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Abstract. The energy efficiency of processing convolutional neural net-
works (CNNs) is crucial for their deployment on low-power mobile
devices. In our previous work, a simplified theoretical hardware-
independent model of energy complexity for CNNs has been introduced.
This model has been experimentally shown to asymptotically fit the
power consumption estimates of CNN hardware implementations on dif-
ferent platforms. Here, we pursue the study of this model from a theo-
retically perspective in the context of fully-connected layers. We present
two dataflows and compute their associated energy costs to obtain upper
bounds on the optimal energy. Using the weak duality theorem, we fur-
ther prove a matching lower bound when the buffer memory is divided
into two fixed parts for inputs and outputs. The optimal energy com-
plexity for fully-connected layers in the case of partitioned buffer ensues.
These results are intended to be generalized to the case of convolutional
layers.

Keywords: Convolutional neural networks · Energy complexity ·
Dataflow

1 Energy Complexity Model for CNNs

Deep neural networks (DNNs) represent a cutting-edge machine learning technol-
ogy, with countless applications in computer vision, natural language processing,
robotics, etc. These models are typically composed of hundreds of thousands of
neurons and tens of millions of weights, and are thus computationally demanding
and highly energy-consuming. With the ever-growing use of mobile devices, like
smartphones or smartwatches, comes the issue of the implementation, deploy-
ment, and portability of already trained DNNs on low-power hardware. Recently,
extensive research has been conducted on techniques that enable energy-efficient
DNN processing on a variety of hardware platforms and architectures (e.g.,
GPUs, FPGAs [4], memory hierarchies) [8]. The proposed techniques reduce the
computational cost via hardware design (including massive parallelism) and/or
approximation of DNN models. For example, in error-tolerant applications such
as image classification, the use of approximate computing methods [3] (e.g. low
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Fig. 1. The energy complexity model.

float precision, approximate multipliers) can save an enormous amount of energy
at the cost of only a small loss in accuracy.

For a particular DNN hardware implementation, the power consumption of
the inference process can be either practically measured or analytically esti-
mated using physical laws. This power consumption depends on parameters
and constants related to the hardware architecture, and hence, its evaluation
varies for different hardware implementations. Some computer programs [5,9]
can optimize the power consumption of a particular DNN on various hardware
platforms [2,6]. It has been empirically observed that the energy cost of DNN
processing mainly consists of two components: the computation energy, and the
data energy which represents around 70% of the total cost [10]. The computation
energy is needed for performing arithmetic operations, especially the so-called
multiply-and-accumulate (MAC) operations (S ← S + wx on floats S,w, x),
used to compute the weighted sums of inputs of the neurons. The data energy
is required for moving the data inside the memory hierarchy of the hardware
(dataflow), and is related to the number of memory accesses.

In a recent paper [7], we have introduced a simplified hardware-independent
model of energy complexity for convolutional neural networks (CNNs). This
model abstracts from the hardware implementation details related to different
platforms, and preserves the asymptotic energy complexity of the CNN inference.
It is composed of only two memory levels called DRAM and Buffer, illustrated
in Fig. 1. The network parameters and states are stored in DRAM, and the
arithmetic operations are performed over numerical data stored in Buffer, which
is of a limited capacity of B bits. The transfer of data between the two memories
is the dataflow. The main idea behind this model is that, for a given CNN
stored in DRAM, the three arguments of all the MAC operations (i.e., input x,
weight w and accumulated output S of operation S ← S+wx) employed for the
evaluation of the network must occur together at the same time in Buffer. This
process requires a certain number of data transfers between DRAM and Buffer
(i.e., the number of DRAM accesses multiplied by the number of bits in a float
number), which corresponds to our measure of the data energy.

For simplicity, we assume that the energy cost is not optimized across multi-
ple CNN layers, as for instance in [1]. Hence, the energy complexity is defined as
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a simple sum over separate convolutional and fully-connected layers only, while
the less energy-intensive max pooling layers are omitted. Formally,

E =
∑

non-pooling layer λ

(
Eλ

comp + Eλ
data

)
(1)

where the computation energy Eλ
comp and the data energy Eλ

data for evaluating
a non-pooling layer λ is proportional to the corresponding numbers of MACs
and DRAM accesses, respectively.

The energy complexity model of CNNs has been exploited for calculating
the theoretical energy of processing convolutional layers in the context of two
common dataflows and under realistic buffer capacity constraints [7]. For the
first dataflow, any input to each neuron is read into Buffer only once. For the
second one, any accumulated output of each neuron is written to DRAM only
once. In both cases, each weight of the CNN is read into Buffer only once.
These dataflows provide upper bounds on the energy complexity of CNNs, which
have been compared to the real power consumptions estimated for Simba [6]
and Eyeriss [2] architectures by using the Timeloop/Accelergy software tool [5,
9]. As it turns out, the theoretical upper bounds fit asymptotically very well
the empirical optimal power consumptions, when individual parameters such
as the height, width, depth, kernel size, and stride of a convolutional layer are
varied [7]. Hence, the introduced energy complexity model appears to be capable
of asymptotically capturing all important sources of energy consumption that
are common to the diverse CNN hardware implementations.

The model can also be exploited for proving lower bounds on the energy com-
plexity of CNNs, in order to establish asymptotic limits on the energy efficiency
of any CNN hardware accelerators. Here, we start this study by investigating
the case of fully-connected layers, as a specific case of convolutional layers. We
first present two types of dataflows in which each weight and each output (or
alternatively each input) are read into Buffer only once. In the first dataflow,
the Buffer memory is assumed to be partitioned into two fixed parts of given
capacities for inputs and outputs, respectively. The second dataflow is parame-
terized by the maximum number of inputs residing in Buffer at the same time.
We determine the data energy complexity of both dataflows, which provides
upper bounds for the optimal energy complexity. For the first dataflow, we fur-
ther prove a matching lower bound by means of the weak duality theorem from
linear programming. The optimal energy complexity for fully-connected layers
in situations where Buffer is partitioned into two fixed parts ensues. The results
are partially generalized to contiguous Buffer and are intended to be extended
to convolutional layers in a future research.

The paper is organized as follows. Section 2 formally defines the energy com-
plexity for fully-connected layers, and derives a general lower bound on the
energy. Section 3 present two dataflows with their associated upper bounds on
the energy. In Sect. 4, a matching and thus optimal lower bound is derived for
the case of partitioned Buffer, and a partial generalization to contiguous Buffer
is provided. Section 5 summarizes the results and discusses open problems.
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2 Energy Complexity of Fully-Connected Layer

For simplicity, we consider a fully-connected CNN layer λ, which is composed of
m neurons (units), each of which receiving connections labeled with real weights
from all the n neurons in the previous layer λ − 1. This can be viewed as a com-
plete weighted bipartite graph G = (X,Y,E) where X = {x1, . . . , xn} and
Y = {y1, . . . , ym} are disjoint sets of n = |X| inputs and m = |Y | outputs,
respectively, and E = X ×Y is a set of directed edges (xi, yj) leading from input
xi to output yj , each labeled with a real weight wji, for every j = 1, . . . ,m and
i = 1, . . . , n. The fully-connected CNN layer is evaluated as follows:

yj = ReLU

(
wj0 +

n∑

i=1

wjixi

)
for every j = 1, . . . ,m , (2)

where ReLU(x) = max(0, x) is the rectified linear unit activation function and
wj0 is a bias of output neuron yj , for every j = 1, . . . , m.

To evaluate the computation energy Eλ
comp of fully-connected layer λ in (1),

note that the total number of MAC operations needed for computing (2) is mn:
each output yj is initialized with bias wj0 and requires n MAC updates to be
computed. The computation energy is thus given by

Eλ
comp = Cb mn (3)

where Cb is a non-uniform parameter depending on the number of bits b in
floating-point MAC operations, since the design of a MAC circuit inside a micro-
processor differs for each b.

We now focus on the data energy Eλ
data of fully-connected layer λ in (1). This

energy cost can be split into three components that count the DRAM accesses
separately for the outputs, inputs, and weights:

Eλ
data = Eλ

outputs + Eλ
inputs + Eλ

weights . (4)

In order to evaluate the sums in (2), all the mn couples of inputs and (accu-
mulated) outputs (i.e. partially evaluated sums) need to occur in Buffer at least
once. Each such pair (xi, yj) is associated with the unique weight wji that can
be read from DRAM when the pair meet in Buffer for the first time. This means
that each of the mn weights is read only once. Let ν and μ be the numbers of
DRAM accesses to read inputs and outputs (or biases when initialized), respec-
tively, and b be the number of bits in the floating point representation of outputs,
inputs, and weights. The data energy (4) can thus be rewritten as

Eλ
data = b (2μ + ν + mn) (5)

since each output that is read into Buffer is later written back to DRAM, which
corresponds to two DRAM accesses, whereas each input and weight are only
read into Buffer. In order to optimize the data energy (4), it is thus sufficient to
minimize 2μ + ν.
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We will now derive a simple general lower bound on the data energy (4)
for fully-connected layers. Assume that Buffer has a size of B = b(β + 1) bits,
where β > 1 floats are reserved for storing inputs and outputs, and the remain-
ing capacity of one float is dedicated to the weights. For notational simplicity,
suppose that β − 1 divides m. In addition, for any dataflow, let r be the mini-
mum number of phases during which either only inputs or only outputs are read
into Buffer consecutively. Note that by reading a single input or output into
Buffer, one can get at most β − 1 new input-output pairs in Buffer. Since all mn
pairs need to meet in Buffer, we obtain the following trivial lower bound on the
number of DRAM read accesses:

μ + ν ≥ mn

β − 1
. (6)

Moreover, in order to keep generating new pairs in Buffer, at most n inputs or m
outputs can be read during each phase. This ensures that r(β − 1)max(m,n) ≥
mn which implies

r ≥ min(m,n)
β − 1

. (7)

Observe that, when a next phase begins, the reading of an input immediately
after an output has been read (or vice versa) provides at most β new pairs
in Buffer through these two DRAM read accesses (cf. the trivial upper bound
2(β − 1) of new pairs counted in (6) for two reads). Indeed, if there are k inputs
(1 ≤ k ≤ β − 1) and β − k outputs in Buffer, the reading of an input yields
at most β − k new pairs, while the subsequent reading of an output generates
at most k new pairs, which sums up to at most β new pairs in total. Let s be
the number of readings that do not occur at the beginning of a new phase. The
following lower bound on the number of DRAM read accesses ensues:

μ + ν ≥ 2r + s + 1 (8)

with
βr + (β − 1)s ≥ mn (9)

because all the mn pairs have to occur in Buffer, the two readings at the begin-
ning of each of the r phases generate at most β new pairs, and each of the
remaining s readings produces at most β − 1 new pairs, except for the very first
DRAM read access providing no pair.

Inequality (9) can be rewritten as

(β − 1)(2r + s) ≥ mn + (β − 2)r (10)

which implies

μ + ν ≥ mn

β − 1
+

β − 2
β − 1

r + 1 ≥ mn

β − 1
+

β − 2
(β − 1)2

min(m,n) + 1 (11)

according to (8) and (7). Since the biases of all m outputs must first be read
into Buffer, we have μ ≥ m, and thus

2μ + ν ≥ mn

β − 1
+ m +

β − 2
(β − 1)2

min(m,n) + 1 . (12)
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This provides a general lower bound on the data energy of fully-connected layer λ:

Eλ
data ≥ b

(
mn +

m(n − 1)
β − 1

+
β

β − 1
m +

β − 2
(β − 1)2

min(m,n) + 1
)

(13)

according to (5).

3 Upper Bounds on Energy Complexity

Any correct dataflow for processing a fully-connected layer can be described by
a sequence of p sets B0, B1, . . . , Bp ⊆ X ∪ Y , each of which being composed of
vertices in G, that represent the successive contents of Buffer (excluding weights)
after each DRAM access to read an input or output, in the course of evaluating
the sums in (2). The sequence satisfies the following conditions:

1. B0 = ∅
2. |Bi| ≤ β for every i = 1, . . . , p
3. |Bi \ Bi−1| = 1 and |Bi−1 \ Bi| ≤ 1 for every i = 1, . . . , p
4. Y ⊆ ⋃

x∈Bi
Bi for every x ∈ X,

and its length p is the total number of DRAM read accesses,

p = μ + ν . (14)

Condition 1 assumes empty Buffer at the beginning, and Condition 2 guarantees
that its size is not exceeded. Condition 3 ensures that, by reading a single input
or output into Buffer, at most one input or output is overwritten. Condition 4
ensures that all of the outputs meet every input in Buffer.

In the two following subsections, we present two dataflows for fixed and
bounded number of inputs in Buffer, respectively, such that each output is read
into Buffer only once (i.e., when initialized by a corresponding bias), which means
that

μ = m. (15)

Clearly, the role of inputs and outputs can be reversed in these dataflows.

3.1 Fixed Number of Inputs in Buffer

For the first dataflow, we assume that Buffer is partitioned into two fixed parts
for inputs and outputs, respectively, and contains one more float for reading the
weights. One part is reserved for storing d inputs and the second one to store
β − d outputs, where d is a fixed parameter such that 1 ≤ d ≤ β − 1. The
dataflow can be described by the following sequence of sets B0, B1, . . . , Bp that
meet Conditions 1–4, |Bi ∩ X| ≤ d, and |Bi ∩ Y | ≤ β − d for every i = 1, . . . , p:

∅, {x1}, {x1, x2}, . . . , {x1, . . . , xd}, (16)
{x1, . . . , xd, y1}, {x1, . . . , xd, y1, y2}, . . . , {x1, . . . , xd, y1, . . . , yβ−d}, (17)
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{xd+1, x2 . . . , xd, y1, . . . , yβ−d}, {xd+1, xd+2, x3, . . . , xd, y1, . . . , yβ−d}, . . . ,

{xn−d+1, . . . , xn, y1, . . . , yβ−d}, (18)
{xn−d+1, . . . , xn, yβ−d+1, y2, . . . , yβ−d},

{xn−d+1, . . . , xn, yβ−d+1, yβ−d+2, y3, . . . , yβ−d}, . . . ,

{xn−d+1, . . . , xn, yβ−d+1, . . . , y2(β−d)}, (19)
{xn−d+1, . . . , xn−1, xn−d, yβ−d+1, . . . , y2(β−d)},

{xn−d+1, . . . , xn−2, xn−d−1, xn−d, yβ−d+1, . . . , y2(β−d)}, . . . ,

{x1, . . . , xd, yβ−d+1, . . . , y2(β−d)}, . . . (20)

After an initialization where the first d inputs are read into Buffer (16), the
dataflow alternates between two phases of reading β − d outputs (17) (or (19)
etc.) and reading n − d inputs (18) (or (20) etc.), respectively, while overwriting
the outputs in Buffer by new outputs (cf. (19)) and the inputs in Buffer by new
inputs (cf. (20)). Apart from d reads at initialization, m

β−d changes from the first
phase to the second one are performed before each of the m outputs has been
read into Buffer once, which implies

p = d +
m

β − d
((β − d) + (n − d)) =

m(n − d)
β − d

+ m + d . (21)

Hence, this dataflow provides an upper bound on the data energy of fully-
connected layer λ:

Eλ
data ≤ b

(
mn +

m(n − d)
β − d

+ 2m + d

)
(22)

according to (5), (14), and (15). This upper bound takes the smallest value for
d = 1, provided that n ≥ β, since n ≥ β is equivalent to

m(n − 1)
β − 1

≤ m(n − d)
β − d

.

Furthermore, an alternative upper bound to (22) is obtained when the roles
of the inputs and outputs are reversed in the dataflow (16)–(20):

Eλ
data ≤ b

(
mn +

2n(m − (β − d))
d

+ n + 2(β − d)
)

. (23)

This upper bound has the smallest value for d = β − 1, provided that m ≥ β,
since m ≥ β is equivalent to

2n(m − 1)
β − 1

≤ 2n(m − (β − d))
d

.

Finally, assuming n ≥ β and m ≥ β, we can compare (22) and (23) for their
smallest values, namely d = 1 and d = β − 1, respectively:

b

(
mn +

m(n − 1)
β − 1

+ 2m + 1
)

?≤ b

(
mn +

2n(m − 1)
β − 1

+ n + 2
)

(24)
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which can be rewritten as

0
?≤ m(n − 2β + 3) + n(β − 3) + β − 1 . (25)

This inequality holds for n > 2β − 3 implying n ≥ β due to β ≥ 2. Therefore,
we can conclude that for sufficiently large n > 2β − 3 and m ≥ β, the minimal
energy for fully-connected layers achieved by the dataflow (16)–(20) is obtained
when d = 1, i.e., when Buffer is partitioned to β −1 outputs, one input, and one
weight. This situation leads to the following upper bound:

Eλ
data ≤ b

(
mn +

m(n − 1)
β − 1

+ 2m + 1
)

. (26)

3.2 Bounded Number of Inputs in Buffer

The second dataflow is parameterized by the maximum number k of inputs
that can simultaneously occur in Buffer, where 1 ≤ k ≤ β − 1. The dataflow
is described by the following sequence of sets B0, B1, . . . , Bp satisfying Condi-
tions 1–4 and |Bi ∩ X| ≤ k for every i = 1, . . . , p:

∅, {x1}, {x1, x2}, . . . , {x1, . . . , xk}, (27)
{x1, . . . , xk, y1}, {x1, . . . , xk, y1, y2}, . . . , {x1, . . . , xk, y1, . . . , yβ−k}, (28)
{x1, . . . , xk−1, y1, . . . , yβ−k+1}, {x1, . . . , xk−2, y1, . . . , yβ−k+2}, . . . ,

{x1, y1, . . . , yβ−1}, (29)
{xn, y1, . . . , yβ−1}, {xn−1, y1, . . . , yβ−1}, . . . , {xk+1, y1, . . . , yβ−1}, (30)
{xk, xk+1, y2, . . . , yβ−1}, {xk−1, xk, xk+1, y3, . . . , yβ−1}, . . . ,

{x2, . . . , xk+1, yk, . . . , yβ−1}, (31)
{x2, . . . , xk+1, yk+1, . . . , yβ}, {x2, . . . , xk+1, yk+2, . . . , yβ+1}, . . . ,

{x2, . . . , xk+1, yβ , . . . , y2β−k−1}, (32)
{x2, . . . , xk, yβ , . . . , y2β−k}, {x2, . . . , xk−1, yβ , . . . , y2β−k+1}, . . . ,

{x2, yβ , . . . , y2β−2}, (33)
{x1, yβ , . . . , y2β−2}, {xn, yβ , . . . , y2β−2}, {xn−1, yβ , . . . , y2β−2}, . . . ,

{xk+2, yβ , . . . , y2β−2}, (34)
{xk+1, xk+2, yβ+1, . . . , y2β−2}, {xk, xk+1, xk+2, yβ+2, . . . , y2β−2}, . . . ,

{x3, . . . , xk+2, yβ+k−1, . . . , y2β−2}, . . . (35)

After an initialization when the first k inputs are read into Buffer (27), the
dataflow alternates between two phases of reading β − 1 outputs (28)–(29) (or
(32)–(33) etc.) and reading n−1 inputs (30)–(31) (or (34)–(35) etc.), respectively.
In the general first phase (32)–(33) (when outputs are read into Buffer), β − k
outputs currently stored in Buffer are first replaced by new ones (32), and only
then the k − 1 inputs residing in Buffer are overwritten by outputs (33) until
one input remains in Buffer. During the second phase (34)–(35) (when inputs
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are read into Buffer), the remaining input is being replaced one by one with
n − k inputs (34), and then the last k − 1 read inputs overwrites the outputs
stored in Buffer, so that k inputs and β − k outputs are left in Buffer at the end
of the second phase. This phase can again be followed by the first phase, etc.
Apart from k reads at initialization, the first phase changes to the second one

m
β−1 times before each of the m outputs is read into Buffer once, which implies

p = k+
m

β − 1
((β − k) + (k − 1) + (n − k) + (k − 1)) =

m(n − 1)
β − 1

+m+k . (36)

Hence, this dataflow provides an upper bound on the data energy of fully-
connected layer λ:

Eλ
data ≤ b

(
mn +

m(n − 1)
β − 1

+ 2m + k

)
(37)

according to (5), (14), and (15). Note that the first dataflow (16)–(20) for d = 1
coincides with the second dataflow (27)–(35) for k = 1, producing the same
upper bound (26).

4 Lower Bounds on Energy Complexity

4.1 Partitioned Buffer

We now study the case where Buffer is divided into two fixed parts dedicated to
the reading of d inputs and β−d outputs, respectively, plus one float for weights,
where d is a fixed parameter such that 1 ≤ d ≤ β−1. In this context, we improve
the general lower bound (13) on the data energy Eλ

data of fully-connected layer λ
so that it matches the upper bounds (22) and (23), up to an additive constant.
We distinguish two cases according to whether d is at most or at least 2

3β.

Case 1 ≤ d ≤ 2
3
β. Assume first that

1 ≤ d ≤ 2
3β . (38)

We formulate a linear program of finding μ and ν that

minimize 2μ + ν (39)
subject to dμ + (β − d)ν ≥ mn (40)

μ ≥ m (41)
ν ≥ 0 , μ ≥ 0 . (42)

Constraint (40) expresses the fact that all mn input-output couples have to occur
in Buffer, since by reading one output or input, at most d or β − d new pairs
meet in Buffer, respectively. Constraint (41) ensures that at least m outputs are
read into Buffer. We convert the linear program (39)–(42) to the corresponding
dual linear program of finding φ and ψ that

maximize mnφ + mψ (43)
subject to dφ + ψ ≤ 2 (44)
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(β − d)φ ≤ 1 (45)
φ ≥ 0, ψ ≥ 0 . (46)

Observe that φ0 = 1
β−d and ψ0 = 2− d

β−d is a feasible solution for the dual pro-
gram, satisfying (44)–(46) due to (38). By the weak duality theorem, the objec-
tive function value of the primal (39) at any feasible solution is lower bounded
by the objective function value of the dual (43) at any feasible solution, that is,

2μ + ν ≥ mnφ0 + mψ0 =
m(n − d)

β − d
+ 2m. (47)

According to (5), inequality (47) provides the following lower bound on the data
complexity of fully-connected layer λ:

Eλ
data ≥ b

(
mn +

m(n − d)
β − d

+ 2m
)

(48)

when Buffer is divided into two parts for d inputs and β − d outputs, and the
fixed parameter d meets (38). This lower bound matches the corresponding upper
bound (22) achieved by the dataflow (16)–(20), up to the additive constant d.

Case 2
3
β ≤ d ≤ β − 1. Similarly, for

2
3β ≤ d ≤ β − 1 , (49)

we have a linear program of finding μ and ν that minimize 2μ + ν subject to
dμ + (β − d)ν ≥ mn, ν ≥ n, ν ≥ 0, and μ ≥ 0. This is converted to the
corresponding dual linear program of finding φ and ψ that maximize mnφ+nψ
subject to dφ ≤ 2, (β − d)φ + ψ ≤ 1, ψ ≥ 0, and ψ ≥ 0, which has a feasible
solution φ1 = 2

d and ψ1 = 1 − 2(β−d)
d due to (49). By the weak duality theorem

we have
2μ + ν ≥ mnφ1 + nψ1 =

2n(m − (β − d))
d

+ n (50)

which provides the following lower bound on the data complexity of fully-
connected layer λ:

Eλ
data ≥ b

(
mn +

2n(m − (β − d))
d

+ n

)
(51)

when Buffer is divided into two parts for d inputs and β − d outputs, and the
fixed parameter d meets (49). This lower bound matches the corresponding upper
bound (23) achieved by the dataflow (16)–(20) with the reversed role of inputs
and outputs, up to the additive constant 2(β − d).

We can conclude that the data energy for fully-connected layers achieved by
the dataflow (16)–(20) when Buffer is partitioned to d inputs, β−d outputs, and
one weight, is optimal for any fixed d, and the minimum of data energy (26) is
achieved for d = 1.
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4.2 Partial Generalization

In general case when Buffer is not divided into separate parts, the lower bound
(13) on the data energy complexity still differs from the upper bound (26) by
linear additive term β−2

β−1

(
m− min(m,n)

β−1

)
, which can further be improved in some

special cases. In particular, denote by μk and νk for 1 ≤ k ≤ β − 1 the number
of accesses to DRAM for reading outputs and inputs at the points when exactly
k inputs reside in Buffer. The linear program (39)–(42) can be generalized to
the following program of finding μk and νk for 1 ≤ k ≤ β − 1 that

minimize 2μ + ν = 2
β−1∑

k=1

μk +
β−1∑

k=1

νk (52)

subject to
β−1∑

k=1

kμk +
β−1∑

k=1

(β − k)νk ≥ mn (53)

β−1∑

k=1

μk ≥ m (54)

μk ≥ 0 , νk ≥ 0 for k = 1, . . . , β − 1 . (55)

By applying the weak duality theorem to this program, one can achieve only the
trivial lower bound (6). Nevertheless, this lower bound can be improved when
the following, yet somewhat artificial, condition is added to (53)–(55):

νk − μk ≥ 0 for k = 1, . . . , β − 1 , (56)

that is, νk ≥ μk for 1 ≤ k ≤ β −1. This condition states that input readings into
Buffer is preferred over more expensive output readings, since outputs need to
be written back to DRAM. Note that this condition is satisfied by the dataflows
presented in Sect. 3.

Thus, we convert the linear program (52)–(56) to the corresponding dual
linear program of finding φ, ψ, and χk for 1 ≤ k ≤ β − 1, that maximize
mnφ + mψ subject to kφ + ψ − χk ≤ 2, (β − k)φ + χk ≤ 1, φ ≥ 0, ψ ≥ 0, and
χk ≥ 0 for every k = 1, . . . , β − 1. Observe that φ0 = 1

β−1 , ψ0 = 2 − 1
β−1 , and

χk0 = k−1
β−1 for 1 ≤ k ≤ β − 1, is a feasible solution for this dual. By the weak

duality theorem, we have

2μ + ν = 2
β−1∑

k=1

μk +
β−1∑

k=1

νk ≥ mnφ0 + mψ0 =
m(n − 1)

β − 1
+ 2m (57)

which proves the optimality of the data energy (26) (up to 1) also for contiguous
Buffer, provided that condition (56) holds.
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5 Conclusion

In this paper, we have theoretically analyzed the energy complexity model for
CNNs introduced in our previous work [7], which is asymptotically consistent
with estimates of power consumption for different CNN hardware implementa-
tions. We have confined ourselves to fully-connected layers as a starting point for
the future analysis of convolutional layers. We have shown a simple general lower
bound on energy complexity of fully-connected layers. We have presented two
dataflows for fixed and bounded numbers of inputs residing in Buffer, respec-
tively, and computed their energy costs to obtain upper bounds on the energy.
We have then proven a matching lower bound on the energy for the first dataflow,
which in turn provides the optimal energy complexity for fully-connected layers
when Buffer is partitioned into two fixed parts for inputs and outputs.

In future research, the lower bound is intended to be generalized to contiguous
Buffer, namely Buffer without partition. The partial generalization presented
here shows that a linear program formulation seems to be not strong enough to
achieve this goal, meaning that a detailed analysis of DRAM accesses would be
needed. This analysis could then be used to prove the optimal energy complexity
for convolutional layers, which represents the main challenge of this research.
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