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Abstract. We present a complete overview of the computational power of recurrent
neural networks involved in an interactive bio-inspired computational paradigm.
More precisely, we recall the results stating that interactive rational- and real-
weighted neural networks are Turing-equivalent and super-Turing, respectively. We
further prove that interactive evolving neural networks are super-Turing, irrespective
of whether their synaptic weights are modeled by rational or real numbers. These
results show that the computational powers of neural nets involved in a classical or
in an interactive computational framework follow similar patterns of characteriza-
tion. They suggest that some intrinsic computational capabilities of the brain might
lie beyond the scope of Turing-equivalent models of computation, hence surpass the
potentialities every current standard artificial models of computation.

1 Introduction

Understanding the computational and dynamical capabilities of biological neural
networks represents an issue of central importance. In this context, much interest
has been focused on comparing the computational powers of diverse theoretical
neural models with those of abstract computing devices. Nowadays, the computa-
tional capabilities of neural models is known to be tightly related to the nature of
the activation function of the neurons, to the nature of their synaptic connections,
to the eventual presence of noise in the model, to the possibility for the networks to
evolve over time, and to the computational paradigm performed by the networks.
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This comparative approach has been initiated by McCulloch and Pitts who pro-
posed a modeling of the nervous system as a finite interconnection of logical de-
vices [43]. For the first time, neural networks were considered as discrete abstract
machines, and the issue of their computational capabilities investigated from the
automata-theoretic perspective. In this context, Kleene and Minsky proved that
recurrent neural networks with Boolean activation functions are computationally
equivalent to classical finite state automata [38, 44]. In Minsky’s own words [44]:

It is evident that each neural network of the kind we have been considering is a finite-
state machine. [. . . ] It is interesting and even surprising that there is a converse to this.
Every finite-state machine is equivalent to, and can be simulated by, some neural net.

The simulation of finite state machine by various kinds of recurrent neural networks
has further been studied for instance in [2, 27, 3, 39, 31, 48].

These foundational works opened up the way to the theoretical approach to neural
computation. But the purely discrete and mechanical approach adopted by McCul-
loch and Pitts quickly appeared too restrictive, far from the biological reality. The
neurons that they considered were too similar to classical logic gates, and the struc-
ture of the networks was too rigid to allow a biologically plausible implementation
of learning.

In 1948, Turing made a step forward by showing the possibility of surpassing
the capabilities of finite state machines and reaching Turing universality via neu-
ral networks called B-type unorganized machines [65]. The networks consisted of a
specific interconnection of NAND neurons, and the consideration of infinitely many
such cells could simulate the behavior of a Turing machine. The Turing universal-
ity of neural networks involving infinitely many binary neurons has further been
investigated in many directions, see for instance [49, 28, 20, 19, 52].

Moreover, in the late 50’s, von Neumann proposed a particularly relevant
approach to the issue of information processing in the brain from the hybrid per-
spective of digital and analog computation [47]. He considered that the non-linear
character of the operations of the brain emerges from a combination of discrete and
continuous mechanisms, and therefore envisioned neural computation as something
strictly more powerful than abstract machines, in line with Turing’s positions.

Almost at the same time, Rosenblatt proposed the perceptron as a more gen-
eral computational neural model than the McCulloch-Pitts units [51]. The essential
innovation was the introduction of numerical synaptic weights and a special pat-
tern of interconnection. This neural model gave rise to an algorithmic framework of
learning achieved by adjusting the synaptic weights of the neuronal connections ac-
cording to some specific task to be completed. The computational capabilities of the
perceptron were further analyzed by Minsky and Papert [45]. These results repre-
sent the main achievements concerning the computational power of neural systems
until the mid 90’s.

In 1995, Siegelmann and Sontag proved the possibility of reaching Turing univer-
sality with finite neural networks. By considering rational synaptic weights and by
extending the activation functions of the cells from Boolean to linear-sigmoid, the
corresponding neural networks have their computational power drastically increased
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from finite state automata up to Turing machines [60, 32, 46]. Kilian and Siegelmann
then generalized the Turing universality of neural networks to a broader class of sig-
moidal activation functions [37]. The computational equivalence between so-called
rational recurrent neural networks and Turing machines has now become standard
result in the field.

Moreover, following von Neumann considerations, Siegelmann and Sontag as-
sumed that the variables appearing in the underlying chemical and physical phe-
nomena could be modeled by continuous rather than discrete (rational) numbers,
and therefore proposed a precise study of the computational power of recurrent neu-
ral networks from the perspective of analog computation [56]. They introduced the
concept of an analog recurrent neural network as a classical linear-sigmoid neu-
ral net equipped with real- instead of rational-weighted synaptic connections, and
proved that such analog recurrent neural networks are computationally equivalent to
Turing machines with advices, hence capable of super-Turing computational power
from polynomial time of computation already [59, 58]. This analog information pro-
cessing model turns out to be capable of capturing non-linear dynamical properties
that are most relevant to brain dynamics, such as rich chaotic behaviors [35, 62, 63],
as well as dynamical and idealized chaotic systems that cannot be described by the
universal Turing machine model [55]. According to these considerations, they for-
mulated the so-called Thesis of Analog Computation – an analogous to the Church-
Turing thesis, but in the realm of analog computation – stating that no reasonable
abstract analog device can be more powerful than first-order analog recurrent neural
networks [59, 55]. A proper internal hierarchical classification of analog recurrent
neural networks according to the Kolmogorov complexity of their underlying real
synaptic weights has further been described in [5].

Besides, central in neural computation is the issue of noise, and a natural question
to be addressed concerns the robustness of the computational power of neural net-
works subjected to various kinds of noise. In this context, it has been shown that the
presence of analog noise would generally strongly reduce the computational power
of the underlying systems to that of finite state automata, or even below [40, 41, 6].
On the other hand, the incorporation of some discrete source of stochasticity would
rather tend to increase or maintain the capabilities of the neural systems [57].

But the neural models considered up to that point were generally oversimplified,
lacking many biological features which may be essential to the information process-
ing in the real brain. In particular, the evolving capabilities of biological networks
had not been taken into consideration in the studies of the computational capabilities
of neural models.

In fact, it is nowadays widely admitted that biological mechanisms like synap-
tic plasticity, cell birth and death, changes in connectivity, etc., are intimately
related to the storage and encoding of memory traces in the central nervous sys-
tem, and provide the basis for most models of learning and memory in neural net-
works [1, 42]. More precisely, the embryonic nervous system is initially driven
by genetic programs that control neural stem cell proliferation, differentiation and
migration through the actions of a limited set of trophic factors and guidance
cues. After a relatively short period of stable synaptic density, a pruning process
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begins: synapses are constantly removed, yielding a marked decrease in synaptic
density due to apoptosis – genetically programmed cell death – and selective axon
pruning [34]. Overproduction of a critical mass of synapses in each cortical area may
be essential for their parallel emergence through competitive interactions between
extrinsic afferent projections [15]. Background activity and selected patterns of af-
ferent activity are likely to shape deeply the emergent circuit wiring [53]. Synapses
can change their strength in response to the activity of both pre- and post-synaptic
cells following spike timing dependent plasticity (STDP) rules [50]. Developmen-
tal and/or learning processes are likely to potentiate or weaken certain pathways
through the network by affecting the number or efficacy of synaptic interactions
between the neurons [33]. Despite the plasticity of these phenomena, it is ratio-
nale to suppose that whenever the same information is presented in the network, the
same pattern of activity is evoked in a circuit of functionally interconnected neu-
rons, referred to as cell assembly [29]. In cell assemblies interconnected in this way,
some ordered sequences of interspike intervals will recur. Such recurring, ordered,
and precise (in the order of few ms) interspike interval relationships are referred
to as spatiotemporal patterns of discharges or preferred firing sequences. Several
evidence exist of spatiotemporal firing patterns in behaving animals, from rats to
primates [74, 54], where preferred firing sequences can be associated to specific
types of stimuli or behaviors.

In the context of AI, the consideration of such evolving neural architectures in
so-called Evolving Connectionist Systems (ECoS) has proven to be fruitful, and sig-
nificantly increased in applications in the recent years [36, 76]. From a theoretical
perspective, Turova and Villa showed that neural networks with embedded spike
timing-dependent plasticity are able to exhibit a sustained level of activity under
special choice of parameters [66, 67]. More recently, Cabessa and Siegelmann, in-
troduced and studied the computational capabilities of a biologically oriented neural
model where the synaptic weights, the connectivity pattern, and the number of neu-
rons can evolve rather than stay static [10]. They proved that the so-called evolving
recurrent neural networks are super-Turing, equivalent to static analog networks,
irrespective of whether their synaptic weights are modeled by rational or real num-
bers. Consequently, the consideration of architectural evolving capabilities in a basic
neural model provides an alternative and equivalent way to the incorporation of the
power of the continuum towards the achievement of super-Turing computational
capabilities.

Besides, in the general context of modern computation, the classical computa-
tional approach from Turing [64] has been argued to “no longer fully corresponds to
the current notion of computing in modern systems” [73] – especially when it refers
to bio-inspired complex information processing systems. In the brain (or in organic
life in general), information is rather processed in an interactive way [78, 23], where
previous experience must affect the perception of future inputs, and where older
memories may themselves change with response to new inputs.

In fact, the cerebral cortex is not a single entity, but an impressive network formed
by an order of tens of millions of neurons, most of them excitatory, and by about
ten times more glial cells. Ninety percent of the inputs received by a cortical area
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come from other areas of the cerebral cortex. As a whole, the cerebral cortex can be
viewed as a machine talking to itself, and could be seen as one big feedback system
subject to the relentless advance of entropy, which subverts the exchange of mes-
sages that is essential to continued existence [79]. This concept of interdependent
communications systems, also known as systems theory, coupled with Wiener’s as-
sertion that a machine that changes its responses based on feedback is a machine
that learns, defines the cerebral cortex as a cybernetic machine. Therefore, the focus
of investigation is shifted from communication and control to interaction. Systems
theory has traditionally focused more on the structure of systems and their models,
whereas cybernetics has focused more on how systems function, that is to say how
they control their actions, how they communicate with other systems or with their
own components. However, structure and function of a system cannot be understood
in separation, and cybernetics and systems theory should be viewed as two facets of
the neuroheuristic approach [4, 61, 75].

Following these considerations, Cabessa and Villa initiated the study of the com-
putational power of recurrent neural networks from the perspective of interac-
tive computation [12]. They proved that various kinds of Boolean recurrent neural
networks involved in a reactive computational scenario are computationally equiv-
alent to Büchi and Muller automata. From this equivalence, they deduced a transfi-
nite hierarchical classification of Boolean recurrent neural networks based on their
attractor properties [12, 8]. Cabessa and Villa also provided a description of the
super-Turing computational power of analog recurrent neural networks engaged in
a similar reactive computational scenario [13]. Besides, Cabessa and Siegelmann
provided a characterization of the Turing and super-Turing capabilities of rational
and analog recurrent neural networks involved in a more bio-inspired interactive
computational paradigm [11].

Finally, Cabessa proved that neural models combining the two crucial features of
evolvability and interactivity were actually capable of super-Turing computational
capabilities, irrespective of whether their synaptic weights are modeled by rational
or real numbers [9, 14].

In this chapter, we first review the main results concerning the Turing and super-
Turing capabilities of classical and interactive recurrent neural networks, and next
provide a detailed proof of these last results stated in [9, 14].

2 Preliminaries

Given some finite alphabet Σ , we let Σ∗, Σ+, Σn, and Σω denote respectively the
sets of finite words, non-empty finite words, finite words of length n, and infinite
words, all of them over alphabet Σ . We also let Σ≤ω = Σ∗ ∪Σω be the set of all
possible words (finite or infinite) over Σ . The empty word is denoted λ .

For any x ∈ Σ≤ω , the length of x is denoted by |x| and corresponds to the number
of letters contained in x. If x is non-empty, we let x(i) denote the (i+ 1)-th letter
of x, for any 0 ≤ i < |x|. The prefix x(0) · · ·x(i) of x is denoted by x[0:i], for any
0 ≤ i < |x|. For any x ∈ Σ∗ and y ∈ Σ≤ω , the fact that x is a prefix (resp. strict prefix)
of y is denoted by x ⊆ y (resp. x ! y). If x ⊆ y, we let y− x = y(|x|) · · ·y(|y|− 1)
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be the suffix of y that is not common to x (if x = y, then y− x = λ ). Moreover, the
concatenation of x and y is denoted by x · y.

Given some sequence of finite words {xi : i ∈N} such that xi ⊆ xi+1 for all i ≥ 0,
one defines the limit of the xi’s, denoted by limi≥0 xi, as the unique finite or infinite
word which is ultimately approached by the sequence of growing prefixes {xi : i ≥
0}. Formally, if the sequence {xi : i ∈ N} is eventually constant, i.e. there exists
an index i0 ∈ N such that x j = xi0 for all j ≥ i0, then limi≥0 xi = xi0 , meaning that
limi≥0 xi corresponds to the smallest finite word containing each word of {xi : i ∈N}
as a finite prefix; if the sequence {xi : i∈N} is not eventually constant, then limi≥0 xi
corresponds to the unique infinite word containing each word of {xi : i ∈ N} as a
finite prefix.

A function f : Σ∗ → Σ∗ is called monotone if the relation x ⊆ y implies f (x) ⊆
f (y), for all x,y ∈Σ∗. It is called recursive if it can be computed by some Turing ma-
chine. Throughout this paper, any function ϕ : Σω → Σ≤ω mapping infinite words
to finite or infinite words will be referred to as an ω-translation.

Note that any monotone function f : {0,1}∗ → {0,1}∗ induces “in the limit” an
ω-translation fω : {0,1}ω → {0,1}≤ω defined by

fω (x) = lim
i≥0

f (x[0:i])

for all x ∈ {0,1}ω . The monotonicity of f ensures that the value fω (x) is well-
defined for all x ∈ {0,1}ω . In words, the value fω (x) corresponds to the finite or
infinite word that is ultimately approached by the sequence of growing prefixes
{ f (x[0:i]) : i ≥ 0}.

According to these definitions, an ω-translation ψ : {0,1}ω → {0,1}≤ω will be
called continuous1 if there exists a monotone function f : {0,1}∗ → {0,1}∗ such
that fω = ψ ; it will be called recursive continuous2 if there exists a monotone and
recursive (i.e. Turing computable) function f : {0,1}∗ → {0,1}∗ such that fω = ψ .

3 Interactive Computation

3.1 Historical Background

Interactive computation refers to the computational framework where systems may
react or interact with each other as well as with their environment during the com-
putation [78, 23]. This paradigm was theorized in contrast to classical computa-
tion [64] which rather proceeds in a function-based transformation of a given input

1 The choice of this name comes from the fact that continuous functions over the Cantor
space C = {0,1}ω can be precisely characterized as limits of monotone functions. We
extend this definition in the present broader context of functions from {0,1}ω to {0,1}≤ω

that can also be expressed as limits of monotone functions.
2 Our notion of a recursive continuous ω-translation ψ : {0,1}ω → {0,1}≤ω is a transpo-

sition to the present context of the notion of a limit-continuous function ϕ : {0,1}ω →
{0,1}ω defined in [68, Definition 12] and [72, Definition 13].
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to a corresponding output (closed-box and amnesic fashion), and has been ar-
gued to “no longer fully correspond to the current notions of computing in mod-
ern systems” [73]. Interactive computation also provides a particularly appropriate
framework for the consideration of natural and bio-inspired complex information
processing systems [69, 73, 14].

Wegner first proposed a foundational approach to interactive computation [78].
In his work, he claimed that “interaction is more powerful than algorithms”, in the
sense that computations performed in an interactive way are capable of handling a
wider range of problems than those performed in a classical way, namely by stan-
dard algorithms and Turing machines [77, 78].

In this context, Goldin et al. introduced the concept of a persistent Turing ma-
chine (PTM) as a possible extension of the classical Turing machine model to
the framework of interactive computation [21, 22]. A persistent Turing machine
consists of a multi-tape machines whose inputs and outputs are given as streams
of tokens generated in a dynamical and sequential manner, and whose work tape
is kept preserved during the transition from one interactive step to the next. In
this sense, a PTM computation is sequentially interactive and history dependent.
Goldin et al. further provided a transfinite hierarchical classification of PTMs ac-
cording to their expressive power, and established that PTMs are more expressive
(in a precise sense) than amnesic PTMs (an extension of classical Turing machines
in their context of interactive computation), and hence also than classical Turing
machines [21, 22].

All these consideration led Goldin and Wegner to formulate the so-called Sequen-
tial Interaction Thesis, a generalization of the Church-Turing Thesis in the realm of
interactive computation, claiming that “any sequential interactive computation can
be performed by a persistent Turing machine” [22, 24, 25, 26]. They argue that
this hypothesis, when combined with their result that PTMs are more expressive
than classical TMs, provides a formal proof of Wegner’s conjecture that “interac-
tion is more powerful than algorithms” [22, 24, 25, 26], and hence refutes what they
call the Strong Church-Turing Thesis – different from the original Church-Turing
Thesis –, stating any possible computation can be captured by some Turing ma-
chine, or in other words, that “models of computation more expressive than TMs are
impossible” [24, 26].

Driven by similar motivations, Van Leeuwen and Wiedermann proposed a slightly
different interactive framework where a general component interacts with its en-
vironment by translating an incoming input stream of bits into a corresponding
output stream of bit in a sequential manner [68, 72]. In their study, they restrict
themselves to deterministic components, and provide mathematical characteriza-
tions of interactively computable relations, interactively recognizable sets of inputs
streams, interactively generated sets of output streams, and interactively computable
translations.

In this context, they introduced the concept of an interactive Turing machine
(I-TM), a relevant translation of the classical Turing machine model in their interac-
tive framework [69]. They further introduced the concept of interactive Turing ma-
chine with advice (I-TM/A) as a relevant non-uniform computational model in the
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context of interactive computation [69, 70]. Interactive Turing machines with advice
were proven to be strictly more powerful than interactive Turing machines without
advice [70, Proposition 5] and [69, Lemma 1], and were shown to be computa-
tionally equivalent to several other non-uniform models of interactive computation,
like sequences of interactive finite automata, site machines, web Turing machines
[69, 70], and more recently to interactive analog neural networks and interactive
evolving neural networks [9, 11, 14].

These considerations led van Leeuwen and Wiedermann to formulate an Inter-
active Extension of the Church-Turing Thesis which states that “any (non-uniform
interactive) computation can be described in terms of interactive Turing machines
with advice” [70].

As opposed to Goldin and Wegner, van Leeuwen and Wiedermann consider that
interactivity alone is not sufficient to break the Turing barrier, and rather consists
of a different instead of a more powerful paradigm than the classical computational
framework [69, 71, 73]. They write [73]:

“From the viewpoint of computability theory, interactive computing e.g. with I-TMs
does not lead to super-Turing computing power. Interactive computing merely extends
our view of classically computable functions over finite domains to computable func-
tions (translations) defined over infinite domains. Interactive computers simply com-
pute something different from non-interactive ones because they follow a different
scenario.”

Here, we follow this point of view and adopt a similar approach to interactive
computation as presented in [68, 72].

3.2 The Interactive Paradigm

The general interactive computational paradigm consists of a step by step exchange
of information between a system and its environment [68, 72]. In order to capture
the unpredictability of next inputs at any time step, the dynamically generated input
streams need to be modeled by potentially infinite sequences of symbols (indeed,
any interactive computation over a finite input stream can a posteriori be replayed
in a non-interactive way producing the same output) [78, 25, 73].

Here, we consider a basic interactive computational scenario similar to that de-
scribed for instance in [72]. At every time step, the environment first sends a non-
empty input bit to the system (full environment activity condition), the system next
updates its current state accordingly, and then answers by either producing a corre-
sponding output bit or remaining silent. In other words, the system is not obliged to
provide corresponding output bits at every time step, but might instead stay silent
for a while (to express the need of some internal computational phase before pro-
ducing a new output bit), or even staying silent forever (to express the case that it has
died). Consequently, after infinitely many time steps, the system will have received
an infinite sequence of consecutive input bits and translated it into a corresponding
finite or infinite sequence of not necessarily consecutive output bits. In the sequel,
we assume that every interactive system is deterministic.
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Formally, given some interactive deterministic system S , for any infinite input
stream s ∈ {0,1}ω , we define the corresponding output stream os ∈ {0,1}≤ω of S
as the finite or infinite subsequence of (non-λ ) output bits produced by S after
having processed input s. The deterministic nature of S ensures that the output
stream os is unique. In this way, any interactive system S realizes an ω-translation
ϕS : {0,1}ω → {0,1}≤ω defined by ϕS (s) = os, for each s ∈ {0,1}ω .

An ω-translation ψ is then called interactively deterministically computable, or
simply interactively computable iff there exists an interactive deterministic system
S such that ϕS = ψ . Note that in this definition, we do absolutely not require for
the system S to be driven by a Turing program nor to contain any computable com-
ponent of whatever kind. We simply require that S is deterministic and performs
ω-translations in conformity with our interactive paradigm, namely in a sequential
interactive manner, as precisely described above.

3.3 Interactive Computable Functions

The specific nature of the interactive computational scenario imposes strong con-
ditions on the ω-translations that can be performed by interactive deterministic
systems in general. In fact, it can be proven that any interactively computable ω-
translation is necessarily continuous. This result will be used in the sequel.

Proposition 1. Let ψ be some ω-translation. If ψ is interactively computable, then
it is continuous.

Proof. Let ψ be an interactively computable ω-translation. Then by definition, there
exists a deterministic interactive system S such that ϕS = ψ . Now, consider the
function f : {0,1}∗ → {0,1}∗ which maps every finite word u to the unique corre-
sponding finite word produced by S after exactly |u| steps of computation over in-
put stream u provided bit by bit. Note that the deterministic nature of S ensures that
the finite word f (u) is indeed unique, and thus that the function f is well-defined.

We show that f is monotone. Suppose that u ⊆ v. It follow that v = u · (v− u).
Hence, according to our interactive scenario, the output strings produced by S after
|v| time steps of computation over input stream v, namely f (v), simply consists of
the output strings produced after |u| time steps of computation over input u, namely
f (u), followed by the output strings produced after |v−u| time steps of computation
over input v− u. Consequently, f (u)⊆ f (v), and therefore f is monotone.

We now prove that the ω-translation ϕS performed by the interactive system S
corresponds to the the “limit” (in the sense of Section 2) of the monotone function
f , i.e., that ϕS = fω . Towards this purpose, given some infinite input stream s ∈
{0,1}ω , we consider in turn the two possible cases where ϕS (s) is either an infinite
or a finite word.

First, suppose that ϕS (s) ∈ {0,1}ω . By definition, the word ϕS (s) corresponds
to the output stream produced by S after having processed the whole infinite input
s, and, for any i ≥ 0, the word f (s[0:i]) corresponds to the output stream produced
by S after i+ 1 time steps of computation over the input s[0:i]. According to our
interactive scenario, f (s[0:i]) is a prefix of ϕS (s), for all i ≥ 0 (indeed, once again,
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what has been produced by S on s after infinitely many time steps, namely ϕS (s),
consists of what has been produced by S on s[0:i] after i+ 1 time steps, namely
f (s[0:i]), followed by what has been produced by S on s− s[0:i] after infinitely
many time steps). Moreover, since ϕS (s) ∈ {0,1}ω , it means that the sequence of
partial output strings produced by S on input s after i time steps of computation
is not eventually constant, i.e., limi→∞ | f (s[0:i])| = ∞. Hence, the two properties
f (s[0:i]) ⊆ ϕS (s) ∈ {0,1}ω for all i ≥ 0 and limi→∞ | f (s[0:i])| = ∞ ensure that
ϕS (s) is the unique infinite word containing each word of { f (s[0:i]) : i ≥ 0} as
a finite prefix, which is to say by definition that ϕS (s) = limi≥0 f (s[0:i]) = fω (s).

Secondly, suppose that ϕS (s) ∈ {0,1}∗. By the very same argument as in
the previous case, f (s[0:i]) is a prefix of ϕS (s), for all i ≥ 0. Moreover, since
ϕS (s) ∈ {0,1}∗, the sequence of partial output strings produced by S on input
s after i time steps of computation must become stationary from some time step
j onwards, i.e. limi→∞ | f (s[0:i])| < ∞. Hence, the entire finite output stream ϕS (s)
must necessarily have been produced after a finite amount of time, and thus ϕS (s)∈
{ f (s[0:i]) : i ≥ 0}. Consequently, the two properties f (s[0:i])⊆ ϕS (s) ∈ {0,1}∗ for
all i ≥ 0 and ϕS (s)∈ { f (s[0:i]) : i ≥ 0} ensure that ϕS (s) is the smallest finite word
that contains each word of { f (s[0:i]) : i ≥ 0} as a finite prefix, which is to say by
definition that ϕS (s) = limi≥0 f (s[0:i]) = fω (s). Consequently, ϕS (s) = fω (s) for
any s ∈ {0,1}ω , meaning that ϕS = fω .

We proved that f is a monotone function satisfying ϕS = fω . This means by
definition that ϕS is continuous. Since ϕS =ψ , it follows that ψ is also continuous.
)*

3.4 Interactive Turing Machines

An interactive Turing machine consists of an interactive abstract device driven by a
standard Turing machine program. It receives an infinite stream of bits as input and
produces a corresponding stream of bits as output, step by step. The input and output
bits are processed via corresponding input and output ports rather than tapes. Conse-
quently, at every time step, the machine can no more operate on the output bits that
have already been processed.3 Furthermore, according to our interactive scenario,
it is assumed that, at every time step, the environment sends a non-silent input bit
to the machine, and the machine either answers by producing some corresponding
output bit, or rather chooses to remain silent.

Formally, a deterministic interactive Turing machine (I-TM) M is defined as a
tuple M = (Q,Γ ,δ ,q0), where Q is a finite set of states, Γ = {0,1,λ ,!} is the
alphabet of the machine, where ! stands for the blank tape symbol, q0 ∈ Q is the
initial state, and

δ : Q×Γ × {0,1}→ Q×Γ × {←,→,−}× {0,1,λ}
3 In fact, allowing the machine to erase its previous output bits would lead to the considera-

tion of much more complicated ω-translations.



Recurrent Neural Networks and Super-Turing Interactive Computation 11

is the transition function of the machine. The relation δ (q,x,b) = (q′,x′,d,b′) means
that if the machine M is in state q, the cursor of the tape is scanning the letter
x ∈ {0,1,!}, and the bit b ∈ {0,1} is currently received at its input port, then M
will go in next state q′, it will make the cursor overwrite symbol x by x′ ∈ {0,1,!}
and then move to direction d, and it will finally output symbol b′ ∈ {0,1,λ} at its
output port, where λ represents the fact the machine is not outputting any bit at that
time step. An interactive Turing machine is illustrated in Figure 1.

According to this definition, any I-TM M induces an ω-translation ϕM : {0,1}ω →
{0,1}≤ω mapping every infinite input stream s to the corresponding finite or infinite
output stream os produced by M . An ω-translation ψ : {0,1}ω → {0,1}≤ω is said
to be realizable by some interactive Turing machine iff there exists an I-TM M such
that ϕM = ψ .

Van Leeuwen and Wiedermann also introduced the concept of interactive Turing
machine with advice as a relevant non-uniform computational model in the context
of interactive computation [69, 70].

Formally, a deterministic interactive Turing machine with advice (I-TM/A) M
consists of an interactive Turing machine provided with an advice mechanism,
which comes in the form of an advice function α : N → {0,1}∗. In addition, the
machine M uses two auxiliary special tapes, an advice input tape and an advice
output tape, as well as a designated advice state. During its computation, M has the
possibility to write the binary representation of an integer m on its advice input tape,
one bit at a time. Yet at time step n, the number m is not allowed to exceed n. During
the computation, if the machine happens to enter its designated advice state at some
time step, then the string α(m) is written on the advice output tape in one time step,
replacing the previous content of the tape. The machine has the possibility to repeat
this process as many time as needed during its infinite computation. An interactive
Turing machine with a advice is illustrated in Figure 2.

Once again, according to our interactive scenario, any I-TM/A M induces an
ω-translation ϕM : {0,1}ω → {0,1}≤ω which maps every infinite input stream s
to the corresponding finite or infinite output stream os produced by M . Finally, an
ω-translation ψ : {0,1}ω → {0,1}≤ω is said to be realizable by some interactive
Turing machine with advice iff there exists an I-TM/A M such that ϕM = ψ .

1· · ·
Finite

Program
 state qa

work tape

0 1 10 01

1 0 01 input
port

output
port 0 1 � 0 0 · · ·

Fig. 1 An interactive Turing machine
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n

advice input tape

advice output tape

work tape

input
port

output
port

Fig. 2 An interactive Turing machine with advice

For sake of completeness, we provide a proof that I-TM/A are strictly more pow-
erful than I-TM. Accordingly, we say that I-TM/A are super-Turing. The result has
already been mentioned in [70, Proposition 5] and [69, Lemma 1]

Proposition 2. I-TM/As are strictly more powerful than I-TMs.

Proof. We prove that there exists an ω-translation ψ which is realizable by some
I-TM/A, yet by no I-TM. Consider a non-Turing computable function α : N →
{0,1}∗. Note that such a function obviously exists since there are 2ℵ0 (i.e. uncount-
ably many) distinct functions of that form whereas there are only ℵ0 (i.e. count-
ably many) possible Turing machines. Consider the ω-translation ψ : {0,1}ω →
{0,1}≤ω which maps every infinite input stream s, necessarily writable of the
form s = 0∗b00+b10+b20+b3 · · · where bi’s denote the blocks of 1’s occurring
between the 0’s, to the corresponding finite or infinite word given by ψ(s) =
α(|b0|)α(|b1|)α(|b2|)α(|b3|) · · · (if s has suffix 0ω , then ψ(s) is finite).

The ω-translation ψ is clearly realizable by some I-TM/A M with advice func-
tion α . Indeed, on every input stream s ∈ {0,1}ω , the machine M stores the suc-
cessive blocks b0,b1,b2, . . . of 1’s occurring in s, and, for every such block bi, first
computes the length |bi|, writes it in binary on its advice tape, then calls the advice
value α(|bi|) (or waits enough time steps in order to have the right to call it), and
finally outputs the value α(|bi|), before reiterating the procedure with respect to the
next block bi+1. In this way, M realizes ψ .

On the other hand, the ω-translation ψ is not realizable by any I-TM. Indeed,
towards a contradiction, suppose it is realizable by some I-TM M . Then, consider
the classical Turing machine M ′ which, on every finite input r of the form r = 1k,
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proceeds exactly like M would have on any infinite input beginning by r, thus
outputs α(k), and diverges on every other finite input. The existence of this classical
TM M ′ shows that the function α is Turing computable, a contradiction. )*

Moreover, a precise characterization of the computational powers of I-TMs and
I-TM/As can be given. In fact, the I-TMs and I-TM/As realize precisely the classes
of recursive continuous and continuous ω-translations, respectively. The following
results are proven in [11]. Since these proofs can be easily deduced from those of
previous Proposition 1 and forthcoming Lemma 1, we can include them hereafter.

Proposition 3. Let ψ be some ω-translation.

a) ψ is realizable by some I-TM iff ψ is recursive continuous.
b) ψ is realizable by some I-TM/A iff ψ is continuous.

Proof. The proofs of points (a) and (b) rely on previous Proposition 1 and forth-
coming Lemma 1.

Point (a). Let ψ be some ω-translation realized by some I-TM M . This means
that ψ = ϕM . Now, consider the function f : {0,1}∗ → {0,1}∗ which maps every
finite word u to the unique corresponding finite word produced by M after exactly
|u| steps of computation over input stream u provided bit by bit. Since M is driven
by a classical TM program, f is recursive. Moreover, by the exact same argument
as in the proof of Proposition 1, f is monotone, and fω = ϕM = ψ . Consequently,
ψ is recursive continuous.

Conversely, let ψ be a recursive continuous ω-translation. Then there exists some
recursive monotone function f : {0,1}∗ → {0,1}∗ such that fω = ψ . Now consider
the forthcoming infinite Procedure 1 (proof of Lemma 1) where the three instruc-
tions “decode s[0:i] from x”, “access to the value qi+1”, and “decode f (s[0:i]) from
qi+1” are replaced by the following one: “compute f (s[0:i])”. Since f is recursive,
this slightly modified version of Procedure 1 can clearly be performed by an I-TM
M . The machine M outputs the current word v− u bit by bit every time it reaches
up the instruction “output v− u bit by bit”, and otherwise, keeps outputting λ sym-
bols while simulating any other internal computational steps. By the exact same
argument as the one presented in the proof of Lemma 1, one has that ϕM = fω = ψ ,
meaning that ψ is realized by M .

Point (b). Let ψ be some ω-translation realized by some I-TM/A M . By defini-
tion, ψ is interactively computable. By Proposition 1, ψ is continuous.

Conversely, let ψ be a continuous ω-translation. Then there exists some mono-
tone function f : {0,1}∗ → {0,1}∗ such that fω = ψ . First of all, we consider the
function α : N → {0,1}∗ which maps every integer n to the finite binary word wn
described in the beginning of the proof of forthcoming Lemma 1. Now consider the
forthcoming infinite Procedure 1 (proof of Lemma 1) where the three instructions
“decode s[0:i] from x”, “access to the value qi+1”, and “decode f (s[0:i]) from qi+1”
are replaced by the two following ones: “query α(i+ 1) = wi+1” and “extract the
subword f (s[0:i]) from wi+1”. This slightly modified version of Procedure 1 can
clearly be performed by an I-TM/A M with advice function α . Every time M en-
counters the instruction “query α(i+ 1) = wi+1”, it makes an extra-recursive call
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to its advice value α(i+ 1); otherwise, M simulates every other recursive step by
means of its classical Turing program. Moreover, M outputs the current word v−u
bit by bit every time it reaches up the instruction “output v−u bit by bit”, and other-
wise keeps outputting λ symbols while simulating any other internal computational
steps. By the exact same argument as the one presented in the proof of forthcoming
Lemma 1, one has that ϕM = fω = ψ , meaning that ψ is realized by M . )*

4 Interactive Recurrent Neural Networks

4.1 Recurrent Neural Networks

In this work, we consider a classical model of a first-order recurrent neural network,
as presented for instance in [59, 60, 55, 56].

A (first-order) recurrent neural network (RNN) consists of a synchronous net-
work of neurons (or processors) related together in a general architecture. The net-
work contains a finite number of neurons (xi)N

i=1, M parallel input neurons (ui)M
i=1,

and P designated output neurons among the N. The input and output neurons are
used to transmit the information from the environment to the network or from the
network to the environment, respectively. At each time step, the activation value of
every neuron is updated by applying a linear-sigmoid function to some weighted
affine combination of values of other neurons or inputs at previous time step.

Formally, given the activation values of the internal and input neurons (x j)N
j=1

and (u j)M
j=1 at time t, the activation value of each neuron xi at time t + 1 is then

updated by the following equation

xi(t + 1) = σ
(

N

∑
j=1

ai j · x j(t)+
M

∑
j=1

bi j ·u j(t)+ ci

)
, i = 1, . . . ,N (1)

where ai j, bi j, and ci are numbers describing the weighted synaptic connections
and weighted bias of the network, and σ is the classical saturated-linear activation
function defined by

σ(x) =






0 if x < 0,
x if 0 ≤ x ≤ 1,
1 if x > 1.

Besides, Cabessa and Siegelmann introduced the model of an evolving recurrent
neural network (Ev-RNN) as a RNN whose synaptic weights have the possibility to
evolve over time rather than remaining static [10]. Formally, an evolving recurrent
neural network (Ev-RNN) consists of an RNN whose dynamics is given by the
following equation:

xi(t + 1) = σ
(

N

∑
j=1

ai j(t) · x j(t)+
M

∑
j=1

bi j(t) ·u j(t)+ ci(t)

)
, i = 1, . . . ,N (2)
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where ai j(t), bi j(t), and ci(t) are bounded and time-dependent synaptic weights, and
σ is the classical saturated-linear activation function.

The time dependence of the synaptic weights determines the evolving capabili-
ties of the network. The boundedness condition expresses the fact that the synaptic
strengths are confined into a certain range of values imposed by the biological con-
stitution of the neurons. It formally states that there exist an upper and a lower bound
s and s′ such that ai j(t),bi j(t),ci(t) ∈ [s,s′] for every t ≥ 0.

Note that this evolving neural model can describe important dynamics other than
the sole synaptic plasticity. For instance, creation or deterioration of synapses can
be modeled by switching the corresponding synaptic weights on or off, respectively,
and cell birth and death are modeled by simultaneously switching on or off the
adjacent synaptic weights of a given cell, respectively.

According to these definitions, four models of RNNs can be considered according
to whether their underlying synaptic weights are either rational or real numbers of
either static or evolving nature. More precisely, a network will be called rational if
all its weights are rational numbers, and real if all its weights are real numbers. It
will also be called static if all its weights remain static over time, and evolving if
its weights are time dependent. According to these definitions, the corresponding
notions of static rational (St-RNN[Q]), static real (St-RNN[R]), evolving rational
(Ev-RNN[Q]), and evolving real (Ev-RNN[R]) recurrent neural networks will be
employed.

Observe that since rational numbers are included in real numbers, any rational
network is also a real network by definition. Moreover, since static weights are par-
ticular cases of evolving weights where the evolving patterns remain constant over
time, it follows that any static network is also an evolving network. The converses of
these two affirmations are obviously not true. Hence, the class of St-RNN[Q]s corre-
sponds precisely to the intersection of the classes of St-RNN[R]s and Ev-RNN[Q]s,
and all the latter three classes are included in the class of Ev-RNN[R]s, as illustrated
in Figure 3.

4.2 Recurrent Neural Networks and Interactive Computation

In order to stay consistent with the interactive scenario presented in Section 3.2, we
define a model of an interactive recurrent neural network (I-RNN) which adheres
to a rigid encoding of the way inputs and outputs are interactively processed be-
tween the environment and the network. This model has already been considered
in [11, 9, 14].

An interactive recurrent neural network (I-RNN) consists of RNN provided with
a single input cell u as well as two binary output cells4, a data cell yd and validation
cell yv. The role of the input cell u is to transmit to the network the infinite input
stream of bits sent by the environment. At each time step t ≥ 0, the cell u admits
an activation value u(t) belonging to {0,1} (the full environment activity condition

4 The binary requirement of the output cells yd and yv means that the network is designed
such that for every input and every time step t, one has yd(t) ∈ {0,1} and yv(t) ∈ {0,1}.
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St-RNN[Q]s

St-RNN[R]s

Ev-RNN[Q]s

Ev-RNN[R]s

Fig. 3 Inclusion relations between the four classes of St-RNN[Q]s, St-RNN[R]s, Ev-
RNN[Q]s, and Ev-RNN[R]s

forces that u(t) never equals λ ). Moreover, the role of the data cell yd is to carry
the output stream of the network to the environment, while the role of the validation
cell yv is to describe when the data cell is active and when it is silent. Accordingly,
the output stream transmitted by the network to the environment will be defined as
the (finite or infinite) subsequence of successive data bits that occur simultaneously
with positive validation bits.

Formally, any I-RNN N will be supposed to have its initial activation values set
to zero, i.e. xi(0) = 0, for i = 1, . . . ,N. Then any infinite input stream

s = s(0)s(1)s(2) · · · ∈ {0,1}ω

transmitted to input cell u induces via equations (1) or (2) a corresponding pair of
infinite streams transmitted by cells yd and yv

(yd(0)yd(1)yd(2) · · · ,yv(0)yv(1)yv(2) · · · ) ∈ {0,1}ω × {0,1}ω.

The output stream of N associated to input s is then given by the finite or infi-
nite subsequence os of successive data bits that occur simultaneously with positive
validation bits, namely

os = 〈yd(i) : i ∈ N and yv(i) = 1〉 ∈ {0,1}≤ω .

Hence, any I-RNN N naturally induces an ω-translation ϕN : {0,1}ω → {0,1}≤ω

defined by ϕN (s) = os, for each s∈ {0,1}ω . Finally, an ω-translation ψ : {0,1}ω →
{0,1}≤ω is said to be realizable by some I-RNN iff there exists some I-RNN N
such that ϕN = ψ .

In this work, four models of I-RNNs will be considered according to whether
their underlying synaptic weights are either rational or real numbers of either static
or evolving nature. More precisely, the four notions of an interactive static rational
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(I-St-RNN[Q]), interactive static real (I-St-RNN[R]), interactive evolving rational
(I-Ev-RNN[Q]), interactive evolving real (I-Ev-RNN[R]) recurrent neural networks
will be employed. An I-RNN is illustrated in Figure 4.

Fig. 4 An interactive recurrent neural network (I-RNN). The single neuron at the very left
side represents the input cell. The two little neurons at the very right side represent the output
data and validation cells. The forward and recurrent synaptic connections are represented in
blue and red, respectively. The background activity connections are represented in red also.
The shaded style of the synaptic connections illustrate the fact that the synaptic weights might
evolve over time, in the case of an evolving interactive RNN.

5 Computational Power of Classical Neural Networks

For the sake of clarity, we recall the main results concerning the computational
powers of recurrent neural networks in the case of classical (i.e. non-interactive)
computation. In this context, static rational RNNs were proven to be Turing equiva-
lent [60], whereas static real (or analog) RNNs were proven to be super-Turing [59].
Furthermore, evolving RNNs were shown to be also super-Turing, irrespective of
whether their synaptic weights are modeled by rational or real numbers [10]. The
three following theorems state these results in details. We now focus on particular
each result.

First of all, rational-weighted RNNs were proven to be computationally equiva-
lent to Turing machines (TMs) [60]. Indeed, on the one hand, any function deter-
mined by Equation (1) and involving rational weights is necessarily recursive, and
thus can be computed by some TM. On the other hand, it was shown that any Turing
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machine can be simulated in linear time by some rational RNN. The result can be
expressed as follows.

Theorem 1. St-RNN[Q]s are Turing equivalent. More precisely, a language L ⊆
{0,1}+ is decidable by some St-RNN[Q] if and only if L is decidable by some TM,
i.e., if and only if L is recursive.

Secondly, real-weighted (or analog) RNNs were shown to be super-Turing,
namely strictly more powerful than Turing machines, and hence also than rational
RNNs. More precisely, real RNNs are capable of deciding all possible languages
in exponential time of computation. When restricted to polynomial time of com-
putation, real RNNs are computationally equivalent to Turing machines with poly-
nomial advice5 (TM/poly(A)), and hence decide the complexity class of languages
P/poly [59]. Since P/poly strictly includes the class P and contains non-recursive
languages, it follows that the real networks are capable of super-Turing computa-
tional power already from polynomial time of computation. Consequently, the trans-
lation from the rational- to the real-weighted context does add to the computational
power of the RNNs. These results are summarized in the following theorem.

Theorem 2. St-RNN[R]s are super-Turing. More precisely, any language L⊆ {0,1}+
can be decided in exponential time by some St-RNN[R]. Moreover, a language
L ⊆ {0,1}+ is decidable in polynomial time by some St-RNN[R] if and only if L
is decidable in polynomial time by some TM/poly(A), i.e., if and only if L ∈ P/poly.

Thirdly, evolving RNNs were shown to be also super-Turing, irrespective of
whether their synaptic weights are modeled by rational or real numbers [10]. Hence,
the translation from static rational to the evolving rational context does also bring
up additional computational power to the networks. However, as opposed to the
static context, the translation from the evolving rational to the evolving real does
not increase further the capabilities of the networks.

Theorem 3. Ev-RNN[Q]s and Ev-RNN[R]s are super-Turing equivalent. More pre-
cisely, any language L ⊆ {0,1}+ can be decided in exponential time by some Ev-
RNN[Q] or by some Ev-RNN[R]. Moreover, a language L ⊆ {0,1}+ is decidable
in polynomial time by some Ev-RNN[Q] or by some Ev-RNN[R] if and only if L is
decidable in polynomial time by some TM/poly(A), i.e., if and only if L ∈ P/poly.

The computational capabilities of classical RNNs stated in previous theorems 1,
2, and 3 are summarized in Table 1 below.

5 We recall that a Turing machine with advice (TM/A) consists of a classical Turing machine
provided with an additional advice function α :N→ {0,1}+ as well as an additional advice
tape, and such that, on every input u of length n, the machine first copies the advice word
α(n) on its advice tape and then continues its computation according to its finite Turing
program. A Turing machine with polynomial-bounded advice (TM/poly(A)) consists of a
TM/A whose advice length is bounded by some polynomial. The complexity classes P and
P/poly represents the set of all languages decidable in polynomial time by some TM and
some TM/poly(A), respectively.
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Table 1 Computational power of static and evolving RNNs according to the nature of their
synaptic weights

Static RNNs Evolving RNNs

Q Turing super-Turing
R super-Turing super-Turing

6 Computational Power of Interactive Static Neural Networks

Cabessa and Villa initiated the study of the computational power of RNNs involved
in a reactive computational context [13]. They proved that deterministic and non-
deterministic real RNNs working on infinite input streams are strictly more expres-
sive than Turing machines equipped with Büchi or Muller conditions, respectively.
More recently, Cabessa and Siegelmann studied the computational power of RNNs
involved in an interactive computational framework similar the one presented here.

First, they proved that interactive rational RNNs are Turing-equivalent, and hence
realize the class of recursive continuous ω-translations [11]. The results is formally
expressed as follows.

Theorem 4. I-St-RNN[Q] are Turing-equivalent. More precisely, for any ω-translation
ψ : {0,1}ω → {0,1}≤ω , the following conditions are equivalent:

a) ψ is realizable by some I-St-RNN[Q];
b) ψ is realizable by some I-TM;
c) ψ is recursive continuous.

Second, they showed that interactive real RNNs are super-Turing. They are
computationally equivalent to I-TM/A, and realize the class of continuous ω-
translations [11]. Hence, similarly to the classical case, the translation from the
rational- to the real-weighted context does bring additional computational power
to the neural networks.

Theorem 5. I-St-RNN[R] are super-Turing. More precisely, for any ω-translation
ψ : {0,1}ω → {0,1}≤ω , the following conditions are equivalent:

a) ψ is realizable by some I-St-RNN[R];
b) ψ is realizable by some I-TM/A;
c) ψ is continuous.

Theorems 4 and 5 provide a generalization of theorems 1 and 2 to the interac-
tive context. Note that the equivalences between point b and c of theorems 4 and 5
are given by Proposition 3. According to these results, for the classical as for the
interactive computational framework, the translation from the static rational- to the
static real-weighted context, or in other words, the incorporation of some power of
continuum in the model, does bring additional capabilities to the neural networks.
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7 Computational Power of Interactive Evolving Neural
Networks

In this section, we prove that interactive evolving RNNs are super-Turing, irrespec-
tive of whether their synaptic weights are modeled by rational or real numbers.
More precisely, both models of interactive rational and interactive real RNNs are
computationally equivalent to interactive Turing machines with advice, and realize
the class of continuous ω-translations. Consequently, in both classical and interac-
tive frameworks, the translation from static rational to the evolving rational context
does bring additional computational power to the networks. Once again, the trans-
lation from the evolving rational to the evolving real does not increase further the
capabilities of the networks. These results provide a generalization of Theorem 3 to
the context of interactive computation. They show that the power of evolution pro-
vides the possibility to break the Turing barrier of computation. A concise form of
these results has already appeared in [9, 14]. The results are proven here in details.

Theorem 6. I-Ev-RNN[Q]s and I-Ev-RNN[R]s are super-Turing. More precisely,
for any ω-translation ψ : {0,1}ω → {0,1}≤ω , the following conditions are equiva-
lent:

a) ψ is realizable by some I-Ev-RNN[Q];
b) ψ is realizable by some I-Ev-RNN[R];
c) ψ is realizable by some I-TM/A;
d) ψ is continuous.

Proof. The implication “a → b” holds by definition. The three implications “a →
d”, “b → d”, and “c → d” are given by Proposition 1. The equivalence “d ↔ c”
is provided by Proposition 3(a). The implication “d → a” is given by forthcoming
Lemma 1. By combining all these implications and equivalences, the equivalences
between points a, b, c and d are obtained. )*

Lemma 1. Let ψ : {0,1}ω → {0,1}≤ω be some continuous ω-translation. Then ψ
is realizable by some I-Ev-RNN[Q].

Proof. Let ψ be a continuous function. Then there exists some monotone function
f : {0,1}∗ → {0,1}∗ such such that fω = ψ . We begin by encoding all possible
values of f into successive distinct rational numbers. Towards this purpose, for any
n > 0, we let wn,1, . . . ,wn,2n be the lexicographical enumeration of all binary words
of length n, and we let wn ∈ {0,1,2}∗ be the finite word given by wn = 2 · f (wn,1) ·
2 · f (wn,2) ·2 · · ·2 · f (wn,2n) ·2. Then, we consider the following rational encoding of
the word wn

qn =
|wn|

∑
i=1

2 ·wn(i)+ 1
6i .

Note that qn ∈]0,1[ for all n > 0. Also, the encoding procedure ensures that qn 1=
qn+1, since wn 1= wn+1, for all n > 0. Moreover, it can be shown that the finite word
wn can be decoded from the value qn by some Turing machine, or equivalently,
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by some rational recurrent neural network [59, 60]. In this way, for any n > 0, the
number qn provides a rational encoding of the images by f of all words of length n.

Now, we consider the infinite Procedure 1 described below. This procedure re-
ceives as input an infinite stream s = s(0)s(1)s(2) · · · ∈ {0,1}ω provided bit by
bit, and eventually produces as output a corresponding finite or infinite stream of
bits. The procedure consists of two infinite subroutines running in parallel. The
first subroutine stores each input bit s(t) occurring at every time step t. The second
subroutine performs an infinite loop. More precisely, at stage i+ 1, the procedure
considers the value f (s[0:i+1]). By monotonicity of f , the word f (s[0:i+1]) ex-
tends f (s[0:i]). If this extension is strict, the procedure output the difference word
f (s[0:i+1])− f (s[0:i]) bit by bit. Otherwise, the procedure simply outputs the empty
word λ . Note that the only non-recursive instruction of Procedure 1 is “access to the
value qi+1”.

Procedure 1.

input: infinite input stream s = s(0)s(1)s(2) · · · ∈ {0,1}ω provided bit by bit
initialization: i ← 0, x ← λ , u ← λ , v ← λ

SUBROUTINE 1:
for all t ≥ 0 do

x ← x · s(t) // concatenation of the current bit s(t) to x
end for

SUBROUTINE 2:
loop

decode s[0:i] from x
access to the value qi+1 // non-recursive instruction
decode f (s[0:i]) from qi+1
v ← f (s[0:i])
if u ! v then

output v−u bit by bit
else

output λ
end if
i ← i+1
u ← v

end loop

We now show that there indeed exists some I-Ev-RNN[Q] N which performs
Procedure 1. The network N consists of one evolving and one static rational sub-
network connected together. The evolving sub-network will be in charge of the exe-
cution of the only non-recursive instruction “access to the value qi+1”, and the static
sub-network will be in charge of the execution of all other recursive instructions of
Procedure 1.

More precisely, the evolving rational-weighted part of N is made up of a
single designated processor xe. The neuron xe receives as sole incoming synaptic
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connection a background activity of evolving intensity ce(t). The synaptic weight
ce(t) successively takes the rational bounded values q1,q2,q3, . . ., by switching from
value qk to qk+1 after every Nk time steps, for some large enough Nk > 0 to be de-
scribed. In this way, every time some new value qi+1 appears as a background ac-
tivity of neuron xe, the network stores it in a designated neuron in order to be able
to perform the instruction “access to the value qi+1” when required.

The static rational-weighted part of N is designed in order to perform the succes-
sive recursive steps of Procedure 1, every time some new value qi+1 has appeared by
means of the activation value of neuron xe. The equivalence result between rational-
weighted RNNs and TMs ensures that such a static rational-weighted sub-network
of N performing these recursive step can indeed always be constructed [59]. More-
over, for each k > 0, the time interval Nk between the apparition of the synaptic
weights qk and qk+1 is chosen large enough in order to be able to perform all the
aforementioned recursive steps.

Finally, the network N is designed in such a way that it outputs via its data and
validation cells yd and yv the finite word v−u every time it simulates the instruction
“output v− u bit by bit” of Procedure 1. The network keeps outputting λ symbols
every time it simulates any other internal instruction of Procedure 1.

It remains to prove that the network N realizes ψ , i.e. that ϕN = ψ . Note that,
for any input stream s ∈ {0,1}ω , the finite word that has been output at the end of
each instruction “output v− u bit by bit” corresponds precisely to the finite word
f (s[0:i]) currently stored in the variable v. Hence, after infinitely many time steps,
the finite or infinite word ϕN (s) output by N contains each word of { f (s[0:i]) : i ≥
0} as a finite prefix. In other words, f (s[0:i])⊆ ϕN (s) for all i ≥ 0.

We now consider in turn the two possible cases where ϕN (s) is either infinite or
finite. First, if ϕN (s) is infinite, then it means that Procedure 1 has never stopped
outputting new bits from some time step onwards, i.e., limi→∞ | f (s[0:i])| = ∞.
Consequently, the two properties f (s[0:i]) ⊆ ϕN (s) ∈ {0,1}ω for all i ≥ 0 and
limi→∞ | f (s[0:i])| = ∞ ensure that ϕN (s) is the unique infinite word containing
each word of { f (s[0:i]) : i ≥ 0} as a finite prefix, which is to say by defini-
tion that ϕN (s) = limi≥0 f (s[0:i]) = fω (s). Second, if ϕN (s) is finite, it means
that Procedure 1 has stopped outputting new bits from some time step onwards,
and hence ϕN (s) = f (s[0: j]) for some j ≥ 0. In this case, the two properties
f (s[0:i]) ⊆ ϕN (s) ∈ {0,1}∗ for all i ≥ 0 and ϕN (s) ∈ { f (s[0:i]) : i ≥ 0} ensure
that ϕN (s) is the smallest finite word that contains each word of { f (s[0:i]) : i ≥ 0}
as a finite prefix, which is to say by definition that ϕN (s) = limi≥0 f (s[0:i]) = fω (s).

Therefore, ϕN = fω , and since fω = ψ , it follows that ϕN = ψ , meaning that ψ
is realized by N . This concludes the proof. )*

Finally, the computational capabilities of interactive RNNs, stated by previous
theorems 4, 5, and 6 follow the same pattern as those of classical RNNs. The results
are summarized in Table 2 below.
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Table 2 Computational power of interactive static and evolving RNNs according to the na-
ture of their synaptic weights

Interactive Static RNNs Interactive Evolving RNNs

Q Turing super-Turing
R super-Turing super-Turing

8 Universality

Theorems 5 and 6 together with Proposition 1 show that the four models of I-St-
RNN[R]s, I-Ev-RNN[Q]s, I-Ev-RNN[R]s, and I-TM/As are capable to capture all
possible computations performable by some deterministic interactive system. More
precisely, for any possible interactive deterministic systems S , there exists an I-St-
RNN[R] N1, an I-Ev-RNN[Q] N2, an I-Ev-RNN[R] N3, and an I-TM/A M such
that ϕN1 = ϕN2 = ϕN3 = ϕM = ϕS . In this sense, those four models of interactive
computation are called universal.

Theorem 7. The four models of computations that are I-St-RNN[R]s, I-Ev-RNN[Q]s,
I-Ev-RNN[R]s, and I-TM/As, are super-Turing universal.

Proof. Let S be some deterministic interactive system. By Proposition 1, ϕS is
continuous. By Theorems 5 and 6, ϕS is realizable by some I-St-RNN[R], by some
I-Ev-RNN[Q], by some I-Ev-RNN[R], and by some I-TM/A. )*

These results can be understood as follows: similarly to the classical framework,
where every possible partial function from integers to integers can be computed by
some Turing machine with oracle [64], in the interactive framework, every possible
ω-translation performed in an interactive way can be computed by some interactive
Turing machine with advice, or equivalently, by some interactive analog or evolving
recurrent neural network. Alternatively put, as in the classical framework, where
the model of a Turing machine with oracle exhausts the class of all possible partial
functions from integers to integers, in the interactive framework, the model of an
interactive Turing machine with advice or those of an interactive analog or evolv-
ing recurrent neural network also exhaust the class of all possible ω-translations
performed in an interactive way.

9 Discussion

We showed that interactive rational- and real-weighted RNNs are Turing-equivalent
and super-Turing, respectively (theorems 4, 5). Furthermore, interactive evolving
RNNs are also super-Turing, irrespective of whether their synaptic weights are mod-
eled by rational or real numbers (Theorem 6). The comparison between theorems 1,
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2, 3 and theorems 4, 5, 6 shows that the computational powers of RNNs involved in
a classical or in an interactive computational framework follow similar patterns of
characterization. These results are summarized in tables 1 and 2, respectively.

These achievements show that in both classical and interactive computational
framework, the translations from the static rational to the static real context, as well
as from the static rational to the evolving rational context, do bring additional power
to the underlying neural networks. By contrast, the two other translations from the
evolving rational to the evolving real context, as well as from the static real to the
evolving real context, do not increase further the capabilities of the neural networks.

Furthermore, according to theorems 1, 2, 3, 4, 5, 6, the computational capabil-
ities of all neural models studied so far are shown to be upper bounded by those
of the Turing machine with advice model. In the classical computational context,
these considerations support the Thesis of Natural Computation, which states that
every natural computational phenomenon can be captured by the Turing machine
with polynomial advice model [59]. In the interactive framework, they support the
Church-Turing Thesis of Interactive Computation which claims that “any (non-
uniform interactive) computation can be described in terms of interactive Turing
machines with advice” [70].

Hence, similarly to the Turing machine model which represents a definitely
relevant conceptualization of current algorithmic, the interactive Turing machine
with advice model also seems to encompass a particularly suitable conceptualiza-
tion of brain computation, or even of natural computation in general[55, 7, 73],
since it is capable to capture crucial features, like analogue considerations [60],
evolvability[10, 9, 14], chaotic behaviors [63], that are impossible to be achieved
via the simple Turing machine model.

The results also show that the incorporation of general evolving capabilities in
a neuronal-based computational model naturally leads to the emergence of super-
Turing computational capabilities. In fact, tables 1 and 2 show that the incorpo-
ration of either evolving capabilities or some power of the continuum in a basic
neural model provides an alternative and equivalent way towards the achievement of
super-Turing computational capabilities. Although being mathematically equivalent
in this sense, these two features are nevertheless conceptually well distinct. While
the power of the continuum is a pure conceptualisation of the mind, the evolving
capabilities of the networks are, by contrast, observable in nature.

These achievements support the claim that the general mechanism of plasticity
is crucially involved in the computational and dynamical capabilities of biological
neural networks, and in this sense, provides a new theoretical complement to the nu-
merous experimental studies emphasizing the importance of the general mechanism
of plasticity in brain’s information processing [1, 18, 30]. They further suggest that
some intrinsic computational capabilities of the brain might lie beyond the scope of
Turing-equivalent models of computation, and hence surpass the potentialities every
current standard artificial models of computation.
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Finally, we believe that the present work presents some interest far beyond the
question of the existence of hypercomputational capabilities in nature [16, 17].
Comparative studies about the computational power of more and more biologically
oriented neural models might ultimately bring further insight to the understanding
of the intrinsic natures of biological as well as artificial intelligences. Furthermore,
foundational approaches to alternative models of computation might in the long
term not only lead to relevant theoretical considerations, but also to practical appli-
cations. Similarly to the theoretical work from Turing which played a crucial role in
the practical realization of modern computers, further foundational considerations
of alternative models of computation will certainly contribute to the emergence of
novel computational technologies and computers, and step by step, open the way to
the next computational era.
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