
Neural Networks 178 (2024) 106419

A
0

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Full Length Article

On energy complexity of fully-connected layers
Jiří Šíma a,∗, Jérémie Cabessa b, Petra Vidnerová a

a Institute of Computer Science of the Czech Academy of Sciences, Pod Vodárenskou věží 271/2, Prague 8, 182 00, Czechia
b DAVID Laboratory, University of Versailles Saint-Quentin (UVSQ), University Paris-Saclay, 45 avenue des États-Unis, Versailles, 78035, France

A R T I C L E I N F O

Keywords:
Deep neural networks
Convolutional neural networks
Fully-connected layer
Energy complexity
Energy consumption
Dataflow

A B S T R A C T

The massive increase in the size of deep neural networks (DNNs) is accompanied by a significant increase in
energy consumption of their hardware implementations which is critical for their widespread deployment
in low-power mobile devices. In our previous work, an abstract hardware-independent model of energy
complexity for convolutional neural networks (CNNs) has been proposed and experimentally validated. Based
on this model, we provide a theoretical analysis of energy complexity related to the computation of a fully-
connected layer when its inputs, outputs, and weights are transferred between two kinds of memories (DRAM
and Buffer). First, we establish a general lower bound on this energy complexity. Then, we present two
dataflows and calculate their energy costs to achieve the corresponding upper bounds. In the case of a
partitioned Buffer, we prove by the weak duality theorem from linear programming that the lower and upper
bounds coincide up to an additive constant, and therefore establish the optimal energy complexity. Finally,
the asymptotically optimal quadratic energy complexity of fully-connected layers is experimentally validated
by estimating their energy consumption on the Simba and Eyeriss hardware.
1. Energy complexity model for CNNs

Deep neural networks (DNNs) represent a cutting-edge machine
learning technology, with countless applications in computer vision,
natural language processing (NLP), speech recognition, robotics, etc.
In particular, the transformer models have revolutionized the world
of NLP (Vaswani et al., 2017), and further led to the development of
large language models like GPT (Brown et al., 2020), PaLM (Chowdhery
et al., 2023), and LLaMA (Touvron et al., 2023). The transformer
models have also been extended into the field of computer vision
(ViT) (Dosovitskiy et al., 2021) and tasks based on tabular data (Tab-
Transformer) (Huang et al., 2020). However, their tremendous perfor-
mance is achieved at the cost of a huge number of parameters. For
instance, GPT-3 contains 175B (billion) parameters and necessitated
34 days of training on 1024 GPUs consuming 4.68 × 1012 joules of
energy (Luccioni et al., 2022). Similarly, PaLM has 540B parameters
and LLaMA’s size ranges from 7B to 65B parameters.

Thus, deep learning models are very computationally demanding
and consume an enormous amount of energy, which can be critical to
their deployment in practical applications. For example, an increasing
number of embedded (edge) devices rely on DNNs to deliver sophis-
ticated services, such as autonomous surveillance systems utilizing
advanced object recognition, personal assistants employing machine
translation, smart healthcare applications, and more (Lyu et al., 2023;

∗ Corresponding author.
E-mail addresses: sima@cs.cas.cz (J. Šíma), jeremie.cabessa@uvsq.fr (J. Cabessa), petra@cs.cas.cz (P. Vidnerová).

Mishra et al., 2020). However, with the ever-growing use of mobile
devices, such as smartphones, smartwatches, or smartglasses, comes the
issue of the implementation, deployment, and portability of an already
trained DNN on low-power hardware operated on batteries, which is
a major bottleneck to the development of smart wearable electronics.
Therefore, recent research has focused on developing methods that
enable energy-efficient processing of DNNs (Sze et al., 2017, 2020).

There are basically two main approaches to reduce the energy cost
of DNNs. The first approach is suitable for error-tolerant applications
such as image classification where enormous amount of energy can be
saved at the cost of only a small loss in accuracy by using approximate
computing methods (Armeniakos et al., 2023; Deng et al., 2020; Li et al.,
2023; Lyu et al., 2023; Mittal, 2016; Tang et al., 2024), e.g. low float
precision (Gupta et al., 2015), approximate multipliers (Ansari et al.,
2020), etc. In the second approach the computational cost is reduced
through hardware design (Jouppi et al., 2018; Silvano et al., 2023) in-
cluding massive parallelism where DNNs are implemented on a variety
of hardware platforms such as GPUs (Zhou et al., 2018), FPGAs (Mittal,
2020), in-memory computing architectures (Mittal et al., 2021), etc.

For a specific DNN hardware implementation, the real energy con-
sumption of the inference process can be either practically measured
or analytically estimated using physical laws. This energy consumption
depends on parameters and constants related to the hardware archi-
tecture, and hence, its evaluation varies for different DNN hardware
vailable online 31 May 2024
893-6080/© 2024 Elsevier Ltd. All rights are reserved, including those for text and

https://doi.org/10.1016/j.neunet.2024.106419
Received 21 November 2023; Received in revised form 16 May 2024; Accepted 29
data mining, AI training, and similar technologies.

May 2024

https://www.elsevier.com/locate/neunet
https://www.elsevier.com/locate/neunet
mailto:sima@cs.cas.cz
mailto:jeremie.cabessa@uvsq.fr
mailto:petra@cs.cas.cz
https://doi.org/10.1016/j.neunet.2024.106419
https://doi.org/10.1016/j.neunet.2024.106419
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2024.106419&domain=pdf

Neural Networks 178 (2024) 106419J. Šíma et al.
Fig. 1. The energy complexity model.

implementations. Some software tools such as Accelergy (Wu et al.,
2019) and Timeloop (Parashar et al., 2019) can calculate and opti-
mize, respectively, the energy consumption of a particular DNN on
various hardware platforms including the Simba (Shao et al., 2019) and
Eyeriss (Chen et al., 2016) architectures.

It has been empirically observed that the energy cost of DNN
processing mainly consists of two components: the computation en-
ergy, and the data energy which represents around 70% of the total
cost (Yang et al., 2017). The computation energy is needed for per-
forming arithmetic operations, especially the so-called multiply-and-
accumulate (MAC) operations (𝑆 ← 𝑆 + 𝑤𝑥 on floats 𝑆,𝑤, 𝑥), used
to compute the weighted sums of inputs in neurons. The data energy
is required for moving the data inside the memory hierarchy of the
hardware (dataflow), and is related to the number of memory accesses.

In the general context of high-performance computing, heteroge-
neous architectures merging two kinds of memories, CPUs and GPUs,
are considered. The task scheduling problem aims at minimizing the
processing time — and thus the energy consumption — of a set of
tasks involving various types of data (see Gonthier et al., 2023, and
the references therein). This optimization is achieved through three ob-
jectives: minimizing data transfers throughout the memories, ensuring
overlap between data transfers and task computations, and optimizing
the eviction of previously-loaded data. In this context, the particular
problem, close to ours, of scheduling a set of tasks on one GPU with
limited memory, where the tasks share some of their input data but
are otherwise independent, is shown to be NP-complete and is in turn
addressed by means of different heuristics (Gonthier et al., 2023).

Along these lines, we propose a theoretical study of the energy com-
plexity of DNNs where the computational process involves CPU/GPU-
like data transfers. In a recent paper (Šíma et al., 2024), we have
introduced a simplified machine-independent model of energy com-
plexity for convolutional neural networks (CNNs). This model abstracts
from the implementation details related to different hardware plat-
forms, and preserves the asymptotic energy complexity of the CNN
inference. It is composed of only two memory levels called DRAM and
Buffer, as illustrated in Fig. 1. The network parameters and states are
stored in DRAM, and the arithmetic operations are performed only
over numerical data stored in Buffer which has a constant capacity of
𝐵 bits. The transfer of data between the two memories determines the
dataflow. We assume that any floating-point number is transferred as
a separate, indivisible, and uncompressed block of 𝑏 bits.

The main idea behind this model is that, for a given CNN stored in
DRAM, the three arguments (input 𝑥, weight 𝑤 and accumulated output
𝑆) of any MAC operation (𝑆 ← 𝑆 + 𝑤𝑥) employed for the evaluation
of the network must occur together at the same time in Buffer. This
requirement is common to all conceivable hardware implementations
of CNNs, making the model universal. The CNN inference thus requires
a certain number of data transfers between DRAM and Buffer (i.e., the
2

number of DRAM accesses multiplied by the number of 𝑏 bits in a float
number), which corresponds to our measure of the data energy.

For simplicity, we assume that the energy cost is not optimized
across multiple CNN layers (as, e.g., Alwani et al., 2016, for instance).
Hence, the energy complexity is defined as a simple sum over only
separate convolutional layers including the fully-connected ones as a
special case, while the less energy-intensive max pooling layers are
omitted. Formally,

𝐸 =
∑

convolutional layer 𝜆

(

𝐸𝜆comp + 𝐸
𝜆
data

)

(1)

where the computation energy 𝐸𝜆comp and the data energy 𝐸𝜆data for
evaluating a convolutional layer 𝜆 is proportional to the corresponding
number of MACs and DRAM accesses, respectively.

The energy complexity model of CNNs has been exploited for cal-
culating the theoretical energy of processing convolutional layers in
the context of two common dataflows with write-once outputs and
read-once inputs, respectively, and read-once weights, under realistic
buffer capacity constraints (Šíma et al., 2024). These dataflows provide
upper bounds on the energy complexity of CNN layers, which have
been compared to the real energy consumptions estimated for the
Simba (Shao et al., 2019) and Eyeriss (Chen et al., 2016) architectures
by using the Timeloop/Accelergy software tool (Parashar et al., 2019;
Wu et al., 2019).

It turns out that the theoretical upper bounds fit asymptotically
very well the empirical optimal energy consumptions, when individual
parameters of a convolutional layer such as the height, width, depth,
kernel size, and stride are varied. This was validated by statistical
linearity and quadraticity tests (Šíma et al., 2024). Thus, the introduced
energy complexity model appears to be able to asymptotically capture
all important sources of energy consumption that are common to differ-
ent CNN hardware implementations. The model can also be exploited
for proving lower bounds on energy complexity of CNNs, in order to
establish asymptotic limits on energy efficiency of any CNN hardware
accelerators.

In this paper, we investigate energy complexity of fully-connected
layers which can be viewed as special convolutional layers where
feature maps are reduced to single neurons. First, we derive a general
lower bound on the data energy complexity. Then we present two types
of dataflows in which each weight and each output (or alternatively
each input) are read into Buffer once only. In the first dataflow, the
Buffer memory is assumed to be partitioned into two separate parts of
given fixed capacities for inputs and outputs, respectively. The second
dataflow is parameterized by the maximum number of inputs residing
in Buffer at the same time. We determine the data energy of both
dataflows, which provides upper bounds on energy complexity. More-
over, for the first dataflow, we prove that the lower and upper bounds
coincide up to an additive constant, by means of the weak duality
theorem from linear programming. The optimal energy complexity for
fully-connected layers in situations where Buffer is partitioned into two
separate parts for inputs and outputs, respectively, ensues.

The presented upper bounds differ only by a linear additive term
from the derived lower bound, which provides the asymptotically op-
timal quadratic data energy complexity of evaluating a fully-connected
layer in terms of the number of its inputs and outputs. This theoretical
energy complexity is also compared to the real energy consumptions
estimated for the Simba and Eyeriss hardware architectures by the
Timeloop/Accelergy tool. It turns out that it matches very well when
the numbers of inputs, outputs, and weights of fully-connected layers
are varied separately, which is validated by the statistical linearity tests.

The paper is organized as follows. Section 2 formally defines en-
ergy complexity for fully-connected layers. A general lower bound on
this energy is derived in Section 3. Section 4 presents two dataflows
with their associated upper bounds on the energy. In Section 5, the
matching and thus optimal lower bound is derived for the case of

Neural Networks 178 (2024) 106419J. Šíma et al.
a partitioned Buffer. Section 6 experimentally validates the asymptot-
ically optimal quadratic energy complexity of fully-connected layers.
Section 7 summarizes the results and discusses open problems. A pre-
liminary conference version (Šíma & Cabessa, 2023) of this paper is
substantially expanded here to include a new general lower bound on
energy, a detailed description of dataflows, and experimental validation
of energy complexity.

2. Energy complexity of fully-connected layers

Consider a deep (e.g. convolutional) neural network of depth 𝐷 and
a layer index 𝜆 of some of its fully-connected layers, where 0 < 𝜆 ≤ 𝐷
(note that the index 𝜆 = 0 is reserved for the input layer). We assume
that the 𝜆-th layer, referred to as layer 𝜆, is composed of 𝑚 neurons
(units) 𝑦1,… , 𝑦𝑚, each of which is receiving real-weighted connections
from the 𝑛 neurons 𝑥1,… , 𝑥𝑛 in the previous layer 𝜆 − 1.

This situation can be viewed as a complete weighted bipartite graph
𝐺 = (𝑋, 𝑌 , 𝐸,𝑤) where𝑋 = {𝑥1,… , 𝑥𝑛} and 𝑌 = {𝑦1,… , 𝑦𝑚} are disjoint
sets of inputs and outputs, respectively, 𝐸 = 𝑋 × 𝑌 is the set of directed
edges between inputs and outputs, and 𝑤 ∶ 𝑋 × 𝑌 → R is a function
that associates each edge (𝑥𝑖, 𝑦𝑗) ∈ 𝐸 with a real weight 𝑤𝑗𝑖, for every
𝑗 ∈ {1,… , 𝑚} and every 𝑖 ∈ {1,… , 𝑛}. Moreover, each output 𝑦𝑗 is
associated with a real bias 𝑤𝑗0, for every 𝑗 ∈ {1,… , 𝑚}. In the sequel,
the symbols 𝑥𝑖 and 𝑦𝑗 will be indifferently used to denote input and
output units as well as numerical values held by them, respectively.
The distinction will be clear from the context.

The computation of layer 𝜆 refers to the computation of the output
values 𝑦1,… , 𝑦𝑚 based on the input values 𝑥1,… , 𝑥𝑛, the weights and
biases 𝑤𝑗𝑖, for 𝑗 ∈ {1,… , 𝑚} and 𝑖 ∈ {0,… , 𝑛}, which is controlled by
the following equations:

𝑦𝑗 = 𝜎

(

𝑤𝑗0 +
𝑛
∑

𝑖=1
𝑤𝑗𝑖𝑥𝑖

)

for every 𝑗 = 1,… , 𝑚 , (2)

where 𝜎 is the activation function. Typically 𝜎 can be taken as the
rectified linear unit activation function given by ReLU(𝑥) = max(0, 𝑥).

The computation energy 𝐸𝜆comp in (1) required for the computation
of layer 𝜆 can be evaluated directly. According to (2), each output 𝑦𝑗
requires one initialization step followed by 𝑛 MAC updates:

𝑆 ← 𝑤𝑗0 and 𝑆 ← 𝑆 +𝑤𝑗𝑖𝑥𝑖 for 𝑖 = 1,… , 𝑛,

where the current value of 𝑆 is referred to as the accumulated output 𝑦𝑗 .
Hence, the total number of MAC operations needed for computing the
outputs 𝑦1,… , 𝑦𝑚 in (2) is 𝑚𝑛. The computation energy is thus given by

𝐸𝜆comp = 𝐶𝑏 𝑚𝑛 (3)

where the constant 𝐶𝑏 is the energy cost to perform one MAC operation
over 𝑏-bit floating-point numbers on a given hardware architecture.
Note that the dependence of 𝐶𝑏 on 𝑏 is non-uniform because the
design of the MAC circuit inside a microprocessor differs for each 𝑏.
For example, 𝐶8 = 0.56 pJ and 𝐶16 = 2.20 pJ was estimated by the
Timeloop/Accelergy software tool (Parashar et al., 2019; Wu et al.,
2019) for the 8-bit Simba (Shao et al., 2019) and 16-bit Eyeriss (Chen
et al., 2016) hardware architectures, respectively. Nevertheless, in
our machine-independent energy complexity model, concrete values of
constant 𝐶𝑏 do not play a role in the asymptotic bound 𝐸𝜆comp = 𝛩(𝑚𝑛)
on the computation energy which is clearly optimal since each of the
𝑚𝑛 weights occurs in a different MAC operation.

We now focus on the data energy 𝐸𝜆data in (1) necessary for the
computation of layer 𝜆. This energy cost can be split into three compo-
nents that count the DRAM accesses for the outputs, inputs, and weights
separately:

𝐸𝜆data = 𝐸𝜆outputs + 𝐸
𝜆
inputs + 𝐸

𝜆
weights . (4)

In order to evaluate the sums in (2), each pair of input and accumulated
3

output (𝑥𝑖, 𝑦𝑗) must occur in Buffer at least once. For this purpose,
each input 𝑥𝑖 and output 𝑦𝑗 needs to be read from DRAM at least
once. Furthermore, each output 𝑦𝑗 must also be written back to DRAM
sometime after its reading in order to store its current value. By
contrast, each weight 𝑤𝑗𝑖 only needs to occur in Buffer once when the
associated pair (𝑥𝑖, 𝑦𝑗) meets in Buffer for the first time. It follows that
each weight 𝑤𝑗𝑖 requires only one reading from DRAM, which in turn
amounts to 𝑚𝑛 DRAM accesses for reading all the weights.

Let 𝜈 and 𝜇 be the numbers of DRAM accesses to read inputs and
outputs (or biases when initialized), respectively, and 𝑏 be the number
of bits in the floating point representation of outputs, inputs, and
weights. The data energy (4) can thus be written as

𝐸𝜆data = 𝑏 (2𝜇 + 𝜈 + 𝑚𝑛) , (5)

since each output is read from and later written back to DRAM, which
corresponds to two DRAM accesses, as opposed to the inputs and
weights which are only read from DRAM. Note that in our machine-
independent energy complexity model, the data energy 𝐸𝜆data is defined
in (5) simply as the number of transferred bits between DRAM and
Buffer, each with the same unit energy cost in joules, which is in
contrast to 𝐸𝜆comp in (3) that includes the actual comparable energy costs
𝐶𝑏 of MAC circuits. This is because the bit transfers can have different
meanings even within a single hardware implementation, let alone
in distinct hardware architectures with different memory hierarchies.
Consequently, in order to optimize the data energy (4), it is sufficient
to minimize the quantity 2𝜇 + 𝜈.

3. A lower bound on energy complexity

We will now derive a general lower bound on the data energy (4)
for fully-connected layers. Assume that Buffer has a constant size of
𝐵 = 𝑏(𝛽 + 1) bits, where 𝛽 > 1 floats are reserved for storing inputs
and outputs, and the remaining capacity of one float is dedicated to
weights. For notational simplicity, assume that 𝛽 − 1 divides 𝑚, 𝛽 > 2,
and 𝑚 ≤ 𝑛, while the proof for the other cases is analogous. Note that,
by reading a single input or output into Buffer, one can get at most 𝛽−1
new input–output pairs in Buffer.

In a dataflow, let 𝑟1 be the maximum number of times one input,
being read into Buffer, creates exactly 𝛽 − 1 new input–output pairs.
Denote by 𝑥∗ ∈ 𝑋 one of such inputs and let 𝑍𝑗 ⊂ 𝑌 be the sets of
outputs forming the respective 𝛽 − 1 = |𝑍𝑗 | new pairs {𝑥∗} × 𝑍𝑗 for
every 𝑗 ∈ {1,… , 𝑟1}. Analogously, let 𝑟2 be the maximum number of
times one output, being read into Buffer, produces exactly 𝛽 − 1 new
pairs. Denote by 𝑦∗ ∈ 𝑌 one of such outputs and let 𝑍𝑗 ⊂ 𝑋 be the
sets of inputs creating the respective 𝛽 − 1 = |𝑍𝑗 | new pairs 𝑍𝑗 × {𝑦∗}
for every 𝑗 ∈ {𝑟1 + 1, 𝑟1 + 2,… , 𝑟1 + 𝑟2}. Hereafter, we will focus on the
sets of outputs, 𝑍𝑗 for 𝑗 ∈ {1,… , 𝑟1}, while the analysis for the sets of
inputs, 𝑍𝑗 for 𝑗 ∈ {𝑟1 + 1,… , 𝑟1 + 𝑟2}, is analogous. Note that the sets
𝑍𝑗 are pairwise disjoint for all 𝑗 ∈ {1,… , 𝑟1}, because they yield the
input–output pairs with 𝑥∗ that are new along the dataflow.

For each 𝑗 ∈ {1,… , 𝑟1}, we denote by 𝛼𝑗 a DRAM access through
which an input 𝑥∗𝑗 ∈ 𝑋 is read into Buffer that already contains outputs
from 𝑍𝑗 , which generates exactly 𝛽 − 1 new pairs {𝑥∗𝑗 } ×𝑍𝑗 , while the
immediately preceding reading into Buffer produces less than 𝛽−1 new
pairs. From the definition of 𝑥∗, there is at least one such DRAM access
for each 𝑗 ∈ {1,… , 𝑟1}, and we choose any of them as 𝛼𝑗 if there are
more.

For each 𝑗 ∈ {1,… , 𝑟1}, we define 𝛽 −1 DRAM accesses 𝜁𝑗𝑖, indexed
by 𝑖 ∈ {1,… , 𝛽 − 1} according to the time order along the dataflow,
through which the 𝛽 − 1 outputs in 𝑍𝑗 are read into Buffer, each one
last before the DRAM access 𝛼𝑗 . Observe that 𝜁𝑗𝑖 are pairwise distinct for
all 𝑗 ∈ {1,… , 𝑟1} and 𝑖 ∈ {1,… , 𝛽 − 1} because the sets 𝑍𝑗 are pairwise
disjoint. For every 𝑖 ∈ {1,… , 𝛽 − 1}, denote by 𝑦𝑗𝑖 ∈ 𝑍𝑗 the output that
is read through the DRAM access 𝜁𝑗𝑖, and let 𝑚𝑗𝑖 be the number of new
input–output pairs in Buffer generated through 𝜁𝑗𝑖.

For every 𝑖 ∈ {1,… , 𝛽 − 1}, there are 𝑖 outputs 𝑦𝑗1,… , 𝑦𝑗𝑖 ∈ 𝑍𝑗 in

Buffer after the DRAM access 𝜁𝑗𝑖 which remain there at least until the

Neural Networks 178 (2024) 106419J. Šíma et al.

m

o

𝑠

b
o
o
o
d
d

𝜇

w
p
y
f

(

h

2

DRAM access 𝛼𝑗 . In order to fit the Buffer capacity 𝛽, there are thus at
ost 𝛽 − 𝑖 inputs in Buffer after 𝜁𝑗𝑖, which implies 𝑚𝑗𝑖 ≤ 𝛽 − 𝑖 for every

𝑖 ∈ {1,… , 𝛽 − 1}. Let 𝑘𝑗 ∈ {1,… , 𝛽 − 1} be the maximum number of
new input–output pairs in Buffer that are produced by a DRAM access
𝜁𝑗𝑖 over 𝑖 ∈ {1,… , 𝛽 − 1}. It follows that

𝑚𝑗𝑖 ≤
{

𝑘𝑗 for 1 ≤ 𝑖 ≤ 𝛽 − 𝑘𝑗
𝛽 − 𝑖 for 𝛽 − 𝑘𝑗 + 1 ≤ 𝑖 ≤ 𝛽 − 1 .

(6)

Altogether, the number of new input–output pairs in Buffer generated
through the DRAM accesses 𝜁𝑗𝑖 for all 𝑖 ∈ {1,… , 𝛽 − 1}, can be upper
bounded as
𝛽−1
∑

𝑖=1
𝑚𝑗𝑖 ≤

𝛽−𝑘𝑗
∑

𝑖=1
𝑘𝑗 +

𝛽−1
∑

𝑖=𝛽−𝑘𝑗+1
(𝛽 − 𝑖) = (𝛽 − 𝑘𝑗)𝑘𝑗 +

𝑘𝑗−1
∑

𝑖=1
(𝑘𝑗 − 𝑖)

= (𝛽 − 1)𝑘𝑗 −
𝑘𝑗−1
∑

𝑖=1
𝑖 = (𝛽 − 1)𝑘𝑗 −

𝑘𝑗 (𝑘𝑗 − 1)
2

(7)

according to (6).
For each 𝑗 ∈ {1,… , 𝑟1}, we thus have 𝛽 − 1 unique DRAM accesses

𝜁𝑗1,… , 𝜁𝑗,𝛽−1 through which the outputs 𝑦𝑗1,… , 𝑦𝑗,𝛽−1 ∈ 𝑍𝑗 are read, re-
spectively, creating at most (𝛽−1)𝑘𝑗−𝑘𝑗 (𝑘𝑗−1)∕2 new input–output pairs
in Buffer, according to (7). Analogously, for each 𝑗 ∈ {𝑟1+1,… , 𝑟1+𝑟2},
we have 𝛽 − 1 unique DRAM accesses 𝜁𝑗,1,… , 𝜁𝑗,𝛽−1 through which the
inputs from 𝑍𝑗 are read that yield at most (𝛽 − 1)𝑘𝑗 − 𝑘𝑗 (𝑘𝑗 − 1)∕2 new
input–output pairs in Buffer. Let 𝑅 ⊆ {𝑗 ∣ 1 ≤ 𝑗 ≤ 𝑟1 + 𝑟2} be a subset of
indices of

𝑟 = min
(

𝑚
𝛽 − 1

, 𝑟1 + 𝑟2

)

(8)

largest 𝑘𝑗 , which means 𝑘𝑗 ≥ 𝑘𝓁 for every 𝑗 ∈ 𝑅 and 𝓁 ∈ {1,… , 𝑟1 +
𝑟2} ⧵ 𝑅. The number of new input–output couples generated through
the (𝛽 − 1)𝑟 DRAM accesses 𝜁𝑗1,… , 𝜁𝑗,𝛽−1 for all 𝑗 ∈ 𝑅, can be upper
bounded as

∑

𝑗∈𝑅

𝛽−1
∑

𝑖=1
𝑚𝑗𝑖 ≤ (𝛽 − 1)

∑

𝑗∈𝑅
𝑘𝑗 −

∑

𝑗∈𝑅

𝑘2𝑗 − 𝑘𝑗
2

(9)

according to (7).
Let 𝑠 be the number of DRAM read accesses that produce exactly

𝛽 − 1 new pairs, excluding 𝜁𝑗1,… , 𝜁𝑗,𝛽−1 for all 𝑗 ∈ 𝑅. By the definition
f 𝑟1 and 𝑟2, we have

≤
∑

𝑗∈𝑅
(𝑛 − 𝑘𝑗) (10)

ecause 𝑠 ≤ 𝑚𝑛∕(𝛽 − 1) due to the fact that the total number of input–
utput pairs is 𝑚𝑛, and there are at most 𝑛−𝑘𝑗 inputs or 𝑚−𝑘𝑗 ≤ 𝑛−𝑘𝑗
utputs that can create new 𝛽 − 1 input–output pairs with the outputs
r inputs from 𝑍𝑗 , respectively, for all 𝑗 ∈ 𝑅. Since the maximum 𝑠,
etermined in (10), minimizes the number of DRAM read accesses, any
ataflow satisfies

+ 𝜈 ≥ (𝛽 − 1)𝑟 +
∑

𝑗∈𝑅
(𝑛 − 𝑘𝑗) + 𝑞 + 1 (11)

here 𝑞+1 denotes the number of remaining DRAM read accesses that
roduce less than 𝛽−1 new pairs, including the very first DRAM access
ielding no pair and excluding the (𝛽−1)𝑟 DRAM accesses 𝜁𝑗1,… , 𝜁𝑗,𝛽−1
or all 𝑗 ∈ 𝑅.

Since all the 𝑚𝑛 input–output pairs have to occur in Buffer, we have

𝛽 − 1)
∑

𝑗∈𝑅
𝑘𝑗 −

∑

𝑗∈𝑅

𝑘2𝑗 − 𝑘𝑗
2

+ (𝛽 − 1)
∑

𝑗∈𝑅
(𝑛 − 𝑘𝑗) + (𝛽 − 2)𝑞 ≥ 𝑚𝑛 (12)

according to (9) and (10), because each of the remaining 𝑞 DRAM read
accesses yields at most 𝛽 − 2 new pairs. This reduces to

𝑞 ≥ 𝑚𝑛
𝛽 − 2

−
(𝛽 − 1)𝑟𝑛
𝛽 − 2

+
∑

𝑘2𝑗 − 𝑘𝑗
2(𝛽 − 2)

(13)
4

𝑗∈𝑅
which, plugged into (11), gives

𝜇 + 𝜈 ≥
(

𝛽 − 1 − 𝑛
𝛽 − 2

)

𝑟 + 𝑚𝑛
𝛽 − 2

+
∑

𝑗∈𝑅

𝑘2𝑗 − (2𝛽 − 3)𝑘𝑗
2(𝛽 − 2)

+ 1 . (14)

Each term of the summation in (14) meets

𝑘2𝑗 − (2𝛽 − 3)𝑘𝑗
2(𝛽 − 2)

≥ −
𝛽 − 1
2

(15)

for 𝑗 ∈ 𝑅, because the inequality (15) is equivalent to

(𝑘𝑗 − (𝛽 − 1))(𝑘𝑗 − (𝛽 − 2)) ≥ 0 (16)

which holds for every integer 𝑘𝑗 ∈ {1,… , 𝛽−1}. Hence, the sum in (14)
can be lower bounded by −(𝛽 − 1)𝑟∕2 as

𝜇 + 𝜈 ≥
(

𝛽 − 1
2

− 𝑛
𝛽 − 2

)

𝑟 + 𝑚𝑛
𝛽 − 2

+ 1 (17)

which is a linear function in terms of 𝑟, whose slope is negative for
sufficiently large 𝑛 > (𝛽 − 1)(𝛽 − 2)∕2. Hence, the lower bound (17)
remains valid after we substitute the maximum feasible value for 𝑟, that
is, 𝑟 = 𝑚

𝛽−1 according to (8), which gives

𝜇 + 𝜈 ≥ 𝑚𝑛
𝛽 − 1

+ 𝑚
2
+ 1 =

𝑚(𝑛 − 1)
𝛽 − 1

+
(

𝛽 + 1
𝛽 − 1

)

𝑚
2
+ 1 (18)

for 𝑛 > (𝛽 − 1)(𝛽 − 2)∕2.
Since the biases of all 𝑚 outputs must first be read into Buffer, we

ave 𝜇 ≥ 𝑚, and thus,

𝜇 + 𝜈 ≥ 𝑚(𝑛 − 1)
𝛽 − 1

+
3𝛽 − 1
2(𝛽 − 1)

𝑚 + 1 . (19)

This provides the general lower bound on the data energy of a fully-
connected layer 𝜆:

𝐸𝜆data ≥ 𝑏
(

𝑚𝑛 +
𝑚(𝑛 − 1)
𝛽 − 1

+ 3
2
𝑚 + 1

)

(20)

according to (5).

4. Upper bounds on energy complexity

Any correct dataflow for processing a fully-connected layer can be
described by a sequence of 𝑝 sets 𝐵0, 𝐵1,… , 𝐵𝑝 ⊆ 𝑋 ∪ 𝑌 , each of which
being composed of vertices in 𝐺, that represent the successive contents
of Buffer (excluding weights) after each DRAM access to read an input
or output, in the course of evaluating the sums in (2). The sequence
satisfies the following conditions:

1. 𝐵0 = ∅
2. |𝐵𝑡| ≤ 𝛽 for every 𝑡 = 1,… , 𝑝
3. |𝐵𝑡 ⧵ 𝐵𝑡−1| = 1 and |𝐵𝑡−1 ⧵ 𝐵𝑡| ≤ 1 for every 𝑡 = 1,… , 𝑝
4. 𝑌 ⊆

⋃
{

𝐵𝑡 ∣ 𝑥 ∈ 𝐵𝑡 and 1 ≤ 𝑡 ≤ 𝑝
}

for every 𝑥 ∈ 𝑋

and its length 𝑝 is the total number of DRAM read accesses,

𝑝 = 𝜇 + 𝜈 . (21)

Condition 1 assumes empty Buffer at the beginning, and condition 2
guarantees that its size is not exceeded. Condition 3 ensures that, by
reading a single input or output into Buffer, at most one input or output
is overwritten. Condition 4 ensures that all of the outputs meet every
input in Buffer.

In the two following subsections, we present two dataflows for a
fixed and bounded number of inputs in Buffer, respectively, such that
each output is read into Buffer only once (i.e., when initialized by a
corresponding bias), which means that

𝜇 = 𝑚 . (22)

Clearly, the role of inputs and outputs can be reversed in these
dataflows.

Neural Networks 178 (2024) 106419J. Šíma et al.

T
i
r
i
r

4

s
m
i
p
t

g
o
a

𝐵
f

r
a
a

Fig. 2. Illustration of the dataflow for a partitioned Buffer with 𝑑 inputs and 𝛽−𝑑 outputs. The column and row indices represent inputs 𝑥1 ,… , 𝑥𝑛 and outputs 𝑦1 ,… , 𝑦𝑚, respectively.
The horizontal (white) and vertical (black) arrows represent input and output readings into Buffer, respectively. Every time a new input–output pair (𝑥𝑖 , 𝑦𝑗) meets in Buffer, the
weight 𝑤𝑗𝑖 is read and the accumulated output 𝑦𝑗 is updated by the MAC operation 𝑦𝑗 ← 𝑦𝑗 + 𝑤𝑗𝑖𝑥𝑖. At the beginning, the first 𝑑 inputs are read (6 first top horizontal arrows).

hen, the first block of 𝛽 − 𝑑 outputs is read (top vertical arrows), which leads to the meeting of new input–output pairs (top left cells, dark region). Then, the remaining 𝑛 − 𝑑
nputs are read (remaining top horizontal arrows), leading to new input–output pairs (top right cells, light region). At this point, Buffer contains the 𝑑 inputs that were lastly
ead and the second block of 𝛽 − 𝑑 outputs is read (middle vertical arrows), which yields new input–output pairs (middle right cells, dark region). Afterwards, the remaining 𝑛− 𝑑
nputs are read in the backward direction (middle horizontal arrows), generating new input–output pairs (middle left cells, light region). The dataflow continues in this way by
eading outputs and inputs alternatively.
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2

.1. Fixed number of inputs in Buffer

For the first dataflow, we assume that Buffer is partitioned into two
eparate parts for inputs and outputs, respectively, and contains one
ore float for reading the weights. One part is reserved for storing 𝑑

nputs and the second one to store 𝛽 − 𝑑 outputs, where 𝑑 is a fixed
arameter such that 1 ≤ 𝑑 ≤ 𝛽−1. For notational simplicity, we assume
hat 𝛽 − 𝑑 divides 𝑚.

The main idea of this dataflow is that the 𝑚 outputs are split into 𝑚
𝛽−𝑑

roups. These groups, each of size 𝛽 − 𝑑 outputs, are read into Buffer
ne after the other with the next group overwriting the current one
t specific times when Buffer already contains 𝑑 inputs. For each such

group loaded into Buffer, all the remaining 𝑛 − 𝑑 inputs are read into
Buffer one by one in such a way that the currently read input replaces
a previously read one. This procedure ensures that all the 𝑚𝑛 input–
output pairs will occur in Buffer within its capacity of 𝑑 inputs and
𝛽 − 𝑑 outputs. This dataflow is illustrated in Fig. 2.

The dataflow is formally described in Algorithm 1 where the com-
ments (beginning with double slashes) specify the current Buffer con-
tents 𝐵𝑡 ⊆ 𝑋 ∪𝑌 after 𝑡 DRAM read accesses. Thus, the sequence of sets
0, 𝐵1,… , 𝐵𝑝 meets conditions 1–4, |𝐵𝑡 ∩𝑋| ≤ 𝑑, and |𝐵𝑡 ∩ 𝑌 | ≤ 𝛽 − 𝑑

or every 𝑡 = 0,… , 𝑝.
At the beginning when Buffer is empty (line 1), the first 𝑑 inputs are

ead into Buffer (loop 2–4) so that 𝐵𝑑 = {𝑥1,… , 𝑥𝑑} (line 4). Then the
lgorithm continues with the outer for loop 5–27 which goes through
ll the 𝑚

𝛽−𝑑 groups of 𝛽 −𝑑 outputs, indexed as 𝑘 = 0,… , 𝑚
𝛽−𝑑 −1. These

𝛽 − 𝑑 outputs are read into Buffer during the first inner loop 6–13. In
particular, for the first group of outputs with the index 𝑘 = 0 (line 7)
when Buffer contains only the 𝑑 inputs 𝑥1,… , 𝑥𝑑 , these 𝛽 − 𝑑 outputs
𝑦1,… , 𝑦𝛽−𝑑 are just read into Buffer (line 8) in which there is enough
space for them. This means 𝐵𝛽 = {𝑥1,… , 𝑥𝑑 , 𝑦1,… , 𝑦𝛽−𝑑} (cf. line 13
for 𝑘 = 0).

For the next group of outputs with the index 𝑘 > 0 (line 9), these
𝛽 − 𝑑 outputs 𝑦𝑘(𝛽−𝑑)+1,… , 𝑦(𝑘+1)(𝛽−𝑑) are read into Buffer one by one
replacing the 𝛽 − 𝑑 outputs 𝑦(𝑘−1)(𝛽−𝑑)+1,… , 𝑦𝑘(𝛽−𝑑) from the previous
group with the index 𝑘 − 1 (lines 10–11). Thus, the whole group of
outputs with the index 𝑘 is then contained in Buffer (line 13 where
the index of 𝐵𝑘(𝑛+𝛽−2𝑑)+𝛽 for 𝑘 > 0 takes into account also the DRAM
accesses through which inputs are read into Buffer in between the
readings of the two groups, as described on lines 14–26 and commented
below).
5

Algorithm 1 The dataflow with a fixed number 𝑑 of inputs in Buffer.
1: // 𝐵0 = ∅

2: for 𝑖 = 1 to 𝑑 do
3: read 𝑥𝑖 into Buffer // 𝐵𝑖 =

{

𝑥1 ,… , 𝑥𝑖
}

4: end for // 𝐵𝑑 =
{

𝑥1 ,… , 𝑥𝑑
}

5: for 𝑘 = 0 to 𝑚
𝛽−𝑑 − 1 do

6: for 𝑗 = 1 to 𝛽 − 𝑑 do
7: if 𝑘 = 0 then
8: read 𝑦𝑗 into Buffer // 𝐵𝑑+𝑗 =

{

𝑥1 ,… , 𝑥𝑑 , 𝑦1 ,… , 𝑦𝑗
}

9: else
10: read 𝑦𝑘(𝛽−𝑑)+𝑗 into Buffer by overwriting 𝑦(𝑘−1)(𝛽−𝑑)+𝑗
1: //

{

𝑦𝑘(𝛽−𝑑)+1 ,… , 𝑦𝑘(𝛽−𝑑)+𝑗 , 𝑦(𝑘−1)(𝛽−𝑑)+𝑗+1 ,… , 𝑦𝑘(𝛽−𝑑)
}

⊂ 𝐵𝑘(𝑛+𝛽−2𝑑)+𝑑+𝑗
2: end if
3: end for //

{

𝑦𝑘(𝛽−𝑑)+1 ,… , 𝑦(𝑘+1)(𝛽−𝑑)
}

⊂ 𝐵𝑘(𝑛+𝛽−2𝑑)+𝛽
4: if 𝑘 is even then
5: // 𝐵𝑘(𝑛+𝛽−2𝑑)+𝛽 =

{

𝑥1 ,… , 𝑥𝑑 , 𝑦𝑘(𝛽−𝑑)+1 ,… , 𝑦(𝑘+1)(𝛽−𝑑)
}

6: for 𝑖 = 1 to 𝑛 − 𝑑 do
7: read 𝑥𝑖+𝑑 into Buffer by overwriting 𝑥𝑖
8: // 𝐵𝑘(𝑛+𝛽−2𝑑)+𝛽+𝑖 =

{

𝑥𝑖+1 ,… , 𝑥𝑖+𝑑 , 𝑦𝑘(𝛽−𝑑)+1 ,… , 𝑦(𝑘+1)(𝛽−𝑑)
}

9: end for // 𝐵(𝑘+1)(𝑛+𝛽−2𝑑)+𝑑 =
{

𝑥𝑛−𝑑+1 ,… , 𝑥𝑛 , 𝑦𝑘(𝛽−𝑑)+1 ,… , 𝑦(𝑘+1)(𝛽−𝑑)
}

0: else
1: // 𝐵𝑘(𝑛+𝛽−2𝑑)+𝛽 =

{

𝑥𝑛−𝑑+1 ,… , 𝑥𝑛 , 𝑦𝑘(𝛽−𝑑)+1 ,… , 𝑦(𝑘+1)(𝛽−𝑑)
}

2: for 𝑖 = 𝑛 − 𝑑 downto 1 do
3: read 𝑥𝑖 into Buffer by overwriting 𝑥𝑖+𝑑
4: // 𝐵𝑘(𝑛+𝛽−2𝑑)+𝑛+𝛽−𝑑−𝑖+1 =

{

𝑥𝑖 ,… , 𝑥𝑖+𝑑−1 , 𝑦𝑘(𝛽−𝑑)+1 ,… , 𝑦(𝑘+1)(𝛽−𝑑)
}

5: end for // 𝐵(𝑘+1)(𝑛+𝛽−2𝑑)+𝑑 =
{

𝑥1 ,… , 𝑥𝑑 , 𝑦𝑘(𝛽−𝑑)+1 ,… , 𝑦(𝑘+1)(𝛽−𝑑)
}

6: end if
7: end for

The following second inner for loop is used to read the 𝑛− 𝑑 inputs
into Buffer one by one in addition to the 𝑑 inputs that are already in
Buffer. In order to keep the capacity of 𝑑 inputs in Buffer, each newly
read input rewrites an input that has resided in Buffer for the longest
time. Namely, there are two alternating versions of this loop, depending
on whether 𝑘 is even or not (line 14). For 𝑘 even, the loop 16–19 starts
with Buffer including the 𝑑 inputs 𝑥1,… , 𝑥𝑑 (line 15), reads the inputs
forward (line 17), and finishes with the 𝑑 inputs 𝑥𝑛−𝑑+1,… , 𝑥𝑛 in Buffer
(line 19). On the contrary, for 𝑘 odd (line 20), the loop 22–25 starts

with Buffer including the 𝑑 inputs 𝑥𝑛−𝑑+1,… , 𝑥𝑛 (line 21), reads the

Neural Networks 178 (2024) 106419J. Šíma et al.

𝛽
i
2
B

d
i

𝑛
t

𝑝

o

𝐸

T
𝑚

f

w

0

T
T
𝑚
d
B
s

𝐸

4

o
F

o
i
a
i
o
a
i

m
t
s
𝑡

1

t
w
i
B
𝐵
g
𝑦
𝛽
f

o
𝑘
𝑥
(
o
o
1
h
w

inputs backward (line 23), and finishes with the 𝑑 inputs 𝑥1,… , 𝑥𝑑
in Buffer (line 25). In both cases, all the 𝑛 inputs meet each of the
− 𝑑 outputs of the group with the index 𝑘 which resides currently

n Buffer. This is repeated for every group of outputs (outer loop 5–
7), which guarantees that all the 𝑚𝑛 input–output pairs will occur in
uffer.

We will calculate the number 𝑝 of DRAM read accesses in the
ataflow described by Algorithm 1. After the first 𝑑 inputs are read
nto Buffer in the loop 2–4, the outer loop 5–27 which runs 𝑚

𝛽−𝑑 times,
includes 𝛽 − 𝑑 DRAM accesses to read outputs in the loop 6–13 and
− 𝑑 DRAM accesses for reading inputs either in the loop 16–19 or in

he loop 22–25. Altogether, we have

= 𝑑 + 𝑚
𝛽 − 𝑑

((𝛽 − 𝑑) + (𝑛 − 𝑑)) =
𝑚(𝑛 − 𝑑)
𝛽 − 𝑑

+ 𝑚 + 𝑑 . (23)

Hence, this dataflow provides an upper bound on the data energy
f a fully-connected layer 𝜆:

𝜆
data ≤ 𝑏

(

𝑚𝑛 +
𝑚(𝑛 − 𝑑)
𝛽 − 𝑑

+ 2𝑚 + 𝑑
)

(24)

according to (5), (21), and (22). This upper bound takes the smallest
value for 𝑑 = 1, provided that 𝑛 ≥ 𝛽, since 𝑛 ≥ 𝛽 is equivalent to
𝑚(𝑛 − 1)
𝛽 − 1

≤ 𝑚(𝑛 − 𝑑)
𝛽 − 𝑑

.

Furthermore, an alternative upper bound to (24) is obtained when
the roles of the inputs and outputs are reversed in Algorithm 1:

𝐸𝜆data ≤ 𝑏
(

𝑚𝑛 +
2𝑛(𝑚 − (𝛽 − 𝑑))

𝑑
+ 𝑛 + 2(𝛽 − 𝑑)

)

. (25)

his upper bound has the smallest value for 𝑑 = 𝛽 − 1, provided that
≥ 𝛽, since 𝑚 ≥ 𝛽 is equivalent to

2𝑛(𝑚 − 1)
𝛽 − 1

≤ 2𝑛(𝑚 − (𝛽 − 𝑑))
𝑑

.

Finally, assuming 𝑛 ≥ 𝛽 and 𝑚 ≥ 𝛽, we can compare (24) and (25)
or their smallest values, namely 𝑑 = 1 and 𝑑 = 𝛽 − 1, respectively:

𝑏
(

𝑚𝑛 +
𝑚(𝑛 − 1)
𝛽 − 1

+ 2𝑚 + 1
)

?
≤ 𝑏

(

𝑚𝑛 +
2𝑛(𝑚 − 1)
𝛽 − 1

+ 𝑛 + 2
)

(26)

hich can be rewritten as
?
≤ 𝑚(𝑛 − 2𝛽 + 3) + 𝑛(𝛽 − 3) + 𝛽 − 1 . (27)

his inequality holds for 𝑛 > 2𝛽 − 3 implying 𝑛 ≥ 𝛽, due to 𝛽 ≥ 2.
herefore, we can conclude that for sufficiently large 𝑛 > 2𝛽 − 3 and
≥ 𝛽, the minimal energy for fully-connected layers achieved by the

ataflow described in Algorithm 1 is obtained when 𝑑 = 1, i.e., when
uffer is partitioned to 𝛽 − 1 outputs, one input, and one weight. This
ituation leads to the following upper bound:

𝜆
data ≤ 𝑏

(

𝑚𝑛 +
𝑚(𝑛 − 1)
𝛽 − 1

+ 2𝑚 + 1
)

. (28)

.2. Bounded number of inputs in Buffer

The second dataflow is parameterized by the maximum number 𝑐
f inputs that can simultaneously occur in Buffer, where 1 ≤ 𝑐 ≤ 𝛽 − 1.
or notational simplicity, we assume that 𝛽 − 1 divides 𝑚.

The main idea of this dataflow is that the 𝑚 outputs are split into
𝑚
𝛽−1 groups. These groups, each of size 𝛽−1 outputs, are read into Buffer
one after the other in such a way that the next group overwrites 𝛽 − 𝑐
utputs of the current group and 𝑐 − 1 out of 𝑐 inputs currently stored
n Buffer. For each such group loaded into Buffer, all the 𝑛 − 1 inputs
re read one by one into Buffer so that each of the first 𝑛 − 𝑐 of these
nputs replaces the previously read input whereas the last 𝑐 − 1 inputs
verwrite outputs from the current group. This procedure ensures that
ll the 𝑚𝑛 input–output pairs will occur in Buffer containing at most 𝑐
nputs. This dataflow is illustrated in Fig. 3.
6

o

The dataflow is formally described in Algorithm 2 where the com-
ents (beginning with double slashes) specify the current Buffer con-

ents 𝐵𝑡 ⊆ 𝑋 ∪ 𝑌 after 𝑡 DRAM read accesses. Thus, the sequence of
ets 𝐵0, 𝐵1,… , 𝐵𝑝 satisfies conditions 1–4 and |𝐵𝑡 ∩𝑋| ≤ 𝑐 for every
= 0,… , 𝑝.

At the beginning when Buffer is empty (line 1), the first 𝑐 inputs are
read into Buffer (loop 2–4) so that 𝐵𝑐 = {𝑥1,… , 𝑥𝑐} (line 4). Then the
algorithm continues with the outer for loop 6–28 which goes through
all the 𝑚

𝛽−1 groups of 𝛽 − 1 outputs, indexed as 𝑘 = 0,… , 𝑚
𝛽−1 − 1.

Algorithm 2 The dataflow with a bounded number 𝑐 of inputs in Buffer.
1: // 𝐵0 = ∅

2: for 𝑖 = 1 to 𝑐 do
3: read 𝑥𝑖 into Buffer // 𝐵𝑖 =

{

𝑥1 ,… , 𝑥𝑖
}

4: end for // 𝐵𝑐 =
{

𝑥1 ,… , 𝑥𝑐
}

5: for 𝑘 = 0 to 𝑚
𝛽−1 − 1 do

6: for 𝑗 = 1 to 𝛽 − 𝑐 do
7: if 𝑘 = 0 then
8: read 𝑦𝑗 into Buffer // 𝐵𝑐+𝑗 =

{

𝑥1 ,… , 𝑥𝑐 , 𝑦1 ,… , 𝑦𝑗
}

9: else
10: read 𝑦𝑘(𝛽−1)+𝑗 into Buffer by overwriting 𝑦(𝑘−1)(𝛽−1)+𝑐+𝑗−1
1: //

{

𝑦𝑘(𝛽−1)+1 ,… , 𝑦𝑘(𝛽−1)+𝑗 , 𝑦(𝑘−1)(𝛽−1)+𝑐+𝑗 ,… , 𝑦𝑘(𝛽−1)
}

⊂ 𝐵𝑘(𝑛+𝛽−2)+𝑐+𝑗
12: end if
13: end for

// 𝐵𝑘(𝑛+𝛽−2)+𝛽 =
{

𝑥(𝑘mod 𝑛)+1 ,… , 𝑥((𝑘+𝑐−1)mod 𝑛)+1 , 𝑦𝑘(𝛽−1)+1 ,… , 𝑦𝑘(𝛽−1)+𝛽−𝑐
}

14: for 𝑗 = 𝛽 − 𝑐 + 1 to 𝛽 − 1 do
15: 𝓁 ← ((𝑘 + 𝛽 − 𝑗) mod 𝑛) + 1
16: read 𝑦𝑘(𝛽−1)+𝑗 into Buffer by overwriting 𝑥𝓁
17: end for // 𝐵𝑘(𝑛+𝛽−2)+𝛽+𝑐−1 =

{

𝑥(𝑘mod 𝑛)+1 , 𝑦𝑘(𝛽−1)+1 ,… , 𝑦(𝑘+1)(𝛽−1)
}

18: for 𝑖 = 𝑛 + 𝑘 downto 𝑘 + 𝑐 + 1 do
19: 𝓁 ← ((𝑖 − 1) mod 𝑛) + 1 ; 𝓁1 ← (𝑖 mod 𝑛) + 1
20: read 𝑥𝓁 into Buffer by overwriting 𝑥𝓁1
21: // 𝐵𝑘(𝑛+𝛽−2)+𝑛+𝛽+𝑘+𝑐−𝑖 =

{

𝑥𝓁 , 𝑦𝑘(𝛽−1)+1 ,… , 𝑦(𝑘+1)(𝛽−1)
}

22: end for // 𝐵𝑘(𝑛+𝛽−2)+𝑛+𝛽−1 =
{

𝑥((𝑘+𝑐)mod 𝑛)+1 , 𝑦𝑘(𝛽−1)+1 ,… , 𝑦(𝑘+1)(𝛽−1)
}

23: for 𝑖 = 𝑘 + 𝑐 downto 𝑘 + 2 do
24: 𝓁 ← ((𝑖 − 1) mod 𝑛) + 1
25: read 𝑥𝓁 into Buffer by overwriting 𝑦𝑘(𝛽−1)+𝑘+𝑐−𝑖+1
26: // 𝐵𝑘(𝑛+𝛽−2)+𝑛+𝛽+𝑘+𝑐−𝑖 =

{

𝑥𝓁 ,… , 𝑥((𝑘+𝑐)mod 𝑛)+1 , 𝑦𝑘(𝛽−1)+𝑐+𝑘−𝑖+2 ,… , 𝑦(𝑘+1)(𝛽−1)
}

27: end for
// 𝐵(𝑘+1)(𝑛+𝛽−2)+𝑐 =

{

𝑥((𝑘+1)mod 𝑛)+1 ,… , 𝑥((𝑘+𝑐)mod 𝑛)+1 , 𝑦𝑘(𝛽−1)+𝑐 ,… , 𝑦(𝑘+1)(𝛽−1)
}

28: end for

The first 𝛽 − 𝑐 of these 𝛽 − 1 outputs are read into Buffer during
he first inner for loop 6–13. Namely, for the first group of outputs
ith the index 𝑘 = 0 (line 7), when Buffer contains only the 𝑐

nputs 𝑥1,… , 𝑥𝑐 , these 𝛽 − 𝑐 outputs 𝑦1,… , 𝑦𝛽−𝑐 are just read into
uffer (line 8) where there is enough space for them, which means
𝛽 = {𝑥1,… , 𝑥𝑐 , 𝑦1,… , 𝑦𝛽−𝑐} (cf. line 13 for 𝑘 = 0). For the following
roups of outputs with the index 𝑘 > 0 (line 9), these 𝛽 − 𝑐 outputs
𝑘(𝛽−1)+1,… , 𝑦𝑘(𝛽−1)+𝛽−𝑐 are read into Buffer one by one, replacing the
− 𝑐 outputs 𝑦(𝑘−1)(𝛽−1)+𝑐 ,… , 𝑦(𝑘−1)(𝛽−1)+𝛽−1 which remained in Buffer

rom the previous group with the index 𝑘 − 1 (lines 10–11).
In the following second inner for loop 14–17, the remaining 𝑐 − 1

utputs 𝑦𝑘(𝛽−1)+𝛽−𝑐+1,… , 𝑦𝑘(𝛽−1)+𝛽−1 of the current group with the index
≥ 0, are read into Buffer one by one, overwriting the 𝑐 − 1 inputs

((𝑘+𝑐−1) mod 𝑛)+1,… , 𝑥(𝑘mod 𝑛)+2 with the decreasing index, respectively
line 16), that are currently stored in Buffer (line 13). This means that
nly one input 𝑥(𝑘mod 𝑛)+1 remains there (line 17). Note that the indices
f inputs are shifted by 𝑘 and looped using the modulo function (line
5) so that the 𝑛th input is followed by the first one which, on the other
and, is preceded by the 𝑛th input. Thus, the whole group of outputs
ith the index 𝑘 is then contained in Buffer (line 17 where the index

f 𝐵𝑘(𝑛+𝛽−2)+𝛽+𝑐−1 for 𝑘 > 0 takes into account also the DRAM accesses

Neural Networks 178 (2024) 106419J. Šíma et al.

i

i
a

i
o
t

o
w

f
𝑥
𝑦
𝑐
𝑦
l
i
l
l
o

d
i

H
f

𝐸

a
c
(

(

Fig. 3. Illustration of the dataflow with a bounded number 𝑐 of inputs in Buffer. At the beginning, the first 𝑐 inputs are read (top horizontal arrows). Afterwards, 𝛽 − 𝑐 and then
𝑐 −1 outputs are read (top vertical arrows), which generates the first input–output pairs (top left cells, squared and stair-shaped dark regions, respectively). Note that the readings
of the 𝑐−1 outputs overwrite 𝑐−1 inputs currently stored in Buffer, and hence only generate 𝑐(𝑐−1)

2
new input–output pairs (stair-shaped dark region). Next, the remaining 𝑛− 𝑐 and

the already considered 𝑐−1 inputs are read in the reverse order (middle horizontal arrows), all of them yielding novel input–output pairs (top right cells, squared and stair-shaped
block, respectively). Note that the last 𝑐 − 1 inputs read, which overwrite 𝑐 − 1 outputs currently stored in Buffer, had already been processed earlier in Buffer and thus generate
only 𝑐(𝑐−1)

2
new input–output pairs (stair-shaped light region). The dataflow continues in this way by reading outputs and inputs alternatively. At each iteration of the outer loop,

nput readings are shifted by one position in a circular fashion.
t
S
q
i

5

p

1

T
o
i
c
B
d

m

O

n between the readings of the two groups, as described on lines 18–27
nd commented below).

The third inner for loop 18–22 is used to read 𝑛−𝑐 inputs into Buffer
one by one, starting with 𝑥((𝑛+𝑘−1) mod 𝑛)+1 and following the decreasing
ndex, in such a way that each such input replaces the previously read
ne (lines 19–20). This continues in the last inner for loop 23–27 where
he remaining 𝑐 − 1 inputs 𝑥((𝑘+𝑐−1) mod 𝑛)+1,… , 𝑥((𝑘+1) mod 𝑛)+1 with the

decreasing index are read into Buffer one by one, overwriting the 𝑐 −1
utputs 𝑦𝑘(𝛽−1)+1,… , 𝑦𝑘(𝛽−1)+𝑐−1, respectively, from the current group
ith the index 𝑘 (lines 24–26).

According to line 13, the first 𝛽 − 𝑐 outputs 𝑦𝑘(𝛽−1)+1,… , 𝑦𝑘(𝛽−1)+𝛽−𝑐
rom the 𝑘th group meet the 𝑐 − 1 inputs 𝑥((𝑘+1) mod 𝑛)+1,… ,
((𝑘+𝑐−1) mod 𝑛)+1 in Buffer. The remaining 𝑐 −1 outputs 𝑦𝑘(𝛽−1)+𝛽−𝑐+1,… ,
(𝑘+1)(𝛽−1) from this group occur in Buffer simultaneously with these
− 1 inputs, as stated in line 27. The whole 𝑘th group of outputs
𝑘(𝛽−1)+1,… , 𝑦(𝑘+1)(𝛽−1) meets the input 𝑥(𝑘mod 𝑛)+1 in Buffer after the
oop 14–17 is performed (line 17), while each of the remaining 𝑛 − 𝑐
nputs occurs at the same time with this group in Buffer during the
oop 18–22 (line 21). This is repeated for every group of outputs (outer
oop 5–28), which guarantees that all the 𝑚𝑛 input–output pairs will
ccur in Buffer.

We will calculate the number 𝑝 of DRAM read accesses in the
ataflow described by Algorithm 2. After the first 𝑐 inputs are read
nto Buffer in the loop 2–4, the outer loop 5–28 which runs 𝑚

𝛽−1 times,
includes 𝛽 − 𝑐 and 𝑐 − 1 DRAM accesses to read outputs in the inner
loops 6–13 and 14–17, respectively, and 𝑛− 𝑐 and 𝑐−1 DRAM accesses
for reading inputs in the inner loops 18–22 and 23–27, respectively.
Altogether, we have

𝑝 = 𝑐+ 𝑚
𝛽 − 1

((𝛽 − 𝑐) + (𝑐 − 1) + (𝑛 − 𝑐) + (𝑐 − 1)) =
𝑚(𝑛 − 1)
𝛽 − 1

+𝑚+𝑐 . (29)

ence, this dataflow provides an upper bound on the data energy of a
ully-connected layer 𝜆:

𝜆
data ≤ 𝑏

(

𝑚𝑛 +
𝑚(𝑛 − 1)
𝛽 − 1

+ 2𝑚 + 𝑐
)

(30)

ccording to (5), (21), and (22). Note that Algorithm 1 for 𝑑 = 1
oincides with Algorithm 2 for 𝑐 = 1, producing the same upper bound
28).

This upper bound (28) can be compared to the general lower bound
20) on the data energy which is still smaller by the linear additive
7

d

erm 1
2𝑚. The lower bound will be improved in some special cases in

ection 5. Nevertheless, we have achieved the asymptotically optimal
uadratic data energy complexity of evaluating a fully-connected layer
n terms of the number of its inputs and outputs.

. Optimal energy complexity for a partitioned Buffer

We now study the case where Buffer is divided into two separated
arts dedicated to the reading of 𝑑 inputs and 𝛽 − 𝑑 outputs, respec-

tively, plus one float for weights, where 𝑑 is a fixed parameter such
that 1 ≤ 𝑑 ≤ 𝛽−1. In this context, we improve the general lower bound
(20) on the data energy 𝐸𝜆data of a fully-connected layer 𝜆 so that it
matches the upper bounds (24) and (25), up to an additive constant. We
investigate two cases according to whether 𝑑 is at most or at least 2

3 𝛽.

Case 𝟏 ≤ 𝒅 ≤ 𝟐
𝟑𝜷. First assume that

≤ 𝑑 ≤ 2
3 𝛽 . (31)

We formulate a linear program for finding 𝜇 and 𝜈 that

minimize 2𝜇 + 𝜈 (32)
subject to 𝑑𝜇 + (𝛽 − 𝑑)𝜈 ≥ 𝑚𝑛 (33)

𝜇 ≥ 𝑚 (34)
𝜈 ≥ 0 , 𝜇 ≥ 0 . (35)

he constraint (33) follows from the requirement that all the 𝑚𝑛 input–
utput couples have to occur in Buffer, since by reading one output or
nput, at most 𝑑 or 𝛽 − 𝑑 new pairs meet in Buffer, respectively. The
onstraint (34) follows from the fact that at least 𝑚 outputs are read into
uffer. We convert the linear program (32)–(35) to the corresponding
ual linear program for finding 𝜙 and 𝜓 that

aximize 𝑚𝑛𝜙 + 𝑚𝜓 (36)
subject to 𝑑𝜙 + 𝜓 ≤ 2 (37)

(𝛽 − 𝑑)𝜙 ≤ 1 (38)
𝜙 ≥ 0, 𝜓 ≥ 0 . (39)

bserve that 𝜙0 = 1
𝛽−𝑑 and 𝜓0 = 2 − 𝑑

𝛽−𝑑 is a feasible solution for the
ual program, satisfying (37)–(39) due to (31).

Neural Networks 178 (2024) 106419J. Šíma et al.

𝐸

w
a
c
A

C

w
s
c
𝜓
a

w
f

𝐸

w
a
c
i
a

a
p
f
𝑑

6

t
t
d
c
d
o
e
f
w

p
m
p
f
o
a
t
u
e

c
c
f
c
o
c

e
c
h
s
w
i
e
w
m
u
C
a
A
G

c
p
T
d
(
a
l
p
t
b

𝐸

w
t

e
p
l
E
c
i
t
𝑚
t
w
n
f

y
p
i
t
t
(
b
c

s

t

By the weak duality theorem, the objective function value of the
primal (32) at any feasible solution is lower bounded by the objective
function value of the dual (36) at any feasible solution, that is,

2𝜇 + 𝜈 ≥ 𝑚𝑛𝜙0 + 𝑚𝜓0 =
𝑚(𝑛 − 𝑑)
𝛽 − 𝑑

+ 2𝑚 . (40)

According to (5), the inequality (40) provides the following lower
bound on the data complexity of a fully-connected layer 𝜆:

𝜆
data ≥ 𝑏

(

𝑚𝑛 +
𝑚(𝑛 − 𝑑)
𝛽 − 𝑑

+ 2𝑚
)

(41)

hen Buffer is divided into two parts for 𝑑 inputs and 𝛽 − 𝑑 outputs,
nd the fixed parameter 𝑑 meets (31). This lower bound matches the
orresponding upper bound (24) achieved by the dataflow described in
lgorithm 1, up to the additive constant 𝑑.

ase 𝟐
𝟑𝜷 ≤ 𝒅 ≤ 𝜷 − 𝟏. Similarly, for

2
3 𝛽 ≤ 𝑑 ≤ 𝛽 − 1 , (42)

e have a linear program for finding 𝜇 and 𝜈 that minimize 2𝜇 + 𝜈
ubject to 𝑑𝜇 + (𝛽 − 𝑑)𝜈 ≥ 𝑚𝑛, 𝜈 ≥ 𝑛, 𝜈 ≥ 0, and 𝜇 ≥ 0. This is
onverted to the corresponding dual linear program for finding 𝜙 and

that maximize 𝑚𝑛𝜙 + 𝑛𝜓 subject to 𝑑𝜙 ≤ 2, (𝛽 − 𝑑)𝜙 + 𝜓 ≤ 1, 𝜓 ≥ 0,
nd 𝜓 ≥ 0, which has a feasible solution 𝜙1 = 2

𝑑 and 𝜓1 = 1 − 2(𝛽−𝑑)
𝑑

due to (42).
By the weak duality theorem we have

2𝜇 + 𝜈 ≥ 𝑚𝑛𝜙1 + 𝑛𝜓1 =
2𝑛(𝑚 − (𝛽 − 𝑑))

𝑑
+ 𝑛 (43)

hich provides the following lower bound on the data complexity of a
ully-connected layer 𝜆:

𝜆
data ≥ 𝑏

(

𝑚𝑛 +
2𝑛(𝑚 − (𝛽 − 𝑑))

𝑑
+ 𝑛

)

(44)

hen Buffer is divided into two parts for 𝑑 inputs and 𝛽 − 𝑑 outputs,
nd the fixed parameter 𝑑 meets (42). This lower bound matches the
orresponding upper bound (25) achieved by the dataflow described
n Algorithm 1 with the reversed role of inputs and outputs, up to the
dditive constant 2(𝛽 − 𝑑).

We can conclude that the data energy for fully-connected layers
chieved by the dataflow described in Algorithm 1 when Buffer is
artitioned into 𝑑 inputs, 𝛽 − 𝑑 outputs, and one weight, is optimal
or any fixed 𝑑, and the minimum of data energy (28) is achieved for
= 1.

. Experimental validation

In this section, we compare the theoretical energy complexity in-
roduced in Section 2 to the real energy consumption estimated by
he Timeloop/Accelergy software tool for evaluating DNN accelerator
esigns. The Timeloop (Parashar et al., 2019) finds a mapping of a
onvolutional layer specified by its parameters (e.g. height, width,
epth, kernel size, stride) onto a given hardware platform, which is
ptimal in terms of energy consumption estimated by Accelergy (Wu
t al., 2019) reporting the energy statistics. Here, we employ the tool
or fully-connected layers as a special case of convolutional layers
here the feature maps are reduced to single neurons.

In particular, the Timeloop can design the hardware architecture
arameters, the approach of how a layer is mapped to hardware, how
emory caches are used, and so on. In energy optimization, Timeloop
erforms design space exploration to find a (sub)optimal configuration
or a given layer. Since there are a reasonable number (tens to hundreds
f thousands) of configurations for some layers and architectures (such
s Eyeriss), Timeloop performs a brute-force search with a guaran-
eed optimum. Otherwise, an internal heuristic is involved to limit
nsuitable paths (e.g. Simba accelerator), which can be replaced, for
8

xample, by a genetic algorithm. For energy evaluation, the Timeloop
alls the Accelergy tool which determines the exact number of clock
ycles required to process inference, the number of memory accesses
or reads and writes, and other metrics. From these, the overall power
onsumption of the layer inference is determined based on parameters
btained from hardware synthesis for application-specific integrated
ircuits (such as Synopsys Design Compiler1 or CACTI2 for memories).

We have employed Simba (Shao et al., 2019) and Eyeriss (Chen
t al., 2016) as the target hardware platforms onto which fully-
onnected layers with increasing number of inputs, outputs, and weights
ave been mapped. These two hardware architectures have been cho-
en as prominent examples of modern DNN inference accelerators
hich are general and not tied to a specific DNN as is common

n single-purpose accelerators with FPGAs (Mittal, 2020) or printed
lectronics. They are based on a systolic array of processing elements
hich communicate with each other without the need for additional
emory accesses. This represents a state-of-the-art approach widely
sed in many real-world DNN inference accelerators such as ARM
ortex-M Processor (Orăs.an et al., 2022), TPU, etc. Nevertheless, other
pproaches can be used to support our energy complexity model.
ll configuration files used in experiments are publicly available at
ithub.3

For a fully-connected layer 𝜆, we measure empirical dependen-
ies of the optimal data energy independently on its number of in-
uts 𝑛, outputs 𝑚, and weights 𝑚𝑛, which is minimized by using the
imeloop/Accelergy tool for the Simba and Eyeriss architectures. These
ependencies are then compared to the corresponding upper bound
28) on 𝐸𝜆data achieved by the dataflows in the energy complexity model
s presented in Section 4, which matches asymptotically the quadratic
ower bound (20) in terms of 𝑛 and 𝑚, as was proven in Section 3. In
articular, for the comparison of empirical energy consumptions to the
heoretical data energy 𝐸𝜆data, we use the following asymptotic optimal
ounds:
𝜆
data = 𝛩 (𝑛) , 𝐸𝜆data = 𝛩 (𝑚) , 𝐸𝜆data = 𝛩 (𝑚𝑛) , (45)

hich are derived from (20) and (28) for individual variables (when
he other independent parameter is considered to be constant).

Fig. 4 presents the results of experimental comparison of energy-
fficient CNN hardware implementations to our theoretical energy com-
lexity model separately for individual parameters of fully-connected
ayers. By using the Timeloop/Accelergy tool applied to the Simba and
yeriss hardware architectures, the optimal values of their data energy
onsumption have been estimated for a fully-connected layer 𝜆 with
ncreasing parameters 𝑛, 𝑚, and 𝑚𝑛, each separately. In order to make
he experiment computationally feasible, 32 values for 𝑛 (the same for
) were taken from the interval 128 to 4096 with the step 128, whereas

he other parameter 𝑚 (respectively 𝑛) was fixed at the value of 1024,
hich represents realistic sizes of fully-connected DNN layers. For the
umber of weights 𝑚𝑛, we took all possible 32 × 32 pairs of these values
or 𝑚 and 𝑛.

These parameters serve as independent variables in regression anal-
sis where the relationships between the data energy and the inde-
endent variables are modeled as functions with asymptotics (45),
ncluding multiplicative and additive coefficients 𝑐2 and 𝑐1, respec-
ively. As depicted in Fig. 4, these coefficients are approximated by
he method of least squares so that the theoretical data energy 𝐸𝜆data
dashed lines) fits energy estimates by Timeloop/Accelergy (displayed
y bars), which confirms the asymptotic trends (45) in the energy
omplexity model.

In addition, the energy complexity model has been validated by
tatistical tests using quadratic regression with the function model

1 https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-
est/dc-ultra.html

2 https://github.com/HewlettPackard/cacti
3
 https://github.com/PetraVidnerova/timeloop-accelergy-test

https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://github.com/HewlettPackard/cacti
https://github.com/PetraVidnerova/timeloop-accelergy-test

Neural Networks 178 (2024) 106419J. Šíma et al.
Fig. 4. The data energy estimates by Timeloop/Accelergy (displayed by bars) for a fully-connected layer 𝜆 with increasing parameters 𝑛, 𝑚, and 𝑚𝑛, each separately (from top to
bottom), on the Simba (left) and Eyeriss (right) architectures, which fit the asymptotic trends (45) in the energy complexity model (dashed lines).
𝑎𝑥2 + 𝑏𝑥 + 𝑐 for the independent variable 𝑥 to be 𝑛, 𝑚, and 𝑚𝑛,
respectively. These statistical tests have approved the linearity in 𝑛, 𝑚,
and 𝑚𝑛, with the 𝑝-values 0.2447, 0.6468, and 0.0575, respectively,
for Simba, and 0.1494, 0.4801, and 0.0531, respectively, for Eyeriss,
accepting the null hypothesis of 𝑎 = 0 (at the significance level 0.05)
in all these cases.

The presented experiments have thus validated the energy com-
plexity model whose upper and lower bounds on theoretical energy
for fully-connected layers fit asymptotically very well the energy con-
sumption estimated by the Timeloop/Accelergy tool for the Simba and
Eyeriss hardware platforms.

7. Conclusion

In this paper, we have theoretically analyzed the energy complexity
model for CNNs introduced in our previous work (Šíma et al., 2024)
which was shown to be asymptotically consistent with the energy
consumption estimates of their various hardware implementations. We
9

have restricted ourselves to fully-connected layers, which constitute the
most common blocks of DNNs, and plan to extend this analysis to the
case of convolutional layers.

We have shown a general lower bound on energy complexity of
fully-connected layers. We have presented two dataflows for fixed and
bounded numbers of inputs residing in Buffer, respectively, and calcu-
lated their energy costs to obtain upper bounds on energy complexity.
We have proven the matching lower bound on the energy for the first
dataflow, which in turn, provides the optimal energy complexity for
fully-connected layers in the case where Buffer is partitioned into two
separate parts for inputs and outputs.

Since the presented general lower and upper bounds differ only
in a linear additive term, we have thus achieved the asymptotically
optimal quadratic energy complexity of evaluating a fully-connected
layer in terms of the number of its inputs and outputs. This asymptotic
quadratic energy complexity has been experimentally confirmed by the
real energy consumption estimates for the Simba and Eyeriss hardware
architectures, using the Timeloop/Accelergy software tool.

Neural Networks 178 (2024) 106419J. Šíma et al.

C
a
V

D

c
i

D

A

o
F
6
s
s

R

A

A

A

B

C

C

D

D

We conjecture that the general lower bound on energy complexity
of fully-connected layers can be improved to match the presented upper
bound, which constitutes a path for future work. The main challenge is
to generalize this analysis to the case of convolutional layers in order
to achieve their optimal energy complexity.

CRediT authorship contribution statement

Jiří Šíma: Writing – review & editing, Writing – original draft, Val-
idation, Supervision, Project administration, Methodology, Investiga-
tion, Funding acquisition, Formal analysis, Conceptualization. Jérémie
abessa: Writing – review & editing, Visualization, Validation, Formal
nalysis. Petra Vidnerová: Writing – review & editing, Visualization,
alidation, Software, Data curation.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

Data will be made available on request.

cknowledgments

The presentation of this paper benefited from valuable suggestions
f anonymous reviewers. This work was supported by the Czech Science
oundation grant GA22-02067S and the institutional support RVO:
7985807. We thank Petr Savický for inspiring discussions in the early
tages of this research and Jan Kalina for expert consultation regarding
tatistical tests.

eferences

lwani, M., Chen, H., Ferdman, M., & Milder, P. A. (2016). Fused-layer CNN
accelerators. In Proceedings of the 49th annual IEEE/ACM international symposium
on microarchitecture. MICRO 2016, Article 22. http://dx.doi.org/10.1109/MICRO.
2016.7783725.

nsari, M. S., Mrazek, V., Cockburn, B. F., Sekanina, L., Vasicek, Z., & Han, J.
(2020). Improving the accuracy and hardware efficiency of neural networks using
approximate multipliers. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 28(2), 317–328. http://dx.doi.org/10.1109/TVLSI.2019.2940943.

rmeniakos, G., Zervakis, G., Soudris, D., & Henkel, J. (2023). Hardware approximate
techniques for deep neural network accelerators: A survey. ACM Computing Surveys,
55(4), Article 83. http://dx.doi.org/10.1145/3527156.

rown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Nee-
lakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A.,
Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J.,
Winter, C., Amodei, D. (2020). Language models are few-shot learners.
In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, & H. Lin (Eds.), Ad-
vances in neural information processing systems: Proceedings of the 34th anual
conference on neural information processing systems: vol. 33, NeurIPS 2020,
(pp. 1877–1901). URL https://proceedings.neurips.cc/paper_files/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

hen, Y., Emer, J. S., & Sze, V. (2016). Eyeriss: A spatial architecture for energy-
efficient dataflow for convolutional neural networks. In Proceedings of the 43rd
annual ACM/IEEE international symposium on computer architecture ISCA 2016, (pp.
367–379). http://dx.doi.org/10.1109/ISCA.2016.40.

howdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A., Barham, P.,
Chung, H. W., Sutton, C., Gehrmann, S., Schuh, P., Shi, K., Tsvyashchenko, S.,
Maynez, J., Rao, A., Barnes, P., Tay, Y., Shazeer, N., Prabhakaran, V., Fiedel, N.
(2023). PaLM: Scaling language modeling with pathways. Journal of Machine
Learning Research, 24(240), 1–113, URL http://jmlr.org/papers/v24/22-1144.html.

eng, L., Li, G., Han, S., Shi, L., & Xie, Y. (2020). Model compression and hardware
acceleration for neural networks: A comprehensive survey. Proceedings of the IEEE,
108(4), 485–532. http://dx.doi.org/10.1109/JPROC.2020.2976475.

osovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T.,
Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., & Houlsby, N.
(2021). An image is worth 16x16 words: Transformers for image recognition at
scale. In Proceedings of the 9th international conference on learning representations.
ICLR 2021, URL https://openreview.net/forum?id=YicbFdNTTy.
10
Gonthier, M., Marchal, L., & Thibault, S. (2023). Taming data locality for task
scheduling under memory constraint in runtime systems. Future Generation Computer
Systems, 143, 305–321. http://dx.doi.org/10.1016/J.FUTURE.2023.01.024.

Gupta, S., Agrawal, A., Gopalakrishnan, K., & Narayanan, P. (2015). Deep learning
with limited numerical precision. In F. Bach, & D. Blei (Eds.), JMLR workshop and
conference proceedings: vol. 37, Proceedings of the 32nd international conference on
machine learning ICML 2015, (pp. 1737–1746). URL http://proceedings.mlr.press/
v37/gupta15.html.

Huang, X., Khetan, A., Cvitkovic, M., & Karnin, Z. S. (2020). TabTransformer: Tabular
data modeling using contextual embeddings. http://dx.doi.org/10.48550/arXiv.
2012.06678, CoRR, arXiv:2012.06678 [cs.LG].

Jouppi, N. P., Young, C., Patil, N., & Patterson, D. A. (2018). A domain-specific
architecture for deep neural networks. Communications of the ACM, 61(9), 50–59.
http://dx.doi.org/10.1145/3154484.

Li, Z., Li, H., & Meng, L. (2023). Model compression for deep neural networks: A survey.
Computers, 12(3), Article 60. http://dx.doi.org/10.3390/COMPUTERS12030060.

Luccioni, A. S., Viguier, S., & Ligozat, A.-L. (2022). Estimating the carbon footprint
of BLOOM, a 176b parameter language model. http://dx.doi.org/10.48550/arXiv.
2211.02001, CoRR, arXiv:2211.02001 [cs.LG].

Lyu, Z., Yu, T., Pan, F., Zhang, Y., Luo, J., Zhang, D., Chen, Y., Zhang, B., & Li, G.
(2023). A survey of model compression strategies for object detection. Multimedia
Tools and Applications, 83, 48165–48236. http://dx.doi.org/10.1007/s11042-023-
17192-x.

Mishra, R., Gupta, H. P., & Dutta, T. (2020). A survey on deep neural network
compression: Challenges, overview, and solutions. http://dx.doi.org/10.48550/
arXiv.2010.03954, CoRR, arXiv:2010.03954 [cs.LG].

Mittal, S. (2016). A survey of techniques for approximate computing. ACM Computing
Surveys, 48(4), Article 62. http://dx.doi.org/10.1145/2893356.

Mittal, S. (2020). A survey of FPGA-based accelerators for convolutional neural
networks. Neural Computing and Applications, 32(4), 1109–1139. http://dx.doi.org/
10.1007/s00521-018-3761-1.

Mittal, S., Verma, G., Kaushik, B., & Khanday, F. A. (2021). A survey of SRAM-based
in-memory computing techniques and applications. Journal of Systems Architecture,
119, Article 102276. http://dx.doi.org/10.1016/J.SYSARC.2021.102276.

Orăs.an, I. L., Seiculescu, C., & Căleanu, C. D. (2022). A brief review of deep neural
network implementations for ARM Cortex-M processor. Electronics, 11(16), Article
2545. http://dx.doi.org/10.3390/electronics11162545.

Parashar, A., Raina, P., Shao, Y. S., Chen, Y., Ying, V. A., Mukkara, A., Venkatesan, R.,
Khailany, B., Keckler, S. W., & Emer, J. S. (2019). Timeloop: A systematic approach
to DNN accelerator evaluation. In Proceedings of the IEEE international symposium
on performance analysis of systems and software ISPASS 2019, (pp. 304–315). http:
//dx.doi.org/10.1109/ISPASS.2019.00042.

Shao, Y. S., Clemons, J., Venkatesan, R., Zimmer, B., Fojtik, M., Jiang, N., Keller, B.,
Klinefelter, A., Pinckney, N. R., Raina, P., Tell, S. G., Zhang, Y., Dally, W. J.,
Emer, J. S., Gray, C. T., Khailany, B., & Keckler, S. W. (2019). Simba: Scaling
deep-learning inference with multi-chip-module-based architecture. In Proceedings
of the 52nd annual IEEE/ACM international symposium on microarchitecture MICRO
2019, (pp. 14–27). http://dx.doi.org/10.1145/3352460.3358302.

Silvano, C., Ielmini, D., Ferrandi, F., Fiorin, L., Curzel, S., Benini, L., Conti, F.,
Garofalo, A., Zambelli, C., Calore, E., Schifano, S. F., Palesi, M., Ascia, G., Patti, D.,
Perri, S., Petra, N., Caro, D. D., Lavagno, L., Urso, T., Birke, R. (2023). A survey
on deep learning hardware accelerators for heterogeneous HPC platforms. CoRR,
arXiv:2306.15552 [cs.AR].

Šíma, J., & Cabessa, J. (2023). Energy complexity of fully-connected layers. In I. Rojas,
G. Joya, & A. Catala (Eds.), LNCS: vol. 14134, part I, Proceedings of the 17th
international work-conference on artificial neural networks IWANN 2023, (pp. 3–15).
Springer, http://dx.doi.org/10.1007/978-3-031-43085-5_1.

Šíma, J., Vidnerová, P., & Mrázek, V. (2024). Energy complexity of convolutional neural
networks. Neural Computation, http://dx.doi.org/10.1162/neco_a_01676.

Sze, V., Chen, Y., Yang, T., & Emer, J. S. (2017). Efficient processing of deep neural
networks: A tutorial and survey. Proceedings of the IEEE, 105(12), 2295–2329.
http://dx.doi.org/10.1109/JPROC.2017.2761740.

Sze, V., Chen, Y., Yang, T., & Emer, J. S. (2020). Efficient processing of deep neural
networks. Synthesis lectures on computer architecture, Morgan & Claypool Publishers,
http://dx.doi.org/10.2200/S01004ED1V01Y202004CAC050.

Tang, Y., Wang, Y., Guo, J., Tu, Z., Han, K., Hu, H., & Tao, D. (2024). A survey
on transformer compression. http://dx.doi.org/10.48550/arXiv.2402.05964, CoRR,
arXiv:2402.05964 [cs.LG].

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M., Lacroix, T., Rozière, B.,
Goyal, N., Hambro, E., Azhar, F., Rodriguez, A., Joulin, A., Grave, E., & Lample, G.
(2023). LLaMA: open and efficient foundation language models. http://dx.doi.org/
10.48550/arXiv.2302.13971, CoRR, arXiv:2302.13971 [cs.CL].

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L.,
& Polosukhin, I. (2017). Attention is all you need. In I. Guyon, U. von Luxburg,
S. Bengio, H. M. Wallach, R. Fergus, S. V. N. Vishwanathan, & R. Garnett
(Eds.), Advances in neural information processing systems: Proceedings of the 31st
annual conference on neural information processing systems: vol. 30, NIPS 2017,
(pp. 5998–6008). URL https://proceedings.neurips.cc/paper_files/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

http://dx.doi.org/10.1109/MICRO.2016.7783725
http://dx.doi.org/10.1109/MICRO.2016.7783725
http://dx.doi.org/10.1109/MICRO.2016.7783725
http://dx.doi.org/10.1109/TVLSI.2019.2940943
http://dx.doi.org/10.1145/3527156
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
http://dx.doi.org/10.1109/ISCA.2016.40
http://jmlr.org/papers/v24/22-1144.html
http://dx.doi.org/10.1109/JPROC.2020.2976475
https://openreview.net/forum?id=YicbFdNTTy
http://dx.doi.org/10.1016/J.FUTURE.2023.01.024
http://proceedings.mlr.press/v37/gupta15.html
http://proceedings.mlr.press/v37/gupta15.html
http://proceedings.mlr.press/v37/gupta15.html
http://dx.doi.org/10.48550/arXiv.2012.06678
http://dx.doi.org/10.48550/arXiv.2012.06678
http://dx.doi.org/10.48550/arXiv.2012.06678
http://arxiv.org/abs/2012.06678
http://dx.doi.org/10.1145/3154484
http://dx.doi.org/10.3390/COMPUTERS12030060
http://dx.doi.org/10.48550/arXiv.2211.02001
http://dx.doi.org/10.48550/arXiv.2211.02001
http://dx.doi.org/10.48550/arXiv.2211.02001
http://arxiv.org/abs/2211.02001
http://dx.doi.org/10.1007/s11042-023-17192-x
http://dx.doi.org/10.1007/s11042-023-17192-x
http://dx.doi.org/10.1007/s11042-023-17192-x
http://dx.doi.org/10.48550/arXiv.2010.03954
http://dx.doi.org/10.48550/arXiv.2010.03954
http://dx.doi.org/10.48550/arXiv.2010.03954
http://arxiv.org/abs/2010.03954
http://dx.doi.org/10.1145/2893356
http://dx.doi.org/10.1007/s00521-018-3761-1
http://dx.doi.org/10.1007/s00521-018-3761-1
http://dx.doi.org/10.1007/s00521-018-3761-1
http://dx.doi.org/10.1016/J.SYSARC.2021.102276
http://dx.doi.org/10.3390/electronics11162545
http://dx.doi.org/10.1109/ISPASS.2019.00042
http://dx.doi.org/10.1109/ISPASS.2019.00042
http://dx.doi.org/10.1109/ISPASS.2019.00042
http://dx.doi.org/10.1145/3352460.3358302
http://arxiv.org/abs/2306.15552
http://dx.doi.org/10.1007/978-3-031-43085-5_1
http://dx.doi.org/10.1162/neco_a_01676
http://dx.doi.org/10.1109/JPROC.2017.2761740
http://dx.doi.org/10.2200/S01004ED1V01Y202004CAC050
http://dx.doi.org/10.48550/arXiv.2402.05964
http://arxiv.org/abs/2402.05964
http://dx.doi.org/10.48550/arXiv.2302.13971
http://dx.doi.org/10.48550/arXiv.2302.13971
http://dx.doi.org/10.48550/arXiv.2302.13971
http://arxiv.org/abs/2302.13971
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Neural Networks 178 (2024) 106419J. Šíma et al.

Y

Wu, Y. N., Emer, J. S., & Sze, V. (2019). Accelergy: An architecture-level energy
estimation methodology for accelerator designs. In D. Z. Pan (Ed.), Proceedings
of the IEEE/ACM international conference on computer aided design. ICCAD 2019,
http://dx.doi.org/10.1109/ICCAD45719.2019.8942149.

ang, T., Chen, Y., Emer, J. S., & Sze, V. (2017). A method to estimate the energy
consumption of deep neural networks. In M. B. Matthews (Ed.), Proceedings of the
IEEE 51st asilomar conference on signals, systems, and computers ACSSC 2017, (pp.
1916–1920). http://dx.doi.org/10.1109/ACSSC.2017.8335698.
11
Zhou, G., Zhou, J., & Lin, H. (2018). Research on NVIDIA deep learning accelerator. In
Proceedings of the 12th IEEE international conference on anti-counterfeiting, security,
and identification ASID 2018, (pp. 192–195). http://dx.doi.org/10.1109/ICASID.
2018.8693202.

http://dx.doi.org/10.1109/ICCAD45719.2019.8942149
http://dx.doi.org/10.1109/ACSSC.2017.8335698
http://dx.doi.org/10.1109/ICASID.2018.8693202
http://dx.doi.org/10.1109/ICASID.2018.8693202
http://dx.doi.org/10.1109/ICASID.2018.8693202

	On energy complexity of fully-connected layers
	Energy Complexity Model for CNNs
	Energy Complexity of Fully-Connected Layers
	A Lower Bound on Energy Complexity
	Upper Bounds on Energy Complexity
	Fixed Number of Inputs in Buffer
	Bounded Number of Inputs in Buffer

	Optimal Energy Complexity for a Partitioned Buffer
	Experimental Validation
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

