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Abstract—We consider a simplified Boolean model of the basal
ganglia-thalamocortical network, and study the effect of a spike-
timing-dependent plasticity (STDP) rule on the stabilization of
its attractor dynamics. More precisely, we introduce an adaptive
STDP rule which constantly updates its learning rate based on
the attractors that the network encounters during a window of
past time steps. This so-called network memory is assumed to be
dynamic: its duration is step-wise increased every time a trigger
input pattern is detected, and is decreased otherwise. In this
context, we show that well-adjusted trigger inputs can fine tune
the network memory and its associated STDP rule in such a way
to drive the network into stable and rich attractor dynamics.
We discuss how this feature might be related to reward learning
processes in the neurobiological context.

I. INTRODUCTION

Boolean recurrent neural networks are simplified neural
models composed of interconnections of threshold units (Mc-
Culloch and Pitts cells) [1]. At each time step, the state of
such a network is a Boolean vector formed by the activation
values (quiet or firing) of its composing cells. It has early
been established that Boolean neural networks are computa-
tionnaly equivalent to finite state automata [1]-[3]. From a
computer science perspective, this result finds its relevance in
the possibility to implement finite state machines on parallel
hardwares [4]. In biology, this feature has been used to study
the dynamics of simplified neural networks. In particular,
the Boolean approach allows for a complete and systematic
analysis of the attractor dynamics of the networks [5].

In neural networks, attractor dynamics or quasi-attractor
dynamics have been associated to memories, motor behaviors,
perceptions and thoughts [6]-[11]. The chaotic intinerancy
between those would then correspond to sequences in thinking,
speaking and writing [12]-[16]. In addition, spatiotemporal
patterns of discharges—ordered precise spiking patterns that
recur above chance level—are likely to be the witnesses
of underlying attractor dynamics [17]-[19], and have been
observed in relation with specific stimuli or behaviors [20]-
[25]. Besides, the different forms of synaptic plasticity are
assumed to constitute “the basis for most models of learning,
memory and development in neural circuits” [26]. Amongst
those mechanisms, spike-timing-dependent plasticity (STDP)
refers to the biological Hebbian-like learning processes that
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modify the synaptic strengths based on the relative timings of
the pre- and post-synaptic spikes.

Based on these considerations, we considered a Boolean
model of the basal ganglia-thalamocortical network, and stud-
ied the effect of various control parameters on its attractor
dynamics [5], [27]-[29]. We showed that feedback regulation,
threshold excitability of the cells as well as global and local
weight modifications are all features that can, to some extent,
combine and compensate with each other in order to improve
and stabilize the attractor dynamics of the network. Moreover,
we introduced an adaptive STDP rule which, at each time step,
updates its learning rate based on the network memory—the
set of attractors that the net encounters during a window of
past time steps. We showed that, by means of this adaptive
STDP rule, the network is capable of improving its attractor
dynamics during its computational process [30], [31]

In this paper, we extend these results and study the effect
of a more refined STDP rule on the attractor dynamics
of the Boolean basal ganglia-thalamocortical network. More
precisely, we introduce the concept of a dynamical network
memory which is step-wise increased every time the network
encounters a specific trigger input pattern, and fades away
during the successive time steps as long as no other trigger
pattern occurs. We the propose an adaptive STDP rule based
on this dynamical memory. In this context, we show that well-
adjusted trigger inputs can fine tune the network memory and
its associated adaptive STDP rule in such a way to drive the
network into stable and rich attractor dynamics. In fact, the
frequency of the input patterns may combine with the duration
of the memory and lead to efficient attractor dynamics. We
discuss how this feature might be related to reward learning
processes in the neurobiological context.

II. BOOLEAN RECURRENT NEURAL NETWORKS AND
FINITE STATE AUTOMATA

A Boolean recurrent neural networks (BRNN) consists of a
network of binary neurons, i.e., cells whose activation values
are either firing (1) or quiet (0) [1]. The network N is
composed of M input neurons (uj)jle that receive external
signals from the environment, and N internal neurons () é\le
connected together recurrently. Given the activation values
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of the input neurons (u; (t));‘/[ ; and the internal neurons
(xj(t))jv 1 at time t, the activation values of the internal

neurons (z;(t+1))Y, at time ¢+ 1 are given by the following
equations:
N
1 =0 [ S50+ 3 b0 10+ et 0
= =

fori=1,...,N

where a;;(t) is the synaptic weight from z; to x;, b;;(t) is
the synaptic weight from u; to x;, and ¢;(t) is the background
activity or bias received by x;, all of them at time ¢. In ad-
dition, 6 is the hard-threshold activation function determining
the activation value (or neuronal state) of the cells, and defined

by
0(z) = {‘1)

If the weights and bias a;;, b;; and ¢; are not time-dependent,
the network is said to be static. Otherwise, the network is
called evolving. A static recurrent neural network is illustrated
in Figure 1A.

According to Equation (1), the dynamics of the whole
network A is described by the following system

x(t+1) = fo (A(t) -x(t) + B(t) - u(t) +c(t)) @)

where A(f) = (a;;(1)), B(t) = (biy(£)) and c(t) = (ci(t))
are the weight matrices and bias vector at time ¢, respectively,
and fp denotes the hard-threshold function 6 applied com-
ponentwise. The tuple of weight and bias matrices W (t) =
(A(t),B(t),c(t)) is the (weight) configuration of N at time
t. The Boolean vectors

u(t)

x(t) =

ifz<l1
if x > 1.

’LLM(t)) S BM
en (1)) € BY

(ul(t), ey
(z1(t)y ...,

are the input and internal states of A at time t, respec-
tively. The dynamics of N over u, denoted by AN (u), is
the sequence of successive internal states encountered by A
while processing some input stream u = u(0)u(l)u(2)---,
ie. N(u) = x(0)x(1)x(2)---. Any finite sequence of the
form x(0)x(1)---x(k — 1) € (B")* can naturally and
unambiguously be extended into an infinite one by adding
infinitely many null states O after x(k — 1). Hence, without
loss of generality, we can assume that any dynamics of A is
infinite. Finally, the evolution of N over u, denoted &(u), is
the sequence of successive configurations encountered by N
while processing input u, i.e. £(u) = W)W (1)W(2) - --

An attractor of N is a set of internal states into which the
dynamics of the network can get trapped, but not necessarily in
a periodic manner. Formally, a set X = {xq,...,xx} C BV
is an attractor of N if there exists some finite or infinite input
stream u = u(0)u(l)u(2)--- and some index ip € N such
that the corresponding dynamics N (u) = x(0)x(1)x(2) - -
satisfies x(7) € X, for all ¢ > ig.

In the case of static Boolean networks A/, the weight
matrices and biases do not change over time, which is formally

expressed as W(t) = W(t') for all t,# > 0. In this
context, it is established that static Boolean recurrent neural
networks (BRNN) are computationally equivalent to finite
state automata (FSA) [1]-[3]. More precisely, for any network
N, there exists a corresponding automaton A that can simulate
it (in a precise sense), and vice versa. In particular, given some
network N, the construction of an equivalent automaton A is
given as follows: the nodes of A correspond to the internal
states of \V, and there exists an edge from node x to x’ labelled
by u in A if and only if A/ moves from state x to x’ when
receiving the Boolean input u. This construction is illustrated
in Figure 1. According to this construction, the possible
dynamics of N correspond precisely to the various paths in the
graph of A. As a consequence, the cyclic dynamics—i.e., the
attractors—of N correspond precisely to the cyclic paths—
i.e., the cycles—of A [5]. Therefore, the set of attractors of
any static Boolean network can be computed explicitly: it
suffices to construct the corresponding finite automaton, and
then list all of its cycles. The set and number of attractors in a
static network N are denoted by A and n, respectively. where
n =|A|.

A

Fig. 1: A. Boolean neural network N with 2 input cells (blue) and
3 internal cells (red). B. The finite automaton A associated to the
network A/. The nodes of A are the internal states of A/, and there
is an edge from node x to node x’ labelled by u if and only if
network A switches from state x to state x’ when receiving input
u. The cycles in the graph of A correspond to the attractors of N
For instance, the boldface cycle corresponds to the attractor X =
{(0,0,0)",(1,0,0)",(0,1,1)"}.

The case of evolving Boolean networks is slightly more
complex. In this context, any configuration W(t) =
(A(t),B(t),c(t)) of N corresponds to a specific static net-
work, and thus, can be converted into a corresponding finite
automaton A(¢) in the way described previously. From this
automaton, one can compute the set of attractors of N at
time t (in the way described previously also), denoted by
A;, and the number of attractors of N at time t, given
by n; = |A¢|. In other words, the attractors of A at time
t are the attractors that the network could potentially visit
while staying in the static weight configuration W (t). If
the configuration W (t) changes over time, then so does the
associated automaton A(t), and thus also possibly the set
and number of attractors A; and n. According to these
considerations, for any input stream u = u(0)u(l)u(2)---,
the evolution £(u) = W(0)W(1)W(2)--- of A induces a
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corresponding sequence of finite automata A(0).4(1).A(2) - -,
which in turn gives rise to two sequences of sets and numbers
of attractors (A;)¢>0 and (n)¢>0, respectively. Note that the
set and number of attractors change across time as the network
processes input stream u. The varying attractor dynamics of
an evolving Boolean neural network processing a given input
stream 1is illustrated in Figure 2.

In this work, we assume that some relevant aspects of the
computational complexity of neural networks are related to
their attractor dynamics, and more specifically, to the number
of attractor that they possess. Consequently, in the sequel, we
will focus on the sequence (i.e., the variation) of numbers of
attractors (1), that the network encounters as it processes
its input stream.

u(0) u(1) u(2) u(3)

\Y \Y \Y \Y
!(_(\)) W) = z(1)|W(1)] = z(2)|W(2)| = Q‘) w(3)
(] (W]

A(0) A(1) A(2) A(3)
3 Ry 3 3
Ao, no A, Az, Az, n3

Fig. 2: An evolving Boolean recurrent neural network N processing
an input stream » = u(0)u(1)u(2) - - -. The blue triangles represent
the successive elements of u. The purple elements are the successive
states forming the dynamics N (u) = x(0)x(1)x(2)---. The red
elements are the successive (weight) configurations of the evolution
E(u) = W(O)W(1)W(2)---. The conjunction of each input
u(t), state x(¢) and configuration W (¢) determines the next state
x(t + 1) (cf. Equation (2)). The green elements form the sequence
of finite automata .4(0).4(1).A(2)--- associated to the successive
configurations of A. To each automaton .A(t) corresponds a set
and number of attractors A and n;, respectively. As the network
processes input stream w, its set and number of attractors varies across
time.

III. DYNAMIC MEMORY AND ADAPTIVE STDP RULE

In our context, the memory of a network consists of an
integer m > 0 representing a time interval. If the network has
a memory of m, then at any time steps ¢, it can “remember”
the attractors that were encountered during the m past time
steps of its dynamics. In this work, we introduce the concept
of a dynamic memory, i.e., a memory that can vary over time.
Accordingly, the network might have a more or less extended
knowledge of its past attractors as it progresses along its
dynamics (cf. Figure 3).

Formally, the dynamic memory of an evolving Boolean
neural network A is a sequence of positive integers (1), s
where each m; represents the memory at time step ¢. For
any input stream v = u(0)u(1)u(2)--- with corresponding
numbers of attractors (n;);>o and for any dynamic memory

(Mt);>0- the dynamic memory content of N is the sequence
of stacks' (M), recursively defined as follows:

ng if mg >0
My, = 3
0 0 ifmo=0 ©)

My = \.Mtﬂnt-i'ljmurl

where sz denotes the sequence obtained by concatenating
the elements of s with element x, and |s],, is the sequence
of the last n elements of s if |s| > n and |s|, = s otherwise.
In other words, the memory content M;; is obtained by
taking the last m;; elements of the content M, concatenated
with n;;;. Hence, each memory content M, is a stack of
length less or equal to m;. In the sequel, the minimum and
maximum elements of any memory content M, are denoted by
min(M;) and max(M;), respectively. The dynamic memory
of a network is illustrated in Figure 3.

memory memory
increased decreased
t—2 t—1 t t+1 t+2 t+3 t+4 t+5
@ @ @ \ 4 \ 4 L 4 L 4 @—> tlime
[re2 T u—r [ ne |= M,
[ T ne [ g |= My
[ [ e [ ema [ ar2 |= My
[re=i | ne [ mern [ muge [ Mg |= Migs

[ s [ eva | = Miqq

[es | nega | Regs | = Miys

Fig. 3: Evolution of the dynamic memory (m¢),., of a neural net-
work along its dynamics. The successive dynamic memory contents
(Mt),,, are represented by the colored striped. Each M; is a stack
of the form () or ny_y - - - ng, for some k > 0. At time steps ¢ and
t+ 1, the dynamic memory satisfies m; = m¢4+1 = 3 (blue pattern).
This means that the network remembers the number of attractors of
the last 3 time steps (including the current time step). At next time
steps t+2 and t+ 3, one has m42, m¢+3 > 5 (green pattern). In this
case, the network remembers more and more number of attractors,
up to the last 5 time steps. At time steps ¢ + 4 and ¢ + 5, one
has m¢y+4 = mu45 = 3 (red pattern). In these cases, the network
remembers the number of attractors of the last 3 time steps

A spike-timing dependent plasticity (STDP) rule modifies
the synaptic weights a;;(t) according to the spiking patterns
of the presynaptic and postsynaptic cells x; and x;. Usually,
the synaptic weight a;;(t) is increased (resp. decreased) by a
certain amount A, called the learning rate, if the presynaptic
cell z; spikes before (resp. after) the postsynaptic cell x; [32].
Recently, an adaptive STDP rule—where the learning rate
varies instead of remaining fixed over time—has been pro-
posed [31], [33]. Here, this adaptive STDP rule is generalized
to the context of dynamic memories.

A stack is simply a finite sequence s = sps1 - - - S,,. The empty stack is
denoted by @, and a single element stack is denoted as so.
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We consider the following adaptive STDP rule. For any
weight a;;, let I;; = [b;;,b;;] C R be a real interval. The
variation of a;; is then given as follows:

bij if R < bz’j
aij(t+1)=<¢R if by <R <D,
by; if R > by

R = a,(8) + M0 [ri(t + 1) -, (1) = i(t) -5t + 1)) (4

Note that the learning rate A(t) is time-dependent. At time
t+1, the synaptic weight a;;(t) is increased (resp. decreased)
by A(t) (up to the bounds of I;; = [b;;, b};]) if and only if the
presynaptic cell x; has spiked one time step before (resp. after)
the postsynaptic cell x;.

In our context, the evolution of the adaptive learning rate
A(t) is based on the memory of the network—which is itself
dynamic. More precisely, A\(¢) is defined as the image of n;
by the linear interpolation between two points (min(M;), Ay)
and (max(M;), A_), where A_, A\, € R are two bounds such

that A_ < Ay. Formally,
(n¢ —min(M¢))( A= — A1) if min(My)
At) = {M F RO () 2 max(0) (5)

At otherwise.

where

The computation of A(¢) is illustrated in Figure 4. The learning
rate A(t) has to be understood as follows. If n; = min(M;)
(resp. ny = max(My;)), then it means that the current number
of attractors of the network is at a minimal (resp. maximal)
level, i.e., ny; corresponds to the minimal (resp. maximal)
numbers of attractors remembered by the network during the
my last time steps. In this case, A(t) = Ay (resp. A(t) = A_).
This large (resp. low) learning rate will induce large (resp.
low) variations of the synaptic weights (cf. Equation (4)) with
the aim of destabilizing (resp. stabilizing) the current weight
configuration of the network. If min(M;) < ny < max(M,),
then Ay > A(t) > A_ according to the linear interpolation.
The closer n; is to min(M;) (resp. to max(My)), the closer
A(t) is to Ay (t) (resp. to A_(t)). If min(M;) = max(M;), the
network has settled into the same attractor dynamics during
the m; last steps. In this case, we set A\(¢) = A4 with the aim
of destabilizing the current configuration.

Observe that, at every time step t, if the network has no
memory, i.e., m; = 0, then M; = () (cf. Equation (3)), thus
A(t) = Ay for all ¢ > 0 (cf. Equation (5)), and therefore, the
network is subjected to a (classical) fixed-rate STDP rule. By
contrast, whenever the memory is strictly positive (i.e. m; >
0), the network is subjected to an adaptive STDP rule whose
learning rate depends on the crruent memory length m; and
number of attractors n;. This adaptive feature is crucial to the
improvement and stabilization of the attractor dynamics of the
network [30], [31].

In the sequel, the evolution of the network memory will be
based on some trigger patterns that the network encounters
throughout its dynamics. In fact, the memory will be signifi-
cantly increased every time the network encounters a specific
input pattern, and fades away during the successive time steps
as long as not other trigger pattern occurs.

n(t)

Fig. 4: The adaptive learning rate A(¢) is the image of n: by
the linear interpolation between the two points (min(M;), \4)
and (min(M), A—). As time progresses, the values min(M;) and
max (M) evolve along the z-axis. The interpolation lines (red) varies
in consequence.

min(M;) max(M;)

IV. BOOLEAN MODEL OF THE BASAL
GANGLIA-THALAMOCORTICAL NETWORK

Here, we consider a simplified Boolean model of the
Basal Ganglia-Thalamocortical (BGT) network, illustrated in
Figure 5A. The circuit processes sensorimotor information at
various levels of integration in brain activity [34]-[38]. We
assume that each brain area is represented by a Boolean node
in this circuit. The pattern of connectivity between the nodes
is based on the wealth of data reported in the literature, and
described in more details elsewhere [5]. The 9 nodes included
in the current BGT network correspond to the superior col-
liculus (node 1), the thalamus (node 2), the thalamic reticular
nucleus (node 3), the output nuclei of the basal ganglia formed
by the GABAergic projection neurons of the intermediate part
of the pallidum and of the substantia nigra pars reticulata (node
4), the subthalamic nucleus (node 5), the external part of the
pallidum (node 6), the striatopallidal (Str-D2, node 7) and the
striatonigral (Str-D1, node 8) components of the striatum, and
the cerebral cortex (node 9). The closed-loop architecture of
the network is implemented via feedback connections from
the efferent outputs to the input (IN, node 0). The weighting
pattern of the BGT network (Figure 5A) is given by the
adjacency matrix of Table 1. An analysis of its corresponding
finite automaton (Figure 5B) shows that this network possesses
22 attractors.

Table 1: Weight matrix of the Boolean model of the BGT network
of Figure 5A.

Target
Node 0 1 2 3 4 5 6 7 8 9

SC inty . 1

GPe . . . B/ Y- B /) . B/ ]
. . . . _1h . 1 . .
C. Cortex into h 1 h . h . h h
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Cerebral Cortex

ASCENDING
SENSORY PATHWAY

4

Fig. 5: A. Simplified Boolean model of the BGT network. Each
brain area is represented by a single Boolean unit. The network is
formed by 10 Boolean nodes: IN, SC, Thalamus, NRT, Cerebral
Cortex, Str-D1, Str-D2, STN, GPe, GPi/SNR. The excitatory and
inhibitory pathways are labeled in blue and orange, respectively.
B. Finite automaton associated to the Boolean model of the BGT
network of panel A with weight matrix given in Table 1. Each node of
the automaton is a Boolean state of the network. There is a blue or red
transition from node ¢ to node j if and only if the network switches
from state ¢ to state j when receiving input 0 or 1, respectively.
Modified figure from [31].

V. RESULTS

By means of computer simulations, we study the effect of
our adaptive STDP rule on the stabilization of the attractor
dynamics of the BGT network.

At the beginning of each simulation, every non-zero weight
a;; of Table 1 was jittered by a random uniform noise
€; ~ U(—0.1,0.5) in order to introduce some variabil-
ity in the original weights. In addition, based on empirical
considerations, the weight intervals were chosen as I;; =
[(aij + Eij) —0.2; (aij + 67;j) + 06], for all aij > 0. Then,
we provided the BGT network with a random input stream
U u(0)u(l)u(2)--- of length 3000 interspersed with
occurrences of a specific trigger pattern of size 10. The core
idea of this study resides in the assumption that the dynamic
memory of the network is reinforced by the occurrences of
the trigger pattern. Accordingly, we assume that the network
increases its memory by 150 every time a trigger pattern is
encountered. Afterwards, at each successive time step, the
memory is decreased by 1 as long as no other trigger pattern
is met. Formally, the dynamic memory (m;);>o is recursively
defined as follows:

mgy = 0
ifut—8)---u(t+1)is

150
et ©)

Myl the trigger pattern

max(m: — 1,0) otherwise

Furthermore, the extreme values of adaptive plasticity rates
are set to A_ = 0.0075 and A4 = 0.15.

At every time step, we computed the (largest strongly
connected component of) the finite automaton associated to the
BGT network, and in turn, the current number of attractors of

this latter, as described in Section II and illustrated in Figure 2.
We performed several simulations using the same random
seed, namely the same random input pattern v and jittered
weights a;; + ¢;;, but for different number of occurrences of
the trigger pattern. The results are reported in Figure 6.

The four plots of Figure 6 depict the evolutions in the
number of attractors of the BGT network processing a same
input stream interspersed with 5, 9, 19 and 26 trigger patterns,
respectively. It is clearly seen that the increase in the number
of the trigger patterns induces an increase in the stabilization—
or equivalently, a decrease in the fluctuation—of the network’s
number of attractors. This feature is rendered explicit in
Table 2, which shows that the average time during which
the attractor dynamics of the network remains stable clearly
increases as the number of trigger patterns is incremented. In
fact, each time a trigger pattern is received, the corresponding
increase in memory (cf. Equation (6)) enables the network
to “constitute a past” of its attractor dynamics, and in turn,
to adjust its learning rate so as to stabilize itself in the
maximal number of attractors that it has remembered so far
(cf. Equation (5)).

Amongst the four simulations, the most profitable is the
third where many stable periods of 41 attractors happen, as
well as 4 periods of 209 attractors. But the stability of the latter
higher regimes cannot be maintained during most part of the
dynamics. By contrast, in the fourth simulation, the attractor
dynamics is much more stable, but the higher regimes cannot
be reached anymore. In this case, the overabundance of trigger
patterns seems to favor an extreme stability at the expense of
some efficient variability.

The third simulation of Figure 6 is illustrated in more details
in Figure 7. The fluctuation of the number of attractors (black
trace), memory (red trace) and learning rate (green trace) are
represented. We clearly see how the memory accumulates as
the trigger patterns occur and fades away between those events.
We also remark the correlation between the low (resp. high)
values of A(¢) and the stable (resp. unstable) attractor regimes.
This shows that the memory-based fluctuations of the learning
rate manage to stabilize or destabilize the attractor regimes.

Table 2: Statistics about the fluctuation in the number of attractors for
the four simulations displayed in Figure 6. The number of fluctuations
is the number of times that the number of attractors changes during
the network dynamics. The maximum and average times refer to the
maximal and average continuous periods during which the network
keeps a same number of attractors.

Figure 6 plot 1 plot2 plot3 plot4
# trigger patterns 5 9 19 26
# fluctuations 707 584 187 71
maximum time 212 204 255 963
average time 4.24 5.13 16 34.34

Same statistics after the first trigger pattern has occured

# fluctuations 357 525 123 12
maximum time 212 204 255 963
average time 5.26 5.31 22.62  185.67
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Fig. 6: Evolution of the number of attractors of the BGT network
throughout its dynamic. The BGT network is subjected to a random
input stream of length 3000. During this process, a trigger pattern of
length 10 is inserted « times at random time steps, where = equals 5,
9, 19 and 26 in panel A, B, C' and D, respectively. The occurrences
of the trigger pattern are depicted by the blue segments. Every time
a trigger pattern occurs, the memory of the network is increased by
150, and then decreased by 1 at each successive time step as long
as no other trigger pattern is encountered. The value of the network
memory is represented as a color bar at the bottom of each plot
(whose scales are different). Notice that the more frequent the trigger
patter occurs, the more stable the attractor dynamics.

VI. CONCLUSION

The rationale underlying this study is that the number of
attractors would be significantly related to some aspect of com-
plexity in the information processing achieved by a Boolean
recurrent neural network [31], [33]. In fact, attractor dynamics
in the brain are likely to be associated with oscillatory pat-
terns observed throughout the basal ganglia-thalamocortical
circuit. Information about duration and identity of a neural
representation can be extracted from the relative phase of

memory

learning number of
attractors
o N
s 8
o &8 8
-
-
p

rate A(t)
o

0 10‘00 20‘00 30‘00
steps

Fig. 7: Details of the third simulation of Figure 6. The black trace
represents the evolution of the number of attractors over time (as
in Figure 6). The red trace represents the variation of the dynamic
memory over time. After every occurrence of a trigger pattern (blue
dot), the memory is in increased by 150. The green trace represents
the fluctuation of the learning rate A(¢) of the STDP rule. Note the
correlation between the low (resp. high) values of A\(¢) and the stable
(resp. unstable) regions of the attractor dynamics: when A(t) is low,
the STDP rule has almost no influence on the weights, and hence the
number of attractors of the network remains constant.

the oscillations [39]. Synaptic plasticity mechanisms can lead
to changes in synchronized activity, and in turn, affect the
dynamics of learning [40].

The current work introduces the concept of dynamic mem-
ory and assumes the existence of an adaptive STDP rule
whose variation depends on this memory. In short, the network
constantly updates the memory it has about its attractor
dynamics, and its synaptic plasticity mechanism changes ac-
cordingly. This general approach underlying this idea is that
the conjunction of unsupervised and self-organizing processes
should lie at the core of brain computations, and are necessary
for the achievement of efficient representations of information.
Here, we assume the existence of a pattern recognition system
that would trigger a reward-driven process, which in turn
would induce changes in the network memory. Afterwards,
based on its current memory, the network modifies its learning
rate by comparing the richness of its current and remembered
attractor dynamics. This possibility for the network to assess
its attractor dynamics would be achieved by means of bio-
chemical signals, rather than by the possibility to really count
the number of attractors.

Cortico-basal ganglia-thalamo-cortical loops were recog-
nized to play a crucial role in temporal sequence storage
and regeneration [41]. The biological mechanism underlying
these phenomena are the relations between memory storage,
synaptic plasticity and calcium dynamics [42], as well as
the perturbation of working memory timing mediated by
dopaminergc reward pathways [43]. This dynamic memory
model is supported by evidence of modifiable sensory re-
sponses modulated by reinforcement signals occurring in the
basal ganglia [44]. Reward information via dopaminergic and
other modulatory pathways (e.g., cholinergic, serotoninergic)
of the basal ganglia is integrated with the control of voluntary
movements performed by a cooperative activation of the
striatopallidal and striatonigral pathways [45], [46]. Along the
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same line, it was observed that dysfunctions of the reward
signals are distinctive feature of the addicted brain [47].

In conclusion, the dynamic memory-based STDP rule in-
troduced here provides a model for interpreting features of
learning dynamics observed in experimental studies. In this
work, we have assumed the existence of pattern recognition
and reward circuits. In future work, we intend to elaborate a
more complete model with those circuits taken into consider-
ation.
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