int1 and int2.

interactive weights int1 and int2 would be able to freely vary
in a relatively consequent neighborhood without compromizing
the optimal complexity of the network. In other words, in the
‘middle’ of this optimal region, the network’s complexity turns
out to be relatively robust to some potential changes of the
interactive connections in every possible direction. Moreover,
note that the point (int1, int2) = (0, 0), which corresponds
to the case where there is no interactivity at all (since both

weights are set to 0), is indeed located inside the optimal
region, but at the very border of it. Consequently, the absence
of interactivity corresponds to some highly unstable situation
in the neighborhood of which the network might have its
complexity significantly decreased. This observation supports
the idea that a certain non-null suitable amount of interactivity
is necessary for the obtention of an optimal complexity.

Overall, these considerations show that the values of the in-
teractive connections play a significant role in the maintenance
and robustness of an optimal level of complexity.

Fig. 4. Attractor-based complexity of the Boolean basal ganglia-
thalamocortical network as a function of its two interactive weights int1 and
int2. The weights int1 and int2 vary from −2 to 2 by steps of 0.1. The obtained
complexities are represented by colored squares of dimension 0.1× 0.1. The
scale of colors is shown at the right side of the plot. We see the existence of
an optimal region of complexity 6 surrounded by regions of complexities 0,
1, 2, and 3.

Secondly, we studied the variation of the attractor-based
complexity of the network as a function of small perturbations
of its constitutive weights. By slightly varying the weights
of the networks by ±0.2, one could obtain various patterns
of complexity with optimal regions ranging from values 0 to
9. For instance, Figure 5 illustrates a case where some small
perturbation of the synaptic weights of the network induces a
significant increase of its complexity to level 9.

We then studied the role of small perturbations of the
constitutive weights in a more precise way. For each weight

TABLE I. THE ADJANCENCY MATRIX OF THE BOOLEAN MODEL OF THE BASAL GANGLIA-THALAMOCORTICAL NETWORK.

Source Target
Node # Name IN SC Thalamus RTN GPi/SNr STN GPe Str-D2 Str-D1 CCortex

0 IN · 1 1 · · · · · · ·
1 SC int1 · 1 · · · · · · ·
2 Thalamus · · · 1 · 1 1 1 1 1
3 RTN · · -1 · · · · · · ·
4 GPi/SNr · -1 -1 -1 · · · · · ·
5 STN · · · · 2 · 2 · · 2
6 GPe · · · -1/2 -1/2 -1/2 · -1/2 -1/2 ·
7 Str-D2 · · · · · · -1 · · ·
8 Str-D1 · · · · -1/2 · -1/2 · · ·
9 CCortex int2 1/2 1/2 1/2 · 1/2 · 1/2 1/2 ·
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Fig. 5. Attractor-based complexity of the Boolean basal ganglia-
thalamocortical network as a function of its two interactive weights int1
and int2. The constitutive weights of the network have been slightly mod-
ified as follows: (IN,SC) = 1.0, (IN,Thalamus) = 1.1, (SC,Thalamus) =
1.0, (Thalamus,RTN) = 1.0, (Thalamus,STN) = 1.1, (Thalamus,GPe) =
0.9, (Thalamus,Str-D2) = 1.1, (Thalamus,Str-D1) = 0.8, (Thalamus,CCortex)
= 0.9, (RTN,Thalamus) = -1.0, (GPi/SNr,SC) = -0.9, (GPi/SNr,Thalamus)
= -1.0, (GPi/SNr,RTN) = -0.9, (STN,GPi/SNr) = 2.1, (STN,GPe) =
2.1, (STN,CCortex) = 2.1, (GPe,RTN) = -0.6, (GPe,GPi/SNr) = -0.6,
(GPe,GPi/STN) = -0.6, (GPe,Str-D2) = -0.6, (GPe,Str-D1) = -0.7, (Str-
D2,GPe) = -1.0, (Str-D1,GPi/SNr) = -0.6, (Str-D1,GPe) = -0.5, (CCortex,SC)
= 0.4, (CCortex,Thalamus) = 1.1, (CCortex,RTN) = 0.3, (CCortex,STN) =
0.5, (CCortex,Str-D2) = 0.3, (CCortex,Str-D1) = 0.3. The interactive weights
int1 and int2 vary from −2 to 2 by steps of 0.1. We see the existence of an
optimal region [0; 0.9] × [0; 0.9] of complexity 9 surrounded by regions of
complexities 0, 1 and 2.

w, we perturbed it by ±0.1, and, in each case, performed
441 simulations to compute the attractor-based complexity of
the corresponding network as a function of its two interactive
weights int1 and int1. We focused on the heterogeneous region
of [−0.5; 1.5] × [−0.5; 1.5] of Figure 4, where the network’s
complexity discloses the highest variability. The results are
reported in Figure 6. The five following patterns of variation
are observed:

1. A small perturbation of the weight has no or almost no
consequence on the complexity of the network. This situ-
ation is depicted in Figure 6(a). In this case, the weight
(Thalamus,GPe) varies from 0.9 to 1.1, and the complexity
remains unchanged. The same situation has been observed for
variations of 11 of the 30 weights.

2. A small decrease of the weight induces a total extinction
of the complexity of the network. This situation is depicted in
Figure 6(b). In this case, when the weight (GPi/SNr,Thalamus)
is decreased by 0.1, the global complexity of the network falls
to zero. The same situation has been observed for variations
of 9 of the 30 weights. It notably shows that certain weights’
perturbations might have a drastic negative effect on the
network’s complexity.

3. A small decrease of the weight induces a global decrease of
the complexity. This situation is depicted in Figure 6(c). It has
been observed for the sole case of the weight (Thalamus,RTN),

and shows that this specific weight’s perturbation might induce
an overall negative modulation of the network’s complexity.

4. A small decrease of the weight induces a global increase
of the complexity. This situation is depicted in Figure 6(d).
When the weight (GPe,Str-D2) is decreased by 0.1, the optimal
complexity of the network turns out to be globally increased
from 6 to 9. The same situation has been observed for
variations of 4 of the 30 weights.

5. A small decrease of the weight induces an increase of the
complexity over certain regions, and a decrease over others.
This situation is depicted in Figure 6(e). In this case, when the
weight (RTN,Thalamus) is decreased by 0.1, the complexity of
the network is rather modified, yet neither globally decreased,
nor globally increased. Part of the optimal region is increased
from complexity 6 to 7, and other regions are decreased
to complexity 0. The same situation has been observed for
variations of 3 of the 30 weights. These situations show that
certain weights’ perturbations might have complex or perhaps
more targeted effects on the network’s complexity.

Note that the complexity pattern of the network is affected in
cases of its original weights being decreased by 0.1; it always
remains unchanged when the weights are increased by 0.1.

Overall, the results show that network’s complexity de-
pends very sensitively on the variation of its constitutive
synaptic weights.

V. DISCUSSION

We studied the attractor-based complexity of a Boolean
model of the basal ganglia-thalamocortical network as a
function of large and small variations of its interactive and
constitutive connections, respectively.

First of all, we noticed the existence of a ‘continuous’
optimal region for the interactive weights outside of which the
complexity of the network significantly decreases. However,
we didn’t find any situation where the complexity of the
network in the absence of interactivity (given by the points
(0, 0) in Figures 4, 5 and 6) would be increased by the
addition of some interactive feedback. In fact, the total ab-
sence of interactivity always corresponds to unstable situations
where the complexity of the network is indeed maximal, but
absolutely not robust to potential variations of interactivity,
even minor ones (the points (0, 0) in Figures 4, 5 and 6 are
always at the border of the optimal region). Consequently, the
regulation of the interactive feedback plays an important role
in the maintenance and in the robustness of an optimal level
of complexity.

Secondly, we showed that the network’s complexity de-
pends sensitively on the values of its constitutive connections.
Small perturbations of these weighted connections can highly
decrease, increase or subtly modify the overall complexity of
the network. Therefore, the mechanism of synaptic plasticity
does highly influence the complexity of the network.

These considerations support the general rationale that
both synaptic plasticity and interactive architectures do play a
significant role in the computational and dynamical capabilities
of neural networks, and hence, in the processing of information
in biological neural networks.
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(a) Attractor-based complexity of the Boolean basal ganglia-
thalamocortical network as a function of its two interactive weights
int1 and int2. The weights int1 and int2 now vary from −0.5 to 1.5
by steps of 0.1, in order to focus on the more heterogeneous region
of complexities. This is a zoom of Figure 4 on this specific region.
The same situation is also obtained, for instance, when the weight
(Thalamus,GPe) varies from 0.9 to 1.1, by steps of 0.1.

(b) The weight (GPi/SNr,Thalamus) is slightly decreased to −1.1.
The complexity of the network totally falls down to zero

(c) The weight (Thalamus,RTN) is slightly decreased to 0.9. The
complexity of the network is globally decreased.

(d) The weight (GPe,Str-D2) is slightly decreased to −0.6. The
complexity of the network is globally increased.

(e) The weight (RTN,Thalamus) is slightly decreased to −1.1.
The complexity of the network is subtly modified, neither globally
decreased, nor globally increased.

Fig. 6. Attractor-based complexity of the network as a function of small perturbations of its synaptic weights. Five patterns of variation are observed and
reported in the subfigures (a)-(e).
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