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Abstract—We introduce BERT–MINUS, a modular, feature-
enriched and transfer learning enabled model for Argument
Mining. BERT–MINUS consists of: 1) a joint module which
embeds the paragraph text, and 2) a dedicated module, consisting
of three customized BERT models, which contextualize the ar-
gument markers, argument components and additional features
given as text, respectively. BERT–MINUS implements two kinds
of transfer learning – auto-transfer (transfer from a task to itself)
and cross-transfer (classical transfer from one task to another)
– via a novel Selective Fine-tuning mechanism. BERT–MINUS
achieves state-of-the-art results on the Link Identification task
and competitive results on the Argument Type Classification
task. The synergy between the Features as Text and Selective
Fine-tuning mechanisms significantly improves the performance
of the model. Our work reveals the importance and potential of
transfer learning via selective fine-tuning for modular Language
Models. Moreover, this study dovetails naturally into the Prompt
Engineering paradigm in NLP.

Index Terms—NLP, Argument Mining, BERT, modular BERT,
Features as Text, Transfer Learning.

I. INTRODUCTION

In Natural Language Processing (NLP), Argument Mining
is concerned with identification and analysis of argumentative
and discursive structures in texts [1]. This field is gaining
increasing importance with the growing amount of textual data
involving argumentative discourse from different sources and
domains. For instance, legal texts contain law-based reason-
ing with a complex underlying argumentative structure [2].
Essays and articles consist of ordered presentation of claims
and premises on a certain topic [2, 3]. Organized political
debates involve argumentative dialogues between candidates
on different issues [4, 5]. Social media platforms provide an
avenue for users to debate and discuss contentious issues [6].

A complete end-to-end Argument Mining pipeline consists
of the following related sub-tasks [7, 8]: 1) Argument Com-
ponent Detection (ACD): given a token, classify whether it
is part of an argument component or not; 2) Argument Type
Classification (ATC): given an argument component, classify
it as a Major Claim, Claim or Premise; 3) Link Identification
(LI): given an argument component, classify it as either
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Linked or Not Linked to another argument component and
4) Link Type Classification (LTC): given a linked argument
component, classify whether the link is of a Support or of an
Attack type. The end output of the Argument Mining pipeline
is a tree-like structure of the argumentative text [9] where
the classified argument components are the nodes and links
between argument components are the edges. This structure
can then be utilized for downstream reasoning-based appli-
cations, like Text Summarization and Question Answering.
The Argument Mining sub-tasks have been approached from
both single-task and joint-task learning perspectives, using
model architectures of varying complexity and with or without
additional features [9–13] (see Section II Related Works for
more details).

Transformer models [14], like Bidirectional Encoder Rep-
resentations from Transformers (BERT) [15], have revolution-
ized NLP. The BERT model, composed of stacked encoder
blocks of the Transformer, combines the advantages of the
powerful attention mechanism [14] with a fast and paralleliz-
able feed-forward architecture. BERT is trained in a two stage
process: a self-supervised stage where the model is pre-trained
on a huge textual corpus, followed by a supervised stage in
which the pre-trained model is fine-tuned on a downstream
task. BERT and its distilled versions have been successfully
used for several NLP tasks [14, 16]. When used as sentence
representations, BERT outperforms earlier embeddings like
GloVe, ELMo, FastText, etc.

Despite its high efficiency, a standalone BERT fine-tuned
on isolated argument components suffers from performance
limitations [17]. This is due to the complicated and nuanced
nature of argumentative texts, where the text of an argument
component alone does not provide sufficient information for
its accurate classification. In fact, the role of an argument
component depends strongly, among other factors, on the pres-
ence of argument markers (‘Consequently,’, ‘However,’ etc.).
Additionally, accurate classification of an argument component
also requires positional and structural information about the
component: its position in the paragraph and the complete
essay, etc. [9]. Therefore, it is crucial for a BERT-based
model for Argument Mining to have the ability to capture the
contextual, structural and syntactic features which are essential



for accurate classification. Accordingly, our approach in this
paper seeks to address these dynamics exactly: we first embed
the complete paragraph, allowing for connective clues and
structural flow between components to be captured. Then, we
contextualize the three essential feature groups (contextual,
structural and syntactic) in parallel. Finally, we combine the
separate contextualized feature groups to form a targeted and
enriched representation of the ADU.

In Argument Mining, transfer learning between the Argu-
ment Type Classification (ATC) and the Link Identification
(LI) tasks is of particular relevance [13]. For example, in the
ATC task, the classifier learns that the first component of a
paragraph has a higher probability of being a claim. Then, via
transfer learning, the classifier can use this information in the
LI task to deduce that the first component in a paragraph is
most likely linked to some other component, since claims are
almost always linked, either by outgoing links to major claims
or by incoming links from premises in the paragraph.

This work focuses on Argument Mining in the Persuasive
Essays (PE) dataset which consists of written essays on
various topics. We introduce a modular BERT-based model,
called BERT–MINUS, which consists of four BERT models,
a custom Features as Text (FeaTxt) sentence representation,
and a Selective Fine-tuning process for transfer learning. The
architecture of this model is a generalization of the LSTM–
Minus model of Kuribayashi et al. [13]. The Features as Text
(FeaTxt) enhancement is inspired by the cutting-edge Prompt
Engineering approach [18] and is also in line with the work
of Mushtaq and Cabessa [17].

The BERT–MINUS model works as follows: the Joint
Module embeds a complete input paragraph which consists
of several Argumentative Discourse Units (ADU) to be clas-
sified. Taking this paragraph embedding as input, the Span
Representation Function computes span-based representations
for argument markers (AM), argument components (AC), and
additional features – given as text (FeaTxt). Subsequently, the
Dedicated Module, composed of three BERT models, contex-
tualizes these span representations separately to better capture
the flow between them. These contextualized representations
are then concatenated to obtain a combined representation of
the ADU which is finally fed to a classification layer.

To exploit transfer learning between or across LI and ATC
tasks, we endow the BERT–MINUS model with both intra-task
and inter-task (classical) transfer learning capabilities through
the Selective Fine-tuning mechanism.

The BERT–MINUS model achieves state-of-the-art results
on the LI task and competitive results on the ATC task.
Moreover, the synergy between the Features as Text and the
selective fine-tuning mechanisms significantly improve the
performance of BERT–MINUS. More generally, our study
reveals the importance of careful fine-tuning for modular
language models. It also naturally dovetails into the Prompt
Engineering paradigm in NLP. We make the code available on
GitHub at the following address:
https://github.com/mohammadoumar/BERT–MINUS–FeaTxt.

The main contributions of this paper are as follows:

• We introduce a modular BERT-based model, called
BERT–MINUS, which consists of four BERT models
which separately, and in parallel, contextualize AMs, ACs
and FeaTxt of an ADU to form a targeted and enriched
embedding of the ADU.

• We introduce a two-mode Selective Fine-tuning process
for transfer learning between Link Identification (LI) and
Argument Type Classification (ATC).

• BERT–MINUS achieves state-of-the-art results on the
LI task and competitive results on the ATC task. The
Features as Text and Selective Fine-tuning mechanisms
significantly improves the performance of the model.

This paper is structured as follows. Section II presents the
literature related to our work. Section III introduces the BERT–
MINUS model and the selective fine-tuning mechanism in
detail. Section IV describes the experimental setup of our
work. In Section V, we present our results and analyse them.
We conclude and propose future directions in Section VI.

II. RELATED WORKS

In the literature, several distinct approaches have been
proposed for Argument Type Classification (ATC) and Link
Identification (LI) in structured texts. For both tasks, different
architectures and feature sets have been studied and analyzed.

Stab and Gurevych [9] investigated ATC, LI and Link Type
Classification (LTC) in the Persuasive Essays (PE) dataset.
They used Support Vector Machines (SVM) and Conditional
Random Fields (CRF) with hand-crafted feature sets consist-
ing of lexical, structural, syntactic, contextual and discursive
features. For ATC, they report that structural features produce
the best results. For LI, a combination of features yields
the best performance. Their work reveals the importance of
well-designed feature groups for Argument Mining sub-tasks.
Our work incorporates their feature groups approach into
transformer-based language models.

Hadaddan et al. [11] focused on the ACD and ATC tasks.
They introduced the Yes We Can! (YWC) dataset which
consists of transcribed political speeches. They present both
feature-based and recurrent neural network-based approaches.
The former involves simple feed-forward networks with fea-
tures consisting of Bag of Words (BoW), N-Grams, Part of
Speech (POS) tags, Named Entity Recognition (NER) tags,
etc. The latter approach involves Feed-Forward and LSTM
architectures with FastText word embedding. Their work posits
the importance of syntactic and grammatical features for
Argument Mining.

Potash et al. [10] approached both ATC and LI as a
joint learning task. They introduced a custom Joint Neural
Model for the Persuasive Essays (PE) and Micro-Text Corpus
(MTC) datasets. This model consists of a Bi-LSTM encoder
combined with a fully connected layer for ATC and an LSTM
decoder for LI. For textual representation, they use Bag of
Words (BoW), GloVe embedding and structural features. This
approach combines the advantages of additional features and
embeddings when used in conjunction with recurrent neural
networks.



Mayer et al. [12] combined the ACD and ATC tasks
into one sequence tagging task. They use a dataset based
on abstracts of Randomized Controlled Trials (RCT) from
the MEDLINE database. They use combinations of static
and dynamic embeddings as textual representations together
with LSTMs, GRUs and BERT fine-tune for an end-to-end
Argument Mining pipeline.

Kuribayashi et al. [13] present a model which builds
upon the LSTM–Minus span representations of Wang and
Chang [19] and Li et al. [20]. The LSTM–Minus span rep-
resentation of a text span (i, j) is defined as the subtraction
(‘Minus’) of the hidden layer outputs of the LSTM model
at indices j and i. Based on this definition, Kuribayashi et
al. presented two cases: (i) a joint span model where an
argumentative discourse unit (ADU) is considered as a single
span (i, j) and (ii) a distinction model where the ADU span
(i, j) is separated into an argument marker span (i, k) and an
argument component span (k + 1, j). The motivation for the
latter model is to better capture the flow between the argument
markers (‘I think’, ‘because’, etc.) and the argument compo-
nents (‘we should limit immigration’, ‘tertiary education is
more important than secondary’, etc.) [13].

In the Kuribayashi et al. distinction model, the span rep-
resentation of both the argument marker and the argument
component is computed according to the LSTM–Minus rep-
resentation formula. Then, these two representations are con-
textualized using two separate Bi-LSTMs. Finally, these con-
textualized representations are concatenated, optionally with
BoW and structural features, to obtain the representation of
the complete ADU. Kuribayashi et al. considered three tasks:
ATC, LI and LTC, both separately and jointly. In the joint
learning setting, they used a custom loss function consisting
of weighted combination of loss functions for all three tasks.
They experiment with both the PE and MTC datasets.

Finally, Mushtaq and Cabessa [17] introduced the BERT
with Features as Text (BERT–FeaTxt) model for ATC. They
present a combined features as text sentence representation
which incorporates contextual, structural and syntactic features
along with the argument component. The contextual features
are the topic and the full sentence, while the structural features
relate to the position of the component in the essay and the
paragraph. As syntactic features, Part Of Speech (POS) tags of
the component are used. This enriched sentence representation
is then utilized to fine-tune a BERT model for the ATC task.

Mushtaq and Cabessa [17] experiment with the PE, Change
My View (CMV) and Yes We Can! (YWC) datasets. They
report two important results: firstly, the BERT–FeaTxt model
outperforms standalone BERT, and secondly, BERT–FeaTxt
outperforms the classical case where structural features are
concatenated numerically to the BERT embedding.

In this paper, we combine our previous work [17] with the
Kuribayashi span-representation approach [13]. We seek to
leverage the features as text capabilities of our BERT–FeaTxt
model and the enhanced span-representation capabilities of the
Kuribayashi model.

III. MODEL

In this section, we first recall the BERT with Features as Text
(BERT–FeaTxt) model [17]. We then introduce our modular
BERT–MINUS model for Argument Type Classification (ATC)
and Link Identification (LI). Finally, we explain how the
BERT–MINUS model can leverage transfer learning via the
Selective Fine-tuning mechanism.

A. BERT–FeaTxt

Contextual, structural and syntactic features are crucial
for building meaningful representations of argument compo-
nents [9]. Accordingly, Mushtaq and Cabessa [17] introduced
the BERT with Features as Text (BERT–FeaTxt) model. In
addition to the argument component itself, this model incorpo-
rates in its input hand-crafted features – given in textual form
– rather than in numerical form. This approach leverages the
bidirectional contextual and linguistic capabilities of BERT,
enabling it to create an enriched representation of the whole
input text. The BERT–FeaTxt model and the textual represen-
tations of its features are described in more detail below.

Contextual Features: The full meaning of an argument
component depends inherently on the linguistic and semantic
context in which it occurs. Therefore, contextual information
is an important factor in the classification of an argument
component. Accordingly, BERT–FeaTxt utilizes: 1) the full
sentence in which the argument component occurs and 2) the
topic of the essay as the contextual features for an argument
component. Formally, the textual representation of contextual
features is given as follows:

contextual_fts = ‘Topic: t. Sentence: s.’
Structural Features: Written essays naturally follow a

structured argumentative pattern. The essay usually begins
with a statement of the writer’s stance on the topic. Thereafter,
claims in support of the stance and premises to support these
claims are presented in successive paragraphs. Therefore, the
position of the argument component in the essay and paragraph
contains vital information for its classification. As structural
features, BERT–FeaTxt utilizes: 1) the paragraph number in
which the argument component appears, 2) whether it is in
the introductory or 3) concluding paragraph, and 4) if it is
the first or 5) last component in the paragraph. Formally, the
textual representation of structural features is given as follows:

structural_fts = ‘Paragraph Number: n. Is
in introduction: i. Is in conclusion: c. Is first in
paragraph: f . Is last in paragraph: l.’
Syntactic Features: The linguistic and grammatical char-

acteristics of an argument component are also a factor in de-
termining its argumentative role. Accordingly, BERT–FeaTxt
incorporates Part of Speech (POS) tags of the argument com-
ponent as its syntactic features. POS tags determine whether
each token is a noun, a verb, an adjective, and so on. Formally,
the textual representation of syntactic features is given as
follows:

syntactic_fts = ‘Part Of Speech tags: t1, t2,
. . . , tn’



where ti represents the POS tag of the i-th token in the
argument component.

Combined Features as Text: As its input, the BERT–
FeaTxt model combines the contextual, structural and syntactic
features as follows:

combined_fts = contextual_fts +
structural_fts +
syntactic_fts

where ‘+’ denotes the string concatenation operation. Note that
the argument component itself is, by definition, included in the
contextual features.

B. BERT–MINUS

We now introduce our modular BERT–MINUS model in
detail. BERT–MINUS contextualizes AM, AC and FeaTxt of
an ADU in parallel to form a targeted and enriched embedding
of the ADU. In the main, BERT–MINUS consists of three
parts: 1) a joint BERT module, 2) a span representation
function and 3) a dedicated module consisting of three BERT
models with customized input embeddings. In addition to these
parts, the BERT–MINUS model also has intermediate layers
and an output layer (see Figure 1).

Input: The input to the BERT–MINUS model consists of
a paragraph from an essay and the spans tensor of the para-
graph (see Figure 1, Paragraph and Spans). Each paragraph
contains a number of Argumentative Discourse Units (ADU).
Each ADU consists of an Argument Marker (AM) (blue text
in Figure 1) and an Argument Component (AC) (red text in
Figure 1). For a text sequence, its span is the pair of indices,
(i, j), of its first and last token in the tokenized paragraph.

The BERT–MINUS model can be utilized both without or
with features as text (FeaTxt). In the former case, the spans
tensor consists of the AM spans (iam, jam) and the AC spans
(iac, jac) of all ADUs in the paragraph. In the latter case, the
spans tensor also includes the spans (ifts, jfts) of the features
as text (cf. Section III-A) of all ADUs. The spans tensor for
the paragraph, then, consists of the list of spans[

(iam1
, jam1

), (iac1 , jac1), (ifts1 , jfts1),

(iam2
, jam2

), (iac2 , jac2), (ifts2 , jfts2), . . .
]

of all the ADUs (i = 1, 2, . . . ) in the paragraph.
Joint Module: The first module of BERT–MINUS

is a standalone pre-trained BERT model (see Figure 1,
BERTjoint). We use this model to contextualize and embed
the input paragraph.

Span Representation Function: The span representation
function takes two objects as input: the output of the Joint
Module, which is a sequence of 768 dim vectors whose length
equals the number of tokens in the paragraph, and the spans
tensor of the paragraph. This function computes three span
representations: one each for the AM, AC and FeaTxt of every
ADU in the paragraph (see Figure 1, Span Representation
Function). For a text sequence (AM, AC or FeaTxt of an

ADU) with span (i, j), its BERT–MINUS span representation
is computed as follows:[

hj − hi−1 ; hi − hj+1 ; hi−1 ; hj+1

]
where hi is the output of the Joint Module at the i-th index
and ‘;’ represents tensor concatenation. In this computation,
the first and second term represents the embedding of the text
in the forward and backward direction, respectively. The last
two terms capture the preceding and succeeding context of the
text sequence (span). These representations are based on the
LSTM–Minus representation of Kuribayashi et al. [13].

Each span representation is of dimension 4 ∗ 768 = 3072.
Before they are input to the next module (Dedicated Module),
these span representations are reshaped using three paral-
lel intermediate linear layers: LINEARam, LINEARac and
LINEARfts, respectively, each of input dimension 3072 and
output dimension 768.

Dedicated Module: This module consists of three ded-
icated BERT models, BERTam, BERTac, BERTfts (see
Figure 1), which process the AM, AC and FeaTxt span
representations, respectively. The embedding layer of these
models are customized so that they can take sequences of
vectors (span representations) instead of token ids as inputs. In
this way, each of the AM, AC and FeaTxt span representation
is contextualized separately by a dedicated customized BERT
model. The outputs of these dedicated models are then used
to obtain a combined representation of the whole ADU as
follows:

REPADU =
[
BERTam(am span representation);

BERTac(ac span representation);

BERTfts(fts span representation)
]

This BERT–MINUS ADU representation is finally fed to
a fully connected layer for classification into the respective
classes for the two tasks.

C. Selective Fine-Tuning

To enable transfer learning between Link Identification (LI)
and Argument Type Classification (ATC) tasks, we adjoin a
three-step, two-mode Selective Fine-tuning mechanism to our
BERT–MINUS model:

1) A pre-trained BERT model is fine-tuned on one task,
ATC or LI.

2) This fine-tuned model is instantiated as the Joint BERT
module of the BERT–MINUS model.

3) BERT–MINUS is fine-tuned, either on the same task as
Step 1 (auto-transfer mode) or on the other task (cross-
transfer mode).

Instead of a generic pre-trained BERT model, the selective
fine-tuning mechanism uses a BERT model already fine-tuned
on one of the two tasks. By means of transfer learning, the
paragraph embedding computed by the joint BERT module
is more targeted towards the particular task. In addition, the
selective fine-tuning mechanism is also motivated by Wieting



BERTam BERTac BERTfts

CLAIM MAJOR CLAIM PREMISE

BERTjoint

LINEAR

LINEARam LINEARac LINEARfts

SPAN REP. FCT

Paragraph:
The issue of whether using of machine are 
bring many advantages to society is of great 
concern to many people. In my opinion, 
although using machines have many 
benefits, [SEP] 1, Yes, No, Yes, No [SEP] 
we cannot ignore its negative effects. [SEP] 
1, No, Yes, Yes, No [SEP]

Spans:
[[21, 23], [25, 25]]
[[25, 30], [43, 48]]
[[33, 41], [51, 59]]

fts_span_repac_span_repam_span_rep

combined ADU representation

Fig. 1: Architecture of the BERT–MINUS model. The paragraph
and the spans tensor are input to the model. The paragraph contains
AMs (blue text), ACs (red text), and additional features as text (green
text, only abbreviated form shown for brevity’s sake), separated by
the [SEP] tokens. The spans tensors consists of the span indices of
AMs, ACs and features as text of the ADUs in the paragraph. The
paragraph is fed to a joint BERT model. The output of this model,
together with the spans tensor, are fed to the spans representation
function. The AM, AC and FeaTxt BERT–MINUS representations
obtained from this function are reshaped via three linear layers. These
reshaped representations are fed to three dedicated BERT models.
The outputs of these models are then concatenated to construct an
enriched representation of the whole ADU. This ADU representation
is then fed to a final fully connected layer for classification. The
selective fine-tuning of the joint BERT module is represented by a
gray coloring.

and Kiela [21] who emphasize the importance of the em-
bedding layer over the complexity of the subsequent encoder
block.

IV. EXPERIMENTS

A. Dataset

We use the Persuasive Essays (PE) dataset introduced by
Stab and Gurevych [9]. The PE dataset consists of 402

structured essays on various controversial topics such as ’Busi-
nesses should be only concerned about making profits’ and
’Spending money on supporting art or protecting environment’.
Of the 402 essays, 322 are set aside for the train set and 80
for the test set. The statistics of the the PE dataset are given
in Table I.

For our BERT–MINUS model, we separated each Argumen-
tative Discourse Unit (ADU) of the dataset into an argument
marker (AM) and an argument component (AC). To that end,
we used the four types of argument markers of Stab and
Gurevych: forward, backward, thesis and rebuttal [9].

Corpus Statistics Component Statistics

Tokens 147,271 Major Claims 751
Sentence 7,116 Claims 1,506
Paragraphs 1,833 Premises 3,832
Essays 402 Total 6,089

Table I: Corpus and component statistics for the PE dataset.

B. Tasks

We focus on the two following Argument Mining sub-tasks:

1) Link Identification (LI): Given an argument component
(AC), classify it as either Linked or Not Linked. Here, we
approach LI as the task of classifying single argument
components, as opposed to pairs of components as in [9,
13]. Since linked claims and linked premises are, by
and large, linked to the major claims and the claims at
the beginning of the paragraph, respectively, the essay
tree structure can be properly reconstructed from the
classification of separate components [9].

2) Argument Type Classification (ATC): Given an argument
component (AC), classify it as either a Major Claim, a
Claim or a Premise.

C. Models

In our work, we consider the following models:

• BERT: a standalone BERT model fine-tuned on argument
components alone, without features as text (FeaTxt).

• BERT–FeaTxt: a BERT model fine-tuned on the com-
bined features as text representation, as described in
Section III-A. The standalone BERT and BERT–FeaTxt
models represent our baselines.

• BERT–MINUS: a BERT–MINUS model fine-tuned on
paragraph texts as described in Section III-B. This model
takes no additional features as text (FeaTxt) as inputs
(green features and modules in Figure 1) and has no
selective fine-tuning.

• BERT–MINUS–Auto: a BERT–MINUS model where
the joint BERT module is selectively fine-tuned on the
same task (LI or ATC) as the one on which the BERT–
MINUS model is being trained, as described in Sec-
tion III-C. We call this mode auto-transfer learning, i.e.,
transfer from one task to itself.



• BERT–MINUS–Cross: a BERT–MINUS model where
the joint BERT module is selectively fine-tuned on the
opposite task (LI → ATC, and vice-versa) as the BERT–
MINUS model. We call this mode (classical) cross-
transfer learning, i.e., transfer from one task to another.

• BERT–MINUS–FeaTxt: a BERT–MINUS model aug-
mented with features given as text (FeaTxt), as described
in Section III-A and illustrated in Figure 1, and with no
selective fine-tuning.

• BERT–MINUS–FeaTxt–Auto: a BERT–MINUS–
FeaTxt model with selective fine-tuning in the auto-
transfer mode.

• BERT–MINUS–FeaTxt–Cross: a BERT–MINUS–
FeaTxt model with selective fine-tuning in the cross-
transfer mode.

V. RESULTS AND ANALYSIS

We present and analyze the results of the various BERT–
MINUS models on the Link Identification (LI) task and the
Argument Type Classification (ATC) tasks. We also present
the result of the Link Type Classification (LTC) task with the
BERT–FeaTxt model [17].

A. Link Identification Task

The results for the LI task are given in Table II. The analysis
of these results reveals several important insights and patterns.

Models L NL F1

BERT 0.216 0.833 0.524
BERT–FeaTxt 0.585 0.877 0.731

BERT–MINUS 0.721 0.826 0.773
BERT–MINUS–Auto 0.760 0.830 0.795
BERT–MINUS–Cross 0.750 0.835 0.793

BERT–MINUS–FeaTxt 0.709 0.800 0.755
BERT–MINUS–FeaTxt–Auto 0.763 0.841 0.802
BERT–MINUS–FeaTxt–Cross 0.778 0.850 0.814

Stab and Gurevych [9] 0.585 0.918 0.751

Niculae et al. [22] 0.601

Kuribayashi et al. [13] 0.783

Table II: Results for the LI task. The performance of the different
BERT and BERT–MINUS models described in Section IV-C are re-
ported. L and NL represents the F1 scores for Linked, and NotLinked,
respectively. F1 stands for the macro F1 score. The empty cells come
from the fact that in the literature, only the macro F1 score was given.
The 2 first rows concern the BERT model, the 3 next ones the BERT–
MINUS model, and the 3 following ones the BERT–MINUS–FeaTxt
model.

First, we see that the BERT–FeaTxt model drastically im-
proves on the standalone BERT performance (Table II, rows 1
and 2). This improvement is due to the addition of contextual,
structural and syntactic features which allows the model to
build richer embeddings of the argument components. This
observation comports exactly with the results of Mushtaq and
Cabessa [17]. Indeed, they further show that the additional
features are better exploited when given in a textual rather
than numerical form.

Secondly, we see that the BERT–MINUS model signif-
icantly improves over both standalone BERT and BERT–
FeaTxt (Table II, rows 1, 2 and 3). Recall that BERT–MINUS
takes complete paragraphs as input whereas both BERT and
BERT–FeaTxt take single components only. Consequently,
BERT–MINUS is better able to capture the contextual and
argumentative flow between successive components. As a
result, the BERT–MINUS component representations are more
contextually enriched, leading to improved accuracy. This
suggests that, for some tasks, it is more efficient for a model
to build contextualized representations from raw texts (BERT–
MINUS) than from descriptive features (BERT–FeaTxt). We
will see, however, that this does not apply to the ATC task.

Thirdly, for both BERT–MINUS and BERT–MINUS–
FeaTxt models, the selective fine-tuning mechanism improves
the results (Table II, rows 3–5 and 6–8). We believe that this
phenomenon is due to two important reasons: firstly, when
selectively fine-tuned, BERT–MINUS is placed in a more ‘in-
formative’ initial configuration from which it can reach a lower
local minimum during training. Secondly, selective fine-tuning
improves the quality of the paragraph embedding which, in
turn, positively impacts the whole training process. These
results are in line with those of Wieting and Kiela [21], who
show the importance of the embedding over the complexity of
the subsequent encoder.

Furthermore, note that for BERT–MINUS, both auto-
transfer and cross-transfer modes achieve comparable re-
sults (Table II, rows 4–5). By contrast, for BERT–MINUS–
FeaTxt, cross-transfer significantly outperforms auto-transfer
(Table II, rows 7–8). In fact, the results achieved by BERT–
MINUS with FeaTxt and cross-transfer are state-of-the-art.

Finally and surprisingly, BERT–MINUS outperforms
BERT–MINUS–FeaTxt (Table II, rows 3 and 6). This shows
that, when no transfer-learning is involved, it is actually
more efficient for BERT–MINUS to build contextualized rep-
resentations from raw texts than from descriptive features.
By contrast, when transfer-learning come into play, BERT–
MINUS–FeaTxt outperforms its BERT–MINUS counterpart
(Table II, rows 4–5 and 7–8). In fact, performing both the
first and third steps of selective fine-tuning with same features
as text leverages and enables transfer learning between the
tasks.

B. Argument Type Classification Task

The results of the ATC task are presented in Table III.
As for the LI task, we see that BERT–FeaTxt significantly

outperforms standalone BERT (Table III, rows 1 and 2). This
shows that contextual, structural and syntactic features – given
as text (FeaTxt) – capture important information necessary for
determining the argumentative role of a component [17].

Secondly, BERT–MINUS also improves upon standalone
BERT (Table III, rows 1 and 3). As already explained for
the LI task, the contextualized representations built by BERT–
MINUS capture argumentative flow from complete paragraphs
as opposed to individual components. However, in contrast
with the LI task, BERT–FeaTxt outperforms BERT–MINUS



Models MC C P F1

BERT 0.703 0.507 0.841 0.686
BERT–FeaTxt 0.855 0.678 0.909 0.814

BERT–MINUS 0.784 0.602 0.865 0.750
BERT–MINUS–Auto 0.847 0.617 0.888 0.784
BERT–MINUS–Cross 0.813 0.633 0.888 0.778

BERT–MINUS–FeaTxt 0.746 0.537 0.863 0.715
BERT–MINUS–FeaTxt–Auto 0.900 0.687 0.903 0.831
BERT–MINUS–FeaTxt–Cross 0.869 0.618 0.890 0.792

Stab and Gurevych [9] 0.891 0.682 0.903 0.826

Niculae et al. [22] 0.782 0.645 0.902 0.776

Kuribayashi et al. [13] 0.856

Table III: Results for the ATC task. The performance of the different
BERT and BERT–MINUS models described in Section IV-C are
reported. MC, C and P represents the F1 scores for Major Claim,
Claim and Premise, respectively. F1 stands for the macro F1 score.

(Tables II and III, rows 1–3). This means that, for this task,
the component representations built from descriptive features
are more useful than those obtained from full markers and
components.

Thirdly, our selective fine-tuning mechanism improves
classification accuracy for both BERT–MINUS and BERT–
MINUS–FeaTxt (Table III, rows 3–5 and 6–8). As with the LI
task, we conjecture that transfer learning yields an improved
initial configuration of the BERT–MINUS model as well as
an improved embedding of the paragraph text.

Moreover, the cross-transfer mode under-performs the auto-
transfer mode for both BERT–MINUS and BERT–MINUS–
FeatTxt (Table II, rows 4–5 and rows 7–8). By comparing
these results for the two tasks, we conclude that transfer
learning from ATC to LI is more successful than that from LI
to ATC. This is explained by the fact that the argumentative
role of a component is more useful for inferring its linked or
not linked type, than vice versa.

Furthermore, BERT–MINUS outperforms BERT–MINUS–
FeaTxt (Table III, rows 3 and 6) for the ATC task as well.
However, with selective fine-tuning, BERT–MINUS–FeaTxt
outperforms BERT–MINUS (Table II, rows 4–5 and 7–8). As
with the LI task, this shows that transfer learning happens
properly when both joint BERT module and BERT–MINUS
model are fine-tuned with features as text.

Finally, we observe that the combination of the features as
text and selective fine-tuning process in cross-transfer mode
leads to the best results. The synergy of the two mechanisms
generates a combined effect that surpasses the sum of its parts.
For this task, we improve above Stab and Gurevych’s Joint ILP
Model [9], but unfortunately, remain below the Kuribayashi
LSTM-Minus model [13].

C. Link Type Classification

In addition, to reinforce the results of Mushtaq and
Cabessa [17], we also trained BERT–FeaTxt on the Link Type
Classification (LTC) task. The results are given in in Table IV.

In the LTC task, BERT–FeaTxt improves the performance of
Stab and Gurevych [9]. Once again, this shows that the features

Models Attack Support F1
BERT–FeaTxt 0.506 0.960 0.733

Stab and Gurevych [9] 0.413 0.947 0.680

Kuribayashi et al. [13] 0.796

Table IV: Results for the Link Type Classification task. The Stab
and Gurevych results are for the full features set and an SVM
classifier [9]. The BERT–FeaTxt results are from Mushtaq and
Cabessa [17].

as text yield to enriched and improved representations of
argument components, leading to better classification accuracy.
However, we remain below Kuribayashi et al. [13] which we
plan to investigate from the BERT–MINUS perspective in a
future paper.

VI. CONCLUSION

In this paper, we focus on two Argument Mining sub-tasks:
Link Identification (LI) and Argument Type Classification
(ATC) for the Persuasive Essays (PE) dataset. More precisely,
we introduce the modular BERT–MINUS model with Features
as Text (FeaTxt) and Selective Fine-tuning mechanisms. The
model works by constructing an enriched embedding for the
whole paragraph text via a joint BERT module and then con-
textualizing the argument marker, component and additional
features as text of the argument discourse unit (ADU) sepa-
rately via a dedicated module consisting of three customized
BERT models. The aggregation of these contextualized rep-
resentations yields an enriched representation of the ADU.
We endow our model with transfer learning capabilities via
selective fine-tuning which comes in two modes: auto-transfer
which implements intra-task transfer, and cross-transfer which
implements inter-task/classical transfer.

Our experiments show that the BERT–MINUS model with
features as text and selective fine-tuning improves over stan-
dalone BERT and BERT–FeaTxt for both LI and ATC tasks.
The combination of features as text and selective fine-tuning
mechanisms significantly augment the capabilities of the
BERT–MINUS model. With this enhanced combination, we
achieve state-of-the-art results on the LI task and competitive
results for the ATC task.

We believe that our work opens up several interesting
research directions. For example, an end-to-end Argument
Mining pipeline based on our BERT–MINUS-FeaTxt model is
the natural next step. Furthermore, we think that selective fine-
tuning, both in the auto-transfer and the cross-transfer modes,
can be used to investigate transfer learning between Argument
Mining sub-tasks in various architectures and models like
Potash et al. [10] and Kuribayashi et al. [13]. Moreover, our
BERT–MINUS model is a generalization of LSTM–Minus
span representation-based model of Kuribayashi et al. [13].
We think that span representation computations can be en-
hanced using BERT’s particular attention-based contextual-
ization capabilities instead of the LSTM–Minus construction.
In addition, following Kuribayashi et al. [13] who report



improvements in the joint-task learning setting, we plan to
investigate joint-task learning for the BERT–MINUS model.

More generally, we believe that our selective fine-tuning
mechanism opens possibilities for exploration and imple-
mentation in other modular Language Models. Finally, our
work also dovetails naturally into the cutting-edge Prompt
Engineering paradigm in NLP.
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