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Introduction

» Artificial neural networks have a tremendous range of applica-
tions in current artificial intelligence, mainly due to their capa-
bility to implement efficient learning algorithms.
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» Artificial neural networks have a tremendous range of applica-
tions in current artificial intelligence, mainly due to their capa-
bility to implement efficient learning algorithms.

» However, the theoretical approach to neural computation is
rather limited.

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa



Intro Boolean RNNs Rational RNNs Real RNNs

Evolving RNNs
° [ele} 00

Stochastic RNN Conclusion

Introduction

» Artificial neural networks have a tremendous range of applica-
tions in current artificial intelligence, mainly due to their capa-
bility to implement efficient learning algorithms.

» However, the theoretical approach to neural computation is
rather limited.

» Here, we provide a review of some important theoretical results
concerning the computational capabilities of various kinds of
neural models.
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Introduction

» Artificial neural networks have a tremendous range of applica-
tions in current artificial intelligence, mainly due to their capa-
bility to implement efficient learning algorithms.

» However, the theoretical approach to neural computation is

rather limited.

» Here, we provide a review of some important theoretical results
concerning the computational capabilities of various kinds of
neural models.

> It hopes to shed a light on the crucial issue of information pro-
cessing in the brain, and ultimately, on biological and artificial
intelligences.
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From Boolean Neural Networks to Automata
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Equivalence between Boolean Neural Networks and
Automata

Theorem (Minsky 67)
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Equivalence between Boolean Neural Networks and
Automata

Theorem (Minsky 67)

“It is evident that each neural network of the kind we have been

considering is a finite-state machine.”
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Equivalence between Boolean Neural Networks and
Automata

Theorem (Minsky 67)

“It is evident that each neural network of the kind we have been

considering is a finite-state machine.”

“[...] It is interesting and even surprising that there is a converse
to this. Every finite-state machine is equivalent to, and can be
“simulated” by, some neural net.”
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Introduction

» By translating the so-called Wagner hierarchy from the au-
tomaton to the neural network context, we introduce a new
attractor-based complexity measurement for Boolean recurrent

neural networks.

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa



Intro  Boolean RNNs Rational RNNs Real RNNs Evolving RNNs Stochastic RNNs Conclusion

(e} 000000 00000000 000000000 000000000000 000000000000 O0OO0000 000
®000000000 0000000000000 000
Introduction

» By translating the so-called Wagner hierarchy from the au-
tomaton to the neural network context, we introduce a new
attractor-based complexity measurement for Boolean recurrent

neural networks.

» The measurement reflects the complexity of the attractors’
structure of the networks.
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The Wagner Hierarchy

» In w-automata theory, there is a transfinite classification of w-
automata according to the way their cycles are intricated one
into the other...
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» In w-automata theory, there is a transfinite classification of w-
automata according to the way their cycles are intricated one
into the other...

» The Wagner hierarchy
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The Wagner Hierarchy

» In w-automata theory, there is a transfinite classification of w-
automata according to the way their cycles are intricated one
into the other...

» The Wagner hierarchy

» By translating the Wagner hierarchy from the w-automata to
the Boolean neural network context, one obtains a transfinite
classification of Boolean neural networks according to the way
their attractors are intricated one into the other...
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The Wagner Hierarchy

» In w-automata theory, there is a transfinite classification of w-
automata according to the way their cycles are intricated one
into the other...

» The Wagner hierarchy

» By translating the Wagner hierarchy from the w-automata to
the Boolean neural network context, one obtains a transfinite
classification of Boolean neural networks according to the way
their attractors are intricated one into the other...

» The Boolean RNN hierarchy
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The Wagner Hierarchy

» A transfinite classification of Muller automata according to the
topological complexity of their underlying language

NP ™ ™o height
O/C<(j\./<o/0 O/<<:>o O/((O/o S

degree degree degree degree degree degree degree
1 2 3 w w+1 w-2 w-2+1

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa



Intro  Boolean RNNs Rational RNNs Real RNNs Evolving RNNs Stochastic RNNs Conclusion

[e] 000000 00000000 000000000 000000000000 OO0OO0OOO0OO0OOOO0O0O0 000
O00@000000 0000000000000 000

The Wagner Hierarchy

» A transfinite classification of Muller automata according to the
topological complexity of their underlying language

» Equivalently, a transfinite classification of Muller automata ac-
cording to the graph-theoretical complexity of their cycles
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The Wagner Hierarchy

> A transfinite classification of Muller automata according to the
topological complexity of their underlying language

» Equivalently, a transfinite classification of Muller automata ac-
cording to the graph-theoretical complexity of their cycles

» Quasi well-ordering of transfinite height w*
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The Wagner Hierarchy

> A transfinite classification of Muller automata according to the
topological complexity of their underlying language

» Equivalently, a transfinite classification of Muller automata ac-
cording to the graph-theoretical complexity of their cycles

> Quasi well-ordering of transfinite height w*
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The Wagner Hierarchy — Muller Automata

» A Muller automaton consists of an automaton provided with an
additional specification of every of its cycles into an accepting
or a rejecting mode
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The Wagner Hierarchy — Muller Automata

» A Muller automaton consists of an automaton provided with an
additional specification of every of its cycles into an accepting
or a rejecting mode
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The Wagner Hierarchy — Degrees w"
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The Wagner Hierarchy — Degrees w" - k
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The Wagner Hierarchy — Degrees w" - k
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The Wagner Hierarchy — Degrees w” - k + w™ - k’

Muller Wagner
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The Wagner Hierarchy — Degrees w” - k + w™ - k’
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The Wagner Hierarchy — Degrees w” - k + w™ - k’
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automaton degree
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The Wagner Hierarchy — Summary

> A quasi well-ordering of transfinite height w*

QALAL A Al aar
o . f<§> . .

degree degree degree degree degree degree degree
1 2 3 w w+1 w-2 w-2+1
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The Wagner Hierarchy — Summary

> A quasi well-ordering of transfinite height w*

» Every ordinal @ < w* has a unique Cantor normal form o =
W™ po+w pp 4+ W - pg, where ng >mnq > - > ny

NP ™ ™o height
O/C<(j\./<o/0 O/<<:>o O/((O/o S

degree degree degree degree degree degree degree
1 2 3 w w+1 w-2 w-2+1
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The Wagner Hierarchy — Summary

> A quasi well-ordering of transfinite height w*

» Every ordinal @ < w* has a unique Cantor normal form o =
w™ -pg+w™pr 4+ WP, where ng >nqg >0 > ng

» The degree a of a Muller automaton M in the Wagner hierar-
chy is the maximal “tree of cycles” 7T, in M

NP ™ ™o height
O/C<(j\./<o/0 O/<<:>o O/((O/o S

degree degree degree degree degree degree degree
1 2 3 w w+1 w-2 w-2+1
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The Boolean RNNs Hierarchy

» We assume that our Boolean RNNs are provided with an addi-
tional specification of every of their attractors into a meaningful
or a spurious mode

height
ww

AL AL LN
o/<;'><o/° o

degree degree degree degree degree degree  degree
1 2 3 w w+1 w-2 w-2+4+1
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The Boolean RNNs Hierarchy

» We assume that our Boolean RNNs are provided with an addi-
tional specification of every of their attractors into a meaningful
or a spurious mode

» We can transpose the Wagner hierarchy from the Muller au-
tomata to the Boolean RNNs context.

height

AL AL LN
o/<;'><o/° o

degree degree degree degree degree degree  degree
1 2 3 w w+1 w-2 w-2+4+1
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Intro

The Boolean RNNs Hierarchy

» We assume that our Boolean RNNs are provided with an addi-
tional specification of every of their attractors into a meaningful
or a spurious mode

» We can transpose the Wagner hierarchy from the Muller au-
tomata to the Boolean RNNs context.

» One obtains a transfinite classification of Boolean RNNSs ac-
cording to the topological complexity of their attractors

A AR AR NS
o”o<:><o/° " P S

degree degree degree degree degree degree  degree
1 2 3 w w+1 w-2 w-2+4+1

height

w¥
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Introduction

» Siegelmann and Sontag studied the computational power or
RNNs whose activation function is given by a simple sigmoid
function and whose synaptic weights are allowed to range over
rational numbers.
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Introduction

» Siegelmann and Sontag studied the computational power or
RNNs whose activation function is given by a simple sigmoid
function and whose synaptic weights are allowed to range over
rational numbers.

» The so-called rational-weighted RNNs are shown to be Turing
equivalent.
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Dynamics of rational-weighted RNNs

A rational-weighted RNN (RNN[Q]) is a RNN whose synaptic
weights are allowed to range over rational numbers and whose
activation function is given by a linear sigmoid function.

51

a2
neuron aiN
@;
bin —
bint / \
¢
N M
ri(t+1)=o0 (Zaij ca () + Y big - us(t) + Cz‘) » @ij, bij,ci € Q
=1 i=1
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Formal RNNs

We define a formal RNN which can compute partial functions of
the form ¢ : {0,1}" — {0,1}*.

( 1

input cell output cell

! M
01101000--- ——> L(t+1):a( a,v]«z](t)+zbi]«u](t)+c7) —> 0---00110000---

i = T(u)

11111110-----»@ foriel,... N @__>0-~-01111110-~-

validation cell validation cellj

& J
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Rational-weighted RNNs are actually Turing equivalent.

Theorem (Siegelmann & Sontag 95)

» Let ¢ : {0,1}" — {0,1}" be a partial function. Then ¢ is
Turing computable (i.e. partial recursive) iff ¢ can be computed
by some RNN[Q].
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Results

Rational-weighted RNNs are actually Turing equivalent.

Theorem (Siegelmann & Sontag 95)

» Let ¢ : {0,1}" — {0,1}" be a partial function. Then ¢ is
Turing computable (i.e. partial recursive) iff ¢ can be computed
by some RNN[Q].

» Moreover, for any p-stack machine M (p > 2) computing ¢,
there exists a RNN[Q] N which simulates M in real time.
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Proof — First Implication

Let ¢ : {0,1}" — {0,1}* be some partial function computable by
some RNN[Q] V.
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Proof — First Implication

Let ¢ : {0,1}" — {0,1}™ be some partial function computable by
some RNN[Q] V.
» The networks dynamics F : Q¥ — Q¥ given by the equations
M

mi(t—k ]_) =0 (Zaij -;r,'j(t) + Zbij . uj(t) +Ci)

Jj=1

is clearly recursive.
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Proof — First Implication

Let ¢ : {0,1}" — {0,1}™ be some partial function computable by
some RNN[Q] V.
» The networks dynamics F : Q¥ — Q¥ given by the equations
M

mi(t—k ]_) =0 (Zaij -;r,'j(t) + Zbij . Uj(t) +Ci)

Jj=1
is clearly recursive.

Therefore, ¢ is obviously Turing-computable.
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Proof — Second Implication

Let ¢ : {0,1}" — {0,1}" be some Turing-computable partial
function.
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Proof — Second Implication

Let ¢ : {0,1}" — {0,1}" be some Turing-computable partial
function.

> Then ¢ is computable by some p-stack machine M.
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Proof — Second Implication

Let ¢ : {0,1}" — {0,1}" be some Turing-computable partial
function.

> Then ¢ is computable by some p-stack machine M.

» We simulate the behaviour of M by some RNN[Q] A
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Proof — Second Implication

Let ¢ : {0,1}" — {0,1}" be some Turing-computable partial
function.

> Then ¢ is computable by some p-stack machine M.

» We simulate the behaviour of M by some RNN[Q] A

» Towards this purpose, we first show how to perform the stack
operations with sigmoid rational-weighted neurons.
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Proof — Second Implication

» We encode every stack content w = w; ---w, as the rational
()41
number g, = Y iy 2w+l wffi)+
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Proof — Second Implication

» We encode every stack content w = w; ---w, as the rational
()41
number g, = Y iy 2w+l wffi)+

» For instance, w = 0110 is encoded into ¢, = %l—i— 3434 L
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Proof — Second Implication

» We encode every stack content w = w; ---w, as the rational

number g, = Y iy %

» For instance, w = 0110 is encoded into ¢, = %Jr % + % ﬁ

» Reading the top of the stack: top(q) = o(4q — 2)
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Proof — Second Implication

» We encode every stack content w = w; ---w, as the rational

number g, = Y iy %

» For instance, w = 0110 is encoded into ¢, = %Jr % + % %

» Reading the top of the stack: top(q) = o(4q — 2)
» Pushing 0 into the stack: pushy(q) = o iq + i)
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Proof — Second Implication

» We encode every stack content w = w; ---w, as the rational
number g, = Y i, %
» For instance, w = 0110 is encoded into q,, = %Jr 6t 44 %
» Reading the top of the stack: top(q) = o(4q — 2)
» Pushing 0 into the stack: pusho(q) = o(3q+ 1)
>

Pushing 1 into the stack: pushi(q) = o(1q+ 2)
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Proof — Second Implication

» We encode every stack content w = w; ---w, as the rational
2.w(8)+1
number g, = Y iy 71”5;”

» For instance, w = 0110 is encoded into ¢, = Ly % + % + L

4 256
» Reading the top of the stack: top(q) = o(4q — 2)
» Pushing 0 into the stack: pusho(q) = o(3q+ 1)
» Pushing 1 into the stack: pushi(q) = o(3q+ 3)

» Popping the stack: pop(q) = o(4q — (2top(q) + 1))
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Proof — Second Implication

» We encode every stack content w = w; ---w, as the rational
2.w(8)+1
number g, = Y iy wffi)Jr

» For instance, w = 0110 is encoded into ¢, = %Jr % + % + %

» Reading the top of the stack: top(q) = o(4q — 2)

» Pushing 0 into the stack: pusho(q) = o(3q+ 1)
» Pushing 1 into the stack: pushi(q) = o(3q+ 3)

» Popping the stack: pop(q) = o(4q — (2top(q) + 1))
» Emptiness of the stack: empty(q) = o(4q)
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Proof — Second Implication

The g-stack machine M is then simulated by the network below,
showing that ¢ is RNN[Q]-computable.

stack s1

encoding top  empty

transition 4> output

input —»
states of M function

: of M
validation 79 @% validation

stack s,

encoding top  empty

00 .0
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Introduction

» Siegelmann and Sontag assumed that the variables appearing
in the underlying chemical and physical phenomena could be
modelled by continuous rather than discrete (rational) numbers.
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Introduction

» Siegelmann and Sontag assumed that the variables appearing
in the underlying chemical and physical phenomena could be
modelled by continuous rather than discrete (rational) numbers.

» They proposed an approach to the computational power of re-
current neural networks from the perspective of analog compu-
tation.
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Turing machine with advice

» A Turing machine with advice (TM/A) is a Turing machine
provided with an additional advice tape and advice function
a:N— {0,1}*.

input u

Tape [1JofiJoJos ] TTTTTTTTTI-

Finite
Program
state g 2dv

Advice
[oT1T+fo1Jofo+[+A ol T T T T ]--
Tape

~
advice a(|u|)
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Turing machine with advice

» A Turing machine with advice (TM/A) is a Turing machine
provided with an additional advice tape and advice function
a:N— {0,1}*.

» P/poly is the class of languages recognized in polynomial time
by Turing machines with polynomial advices (TM/poly(A)).

input u

Tape [1JofiJoJo[« ] TTTTTTTTT]-

Finite
Program
state q adv

Advice
[of1T+fo1Jofo4[+A ol T T T T ]---
Tape

~
advice a(|u|)
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Evolving RNNs Stochastic RNNs

Dynamics of real-weighted RNNs

A real-weighted or analog RNN (RNN[R]) is a RNN whose
synaptic weights are allowed to range over real numbers.

N

zi(t+1) =0 (Z%’ cxi(t) + Y by

j=1
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In this case, the computational power of RNNs is drastically
increased.

Theorem (Siegelmann & Sontag 94)
RNN[R]s are super-Turing:

» They can decide any possible language in exponential time.

» They compute exactly the class P/poly in polynomial time.
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Proof — First Implication

Let L € P/poly.

» By some alternative characterization of P/poly, there exists a
polynomial size circuits family C = {C,, : n > 0} such that
each circuit C,, decides the language L N {0,1}".
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Proof — First Implication

Let L € P/poly.

» By some alternative characterization of P/poly, there exists a
polynomial size circuits family C = {C,, : n > 0} such that
each circuit C), decides the language L N {0,1}".

> We provide a suitable encoding of the circuit family C into some
real number 7(C): first C is represented by some infinite word
we € {0,2,4,6,8}, and then r(C) = >_2, wg—fl)
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Proof — First Implication

» Then, one can build some RNN[R] N which contains the real
r(C) as a synaptic weight, and which, given some input u of
length n, is able to retrieve the circuit C,, of the family C,
simulate it, and output its result in polynomial time.

( N\

O )
input u _*Smr(‘, u in memory _> output Cr (u)

validation __>@ﬁé;1pute theilength n of u /@/D—-> validation

From the synaptic real weight T(C)7/

decode and simulate the circuit C,
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Proof — First Implication

» Then, one can build some RNN[R] N which contains the real
r(C) as a synaptic weight, and which, given some input u of
length n, is able to retrieve the circuit C,, of the family C,
simulate it, and output its result in polynomial time.

( N\

O
input v _*Smr(‘, u in memory _> output Cn(u)

validation __>@ﬁé;1pute theilength n of u /GUD—-> validation

From the synaptic real weight T<C>7/

decode and simulate the circuit C,

- J

Since the circuits family C decides L, so does N in polynomial
time, i.e. L(N) = L.
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Proof — Second Implication

Let L be decidable in polynomial time p by some RNN[R] A/
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Proof — Second Implication

Let L be decidable in polynomial time p by some RNN[R] A/

> Then, by some technical lemma, there exists a so-called p-
truncated family of Ev-RNN[Q]s {N,) : n > 0} such that
each network N,y computes exactly Ilke N up to time p(n).

RNN[R]

ai (1), bi (1), ci(t)

@ real weights

activation values computed
with infinite precision

=

RNN[Q] Ny(n)

real weights of A
truncated after K - p(n) bits
i3 (0, biy (1), (1)
activation values computed

up to K - p(n) precision bits

Zi(t), ga(t), Gu(t)

Q
@)
«
(@)
(1)

06

=
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Proof — Second Implication

» We build a TM/poly(A) M with the advice a(n) = "N,
for each n > 0, and which, on every input u of length n:

| input: u of length n

| advice: Encoding(Npy(n))

TM/poly(A) M
program that simulates
network Ny on u

Jérémie Cabessa
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Proof — Second Implication

» We build a TM/poly(A) M with the advice a(n) = "N,
for each n > 0, and which, on every input u of length n:
1. calls the polynomial-bounded advice value ’_/\fp(n)1
2. simulates the behaviour of Np(n) on u in polynomial time

| input: u of length n

| advice: Encoding(Npy(n))

TM/poly(A) M
program that simulates
network Ny on u
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Intro B

Proof — Second Implication

» We build a TM/poly(A) M with the advice a(n) = "N,
for each n > 0, and which, on every input u of length n:
1. calls the polynomial-bounded advice value ’_/\/p(n)1
2. simulates the behaviour of Np(n) on u in polynomial time

|input: u of length n

| advice: ErLcuding(Np(") )

TM/poly(A) M
program that simulates
network N, yonu

The machine M answers precisely like the RNN[R] N/, hence
decides L in polynomial time. Therefore L € P/poly.
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Result — Summary

Computational power of recurrent neural networks in polynomial
time of computation.

Recurrent Neural Networks
P
R P/poly

(]
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Analog RNNs over infinite words

We now extend the study of the computational power of analog
recurrent neural networks to the context of infinite word reading
machines.
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Topology over the Cantor Space

Let C = {0, 1}* be the Cantor space.
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Topology over the Cantor Space

Let C = {0, 1}* be the Cantor space.

» The basic open sets of C are of the form p-{0,1}*, for some
pe{0,1}T.
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Topology over the Cantor Space

Let C = {0, 1} be the Cantor space.

» The basic open sets of C are of the form p - {0,1}*, for some
pe{0,1}T.

> The class A% of Borel sets of C consists of the o-algebra gen-
erated by the open sets.
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Topology over the Cantor Space

Let C = {0, 1} be the Cantor space.

» The basic open sets of C are of the form p - {0,1}*, for some
pe{0,1}T.

> The class A% of Borel sets of C consists of the o-algebra gen-
erated by the open sets.

» The levels of the Borel hierarchy are defined by induction on
a < wi as follows:
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Topology over the Cantor Space

Let C = {0, 1} be the Cantor space.

» The basic open sets of C are of the form p - {0,1}*, for some
pe{0,1}T.

> The class A% of Borel sets of C consists of the o-algebra gen-
erated by the open sets.

» The levels of the Borel hierarchy are defined by induction on
a < wi as follows:

» X9 ={ACC: Alis open}
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Topology over the Cantor Space

Let C = {0, 1} be the Cantor space.

» The basic open sets of C are of the form p - {0,1}*, for some
pe{0,1}T.

> The class A% of Borel sets of C consists of the o-algebra gen-
erated by the open sets.

» The levels of the Borel hierarchy are defined by induction on
a < wi as follows:

» X9 ={ACC: Alis open}
> an:{UnENAnAnEH% fOI’/@<a}
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Topology over the Cantor Space

Let C = {0, 1} be the Cantor space.

» The basic open sets of C are of the form p - {0,1}*, for some
pe{0,1}T.

> The class A% of Borel sets of C consists of the o-algebra gen-
erated by the open sets.

» The levels of the Borel hierarchy are defined by induction on
a < wi as follows:
» X9 ={ACC: Alis open}

> an:{UnENAnAnEH% fOI’/@ < a}

» T10 = {A: A e 20}
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Topology over the Cantor Space

Let C = {0, 1} be the Cantor space.

» The basic open sets of C are of the form p - {0,1}*, for some
pe{0,1}T.

> The class A% of Borel sets of C consists of the o-algebra gen-
erated by the open sets.

» The levels of the Borel hierarchy are defined by induction on
a < wi as follows:

» X9 ={ACC: Alis open}

> an:{UneNAnAnEH% fOI’/@<a}
> HgZ{A:AEEEg}
> A = {A:AeX0 NI}
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Topology over the Cantor Space

Let C x C be equipped with the product topology of C.
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Topology over the Cantor Space

Let C x C be equipped with the product topology of C.

» Aset X C C is analytic (1) iff it is the projection of some
Hg—set, or more generally, of some Borel set Y CC x C, i.e.

X=mY)={xeC:(z,y) €Y for some y € C}

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa



Intro Boolean RNNs Rational RNNs Real RNNs Evolving RNNs Stochastic RNNs Conclusion

[e] 000000 00000000 000000000 000000000000 OO0OO0OOO0OO0OOOO0O0O0 000
0000000000 0O0@0000000000000

Topology over the Cantor Space

Let C x C be equipped with the product topology of C.

» Aset X C C is analytic (1) iff it is the projection of some
Hg—set, or more generally, of some Borel set Y CC x C, i.e.

X=mY)={xeC:(z,y) €Y for some y € C}

» A set X C C is effectively analytic (X1) iff it is recognized by
some non-deterministic Blichi Turing machine.
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Topology over the Cantor Space

Let C x C be equipped with the product topology of C.

» Aset X C C is analytic (1) iff it is the projection of some
Hg—set, or more generally, of some Borel set Y CC x C, i.e.

X=mY)={xeC:(z,y) €Y for some y € C}

» A set X C C is effectively analytic (X1) iff it is recognized by
some non-deterministic Blichi Turing machine.

» The class of analytic sets strictly contains that of Borel sets and
that of effectively analytic sets, i.e. £1 2 Aj and 1 2 ¥1.
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Deterministic Analog RNN on Infinite Words

A deterministic real-weighted (or analog) RNN over infinite words
(w-Det-RNNJ[R]) is a real-weighted RNN equipped with one binary
input cell u and one binary output cell .

N M
zi(t+1) = () + Y biui(t) + ¢
10110-- i ( ) U(Z”‘]"’]() Z jui(t) <> 00101---

i=1 j=1

i=1,...,N and a;;, bjj,c;; € R
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Deterministic Analog RNN on Infinite Words

A deterministic real-weighted (or analog) RNN over infinite words
(w-Det-RNNJ[R]) is a real-weighted RNN equipped with one binary
input cell u and one binary output cell .

N M
zi(t+1)= i () + ) bijui(t) + ¢
10110-- zi( ) U(Za]‘lﬁ() Z i (t) (> 00101---

i=1 j=1

i=1,...,N and a;;, bjj,c;; € R

» Any w-Det-RNN[R] can naturally be identified with some func-
tion far: {0,1}* — {0, 1}*.
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Deterministic Analog RNN on Infinite Words

A deterministic real-weighted (or analog) RNN over infinite words
(w-Det-RNNJ[R]) is a real-weighted RNN equipped with one binary
input cell u and one binary output cell .

N M
zi(t+1)= i () + ) bijui(t) + ¢
10110-- zi( ) U(Za]‘lﬁ(> Z i (t) (> 00101---

i=1 j=1

i=1,...,N and a;;, bjj,c;; € R

» Any w-Det-RNN[R] can naturally be identified with some func-
tion far: {0,1}* — {0, 1}*.

» By its sequential nature, fa is Lipschitz, thus continuous.
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Deterministic Analog RNN on Infinite Words

» An infinite word w € {0,1}* is accepted by N if it induces
infinitely many output responses (i.e. 1's) to the output cell y
(Biichi-like accepting condition).

N M
zi(t+1)=0 aijei(t) + biju(t) + ¢
10110--- @+D (;’7() ;“() ) 00101
i=1,...,N and a;,byj,c;; €R
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Deterministic Analog RNN on Infinite Words

» An infinite word w € {0,1}* is accepted by N if it induces
infinitely many output responses (i.e. 1's) to the output cell y
(Biichi-like accepting condition).

» The neural language L(N') recognized by N consists of the set
of infinite words accepted by N

N M
zi(t+1)= aijei(t) + bijui(t) + ¢
10110--- @ @+D ”(; 52 (t) ; 15(0) ‘) 00101

i=1,....,N and a;;, by, c;; € R
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Deterministic Analog RNN on Infinite Words

» An infinite word w € {0,1}* is accepted by N if it induces
infinitely many output responses (i.e. 1's) to the output cell y
(Biichi-like accepting condition).

» The neural language L(N') recognized by N consists of the set
of infinite words accepted by N

» Remark: Let 1., = {w € {0,1}* : w contains co-many 1's}.
One has by definition that L(N) = fi' (1so).

N M
zi(t+1) = ajx(t) + bijuj(t) + ¢
10110 @ 1) ”(; a7i(1) ; a1i(1) ‘) 00101

i=1,....,N and a;;, by, c;; € R
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Result

Deterministic analog RNNs on infinite words recognize precisely
the TI9-sets.

Theorem (Cabessa & Villa 12)

Let L C {0,1}*. The following conditions are equivalent:
» L is recognizable by some w-Det-RNN[R]
» L eIl
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Proof — First Implication

Let L C {0, 1}* be recognizable by some w-Det-RNN[R] A/. One
has:

> L(N) = f,/:/'l(loo)

» far is continuous
> Too = N0 Umzo{0, 1}"771{0, 1} € TI9
It follows that L(N) € II9.
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Proof — Second Implication

Let L € I19.
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Proof — Second Implication

Let L € TI9. Then L is of the form L = Niso Ujsopij - 0,11,
where each p; ; € {0,1}7.
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Proof — Second Implication

Let L € TI9. Then L is of the form L = Ni>oUjopij - {01},
where each p; ; € {0,1}.
» We provide a suitable encoding of the infinite sequence (p; ;)i ;>0
into some real number r(L).
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Proof — Second Implication

Let L € TI9. Then L is of the form L = Ni>oUjopij - {01},
where each p; ; € {0,1}.
» We provide a suitable encoding of the infinite sequence (p; ;)i ;>0
into some real number r(L).
> (technical lemma) There exists a RNN[R] NV,.(), which contains
the real (L) as a synaptic weight, and which, given some
encoding of (i,j) as input, is able to output some suitable
encoding of p; ;.
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Proof — Second Implication

» We build an w-Det-RNN[R] A which contains N,z as a sub-
network and which performs the following algorithm:

Algorithm 1

1: Input s is provided bit by bit at successive time steps
2: 10,70
3: loop

4: Submit input (4, ) to N1,y and get p; j as output

5: Wait until |s| > |p; ;|

6:  if p;; C s then # s € U;j>0pi 10,1}

7 return landdo i<+ ¢+ 1, j <+ 0 # testif s € piq1,;{0,1}¥
8: else #s¢& Uk<j pi, k{0, 1}

9: return O and do i ¢, j < j+1 # testif s € p; j11{0,1}¥
10: end if

11: end loop

In this way, N outputs infinitely many 1's iff s € L, i.e L(N) = L.
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Non-Deterministic Analog RNN on Infinite Words

A non-deterministic real-weighted (or analog) RNN over infinite
words (w-NDet-RNN[R]) is a real-weighted RNN equipped with
two binary input cells u and u/ and one binary output cell y.

00101---

POLE0 @ z(t+1) =0 (Zai]zj(tHZbi]uj(z)H’)

i=1 j=1
1100 @i:l,A..,Nandai],bi],chE]R
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Non-Deterministic Analog RNN on Infinite Words

A non-deterministic real-weighted (or analog) RNN over infinite
words (w-NDet-RNN[R]) is a real-weighted RNN equipped with
two binary input cells u and u/ and one binary output cell y.

POLE0 @ z(t+1) =0 (Zaijzj(t)+2bi]uj(t)+07>

i=1 j=1
1100 @i:l,A..,Nandai],bi],c”E]R

00101---

» Any w-NDet-RNN[R] can naturally be identified with some
function far: {0,1}¥ x {0,1}* — {0,1}“.
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Non-Deterministic Analog RNN on Infinite Words

A non-deterministic real-weighted (or analog) RNN over infinite
words (w-NDet-RNN[R]) is a real-weighted RNN equipped with
two binary input cells u and u/ and one binary output cell y.

00101---

LOL10-- @ zi(t+1)=0 (Zaijzj(t) +Zbi]uj(t) +c7>

i=1 j=1
1100 @i:l,A..,Nanda”,b”,c”E]R

» Any w-NDet-RNN[R] can naturally be identified with some
function far: {0,1}¥ x {0,1}* — {0,1}“.

» By its sequential nature, fu is Lipschitz, thus continuous.
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Non-Deterministic Analog RNN on Infinite Words

» An infinite word w € {0,1}* is accepted by N if there exists
a guess stream w’ such that w and w’ induces infinitely many
output responses to the output cell y (Biichi-like condition).

00101---

N M
1orto o ri(t+1) =0 (Z aiga; (0 + Y bijuy(t) +n,>

=1 =1

T1O0T- 771 ...... N and ai;, by cij € R
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Non-Deterministic Analog RNN on Infinite Words

» An infinite word w € {0,1}* is accepted by N if there exists
a guess stream w’ such that w and w’ induces infinitely many
output responses to the output cell y (Biichi-like condition).

» The neural language L(N') recognized by N consists of the set
of infinite words accepted by N

N M
10110 o w(t+1) =0 (Zm]n;](/,) + > biju () +n,>

=1 =1

TLOO0 T 771 ...... N and a;;,bij,ci; € R

00101---
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Non-Deterministic Analog RNN on Infinite Words

» An infinite word w € {0,1}* is accepted by N if there exists
a guess stream w’ such that w and w’ induces infinitely many
output responses to the output cell y (Biichi-like condition).

» The neural language L(N') recognized by N consists of the set
of infinite words accepted by N

» Remark: L(N) = {w € {0,1}¥ : ' € {0,1}*¥ (w,w’) €
Iv (1)} = m(fy (1)),

N

10110+ | ‘”)
ci(t+1) = i (1) + i t) +c;
mit+1) =0 | w0+ bijui(0) + 00101...

=1 =1

TLOO0T @771 ...... N and a;;,bij,ci; € R
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Non-deterministic analog RNNs on infinite words recognize
precisely the X1-sets.

Theorem (Cabessa & Villa 12)

Let L C {0,1}*. The following conditions are equivalent:
» L is recognizable by some w-NDet-RNN[R]
» Lex}
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Proof — First Implication

Let L C {0,1}* be recognizable by some w-NDet-RNN[R] A/. One
has:

> LIN) = m(fyr' (1))
» far is continuous
> 1o € 119

It follows that L(N) € 1.
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Proof — Second Implication

Let L € 1.
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Proof — Second Implication

Let L € 1. Then L = m(X), for some IIy-set X of the form

X = m U(pz’,j {0,1}* x g; 5 -{0,1}*),

i>05>0

where each p; ; and ¢; ; € {0,1} .
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Proof — Second Implication

Let L € X1. Then L = m(X), for some IT3-set X of the form

X = m U(pz',j {0,1}* x g; 5 -{0,1}*),

i>05>0

where each p; ; and ¢; ; € {0,1} .

» We provide a suitable encoding of the infinite sequence of pairs
((pi,j»4,5))i,j>0 into some real number 7(X).
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Proof — Second Implication

Let L € X1. Then L = m(X), for some IT3-set X of the form

X = (VUi {01 % gi - {0.1}),

i>05>0
where each p; ; and ¢; j € {0,1}.
» We provide a suitable encoding of the infinite sequence of pairs

((pi,j»4,5))i,j>0 into some real number 7(X).

> (technical lemma) There exists a RNN[R] N, (x), which con-
tains the real 7(X) as a synaptic weight, and which, given some
encoding of (7, ) as input, is able to output some suitable en-

coding of (pi;, i ;)
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Proof — Second Implication

> We build an w-NDet-RNN[R] N which contains N,z as a
sub-network and which performs the following algorithm:

Algorithm 2

1: Input s is provided bit by bit at successive time steps

2: Guess g is provided bit by bit at successive time steps
3: 140,70

4: loop

5: Submit input (4,7) to N,.(x) and get (p;i j,qi,;) as output
6: Wait until |s| > p; j,qi,;

7 if p;,; € sand g;; C g then

8: return l anddo i<+ i+ 1, 5+ 0

9: else

10: return 0 anddo i <— ¢, j < j+1

11: end if

12: end loop

N outputs co-many 1's iff (s,g9) € X, i.e L(N) = m(X) = L.
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Results — Summary

Deterministic case Non-deterministic case

21 Biichi Turing Machines
1 B Analog w-RNN
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Introduction

» We study the computational capabilities of recurrent neural net-
works whose synaptic weights might evolve over time.
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Introduction

» We study the computational capabilities of recurrent neural net-
works whose synaptic weights might evolve over time.

» These considerations are related to the biological concept of
plasticity — in particular synaptic plasticity — which is crucially
involved in the processing of information in the brain.
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Introduction

» We study the computational capabilities of recurrent neural net-
works whose synaptic weights might evolve over time.

» These considerations are related to the biological concept of
plasticity — in particular synaptic plasticity — which is crucially
involved in the processing of information in the brain.

» These considerations are also related to the key concept of
learning for artificial neural networks.
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Dynamics of Evolving RNNs

An evolving RNN (Ev-RNN) consists of a RNN whose synaptic
weights might evolve over time (between bounded values)

@1 (1) g1

neuron eoain(t)
x;

zi(t+1) =0 (Z ai(t) - x; () + Y big(t) - us(t) + Ci(t))
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Models of Evolving RNNs

We consider four models of evolving recurrent neural networks:

1. rational-weighted bi-valued evolving RNNs: Evo-RNN[Q]s

@i (t) g0 (t)

neuron - ain(t)

bir (1)

"

bin (1) \

alt)

N M
zi(t+1) =0 (Z aii(t) -z (t) + D bij(t) - uj(t) +Ci(t)>

j=1 j=1
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Models of Evolving RNNs

We consider four models of evolving recurrent neural networks:

1. rational-weighted bi-valued evolving RNNs: Evo-RNN[Q]s
2. rational-weighted (general) evolving RNNs: Ev-RNN[Q]s

@i (t) g0 (t)

. (1)
neuron ain (1)

Ti
bir(t)

"

bin (t) \

ci(t)

N M
zi(t+1) =0 (Z aij(t) i (t) + D bij(t) - uj(t) +Ci(t)>

j=1 j=1
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Models of Evolving RNNs

We consider four models of evolving recurrent neural networks:

1. rational-weighted bi-valued evolving RNNs: Evo-RNN[Q]s
2. rational-weighted (general) evolving RNNs: Ev-RNN[Q]s
3. real-weighted bi-valued evolving RNNs: Evo-RNN[R]s

""(/]ﬂlzm

. o (1)
neuron ain (1)

i
i (1)

_—

bin (t) \

ci(t)

N M
zi(t+1) =0 (Z aii(t) -z (t) + D bij(t) - uj(t) +Ci(t)>

j=1 j=1
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Models of Evolving RNNs

We consider four models of evolving recurrent neural networks:

1. rational-weighted bi-valued evolving RNNs: Evo-RNN[Q]s
2. rational-weighted (general) evolving RNNs: Ev-RNN[Q]s
3. real-weighted bi-valued evolving RNNs: Evo-RNN[R]s
4. real-weighted (general) evolving RNNs: Ev-RNN[R]s

aia(t) g (1)

. o (1)
neuron ain (1)

i
bir (1)

_—

bin (t) \

ci(t)

N M
zi(t+1) =0 (Z aij(t) () + D bij(t) - uj(t) +Ci(t)>

j=1 j=1
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Models of Evolving RNNs

We consider four models of evolving recurrent neural networks:

1. rational-weighted bi-valued evolving RNNs: Evo-RNN[Q]s
2. rational-weighted (general) evolving RNNs: Ev-RNN[Q]s
3. real-weighted bi-valued evolving RNNs: Evo-RNN[R]s
4. real-weighted (general) evolving RNNs: Ev-RNN[R]s

aia(t) g (1)

. o (1)
neuron ain (1)

i
bir (1)

_—

bin (t) \

ci(t)

N M
zi(t+1) =0 (Z aij(t) () + D bij(t) - uj(t) +Ci(t)>

j=1 j=1
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Models of Evolving RNNs

One has the following relations between those models
£(Fv-RNN[R]5)

£(Ev>-RNN[R]s)  L(Ev-RNN[Q]s)
£(Ev, RNN(Q)s)
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Theorem (Cabessa & Siegelmann 11, 14)

The four models of Evolving RNNSs are super-Turing equivalent:

» They can decide any possible language in exponential time.

» They compute exactly the class P/poly in polynomial time.

Bi-valued General

@Q super-Turing super-Turing
R super-Turing super-Turing
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Proof — General Idea
P/gzoly
U
Epoly(Ev RNN[]R] )
< \0
cpoly(EvQ-PiNN[R]s) Lpoly (EV-RNN[@]S)
oL G
Epoly(EV2 RNN[@] )
u|

P/poly
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Proof — The Lower Bound

Lemma

Let L C {0,1}*. If L € P/poly, then L is decidable in polynomial
time by some Evo-RNN[Q].

Loty (By-RNN[R]S)
9 o,
Loty (Ev2-RNN[R]s) L'poly(Ev—RNN[Q]s)
o<
ﬁpoly(EVz RNN[Q] )
Ul
P/]SOly
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Proof — The Lower Bound

Let L € P/poly.
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Proof — The Lower Bound

Let L € P/poly. Then there exists some TM/poly(A) M with
advice function « that decides L in polynomial time.
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Proof — The Lower Bound

Let L € P/poly. Then there exists some TM/poly(A) M with
advice function « that decides L in polynomial time.

» We build an Evo-RNN[Q] N as described below which decides
L in polynomial time.

a(l) 0 a(2) 0 a(3) 0 a(4) 0 a(5) 0---
1laMl g 1le@) g 1@l g 1le®] g 1leG)l ...

Store u in memory

' Compute the length n of u
input u —> i —> output M (u)
Wait for the word a(n) to occur

and store it in memory @_ | 5 validation

Simulate the behaviour of the TM/poly(A)%7

working on input u with advice a(n)

validation —|
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Proof — The Upper Bound

Let L C {0,1}*. If L is decidable in polynomial time by some
Ev-RNN[R], then L € P/poly.

P/pAolg/
ul
Epoly(E;v—RyN[R]s)
Loty (v RNNIR]S) Lyt (Ev-RNN[Qs)
Loty (Evo-RNN[Qs)
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Proof — The Upper Bound
Let L be decidable in polynomial time p by some Ev-RNN[R] N

> Then, by some technical lemma, there exists a so-called p-
truncated family of Ev-RNN[Q]s {N,) : n > 0} such that
each network N,y computes exactly Ilke N up to time p(n).

Ev-RNN[R] /¥

real weights

ai; (), bis (#), ei(t) @
Q

activation values computed
with infinite precision
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Proof — The Upper Bound

Let L be decidable in polynomial time p by some Ev-RNN([R]

> Then, by some technical lemma, there exists a so-called p-
truncated family of Ev-RNN[Q]s {N,) : n > 0} such that
each network N,y computes exactly Ilke N up to time p(n).

Ev-RNN[R] M

ai (1), bi (1), i(t)

@ real weights

activation values computed
with infinite precision

=

Ev-RNN[Q] N,(n)

real weights of A
truncated after K - p(n) bits
i3 (0, biy (), (1)
activation values computed

up to K - p(n) precision bits

Zi(t), ga(t), Gu(t)

Q
@)
«
(@)
()

06

=
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Proof — The Upper Bound

> We build a TM/poly(A) M with the advice a(n) = "N,
for each n > 0, and which, on every input u of length n:
1. calls the polynomial-bounded advice value ’_/\/p(n)1
2. simulates the behaviour of Np(n) on w in polynomial time

input: w of length n

I advice: Encoding(Np(n))

TM/poly(A) M
program that simulates
network N,y on u
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Proof — The Upper Bound

> We build a TM/poly(A) M with the advice a(n) = "N,
for each n > 0, and which, on every input u of length n:
1. calls the polynomial-bounded advice value ’_/\/p(n)1
2. simulates the behaviour of Np(n) on w in polynomial time

input: w of length n

I advice: Encoding(Np(n))

TM/poly(A) M
program that simulates
network N,y on u

The machine M answers precise like the Ev-RNN[R] N/, hence
decides L in polynomial time. Therefore L € P/poly.
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Results — Summary

Computational power of recurrent neural networks in polynomial
time of computation.

Static  Evolving (bi-valued) Evolving (general)
Q P P/poly P/poly
R P/poly P/poly P/poly
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Introduction

» We study the computational capabilities of recurrent neural net-
works provided with some discrete source of stochasticity.
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Introduction

» We study the computational capabilities of recurrent neural net-
works provided with some discrete source of stochasticity.

» The discrete stochasticity might add to the computational power
of the networks, but only up to the level P/poly.
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Probabilistic Turing Machines

» A probabilistic Turing machine (PTM) is a non-deterministic
Turing machine such that:
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Probabilistic Turing Machines

» A probabilistic Turing machine (PTM) is a non-deterministic
Turing machine such that:

» Every step of the computation can be made in exactly two pos-
sible ways chosen randomly with probability 1/2
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Probabilistic Turing Machines

» A probabilistic Turing machine (PTM) is a non-deterministic
Turing machine such that:
» Every step of the computation can be made in exactly two pos-
sible ways chosen randomly with probability 1/2
» Every computational path ends up in a final state
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Probabilistic Turing Machines

» A probabilistic Turing machine (PTM) is a non-deterministic
Turing machine such that:
» Every step of the computation can be made in exactly two pos-
sible ways chosen randomly with probability 1/2
» Every computational path ends up in a final state
» All computational paths are of the same length

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa
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Intro B

Probabilistic Turing Machines

» A probabilistic Turing machine (PTM) is a non-deterministic
Turing machine such that:

» Every step of the computation can be made in exactly two pos-
sible ways chosen randomly with probability 1/2
» Every computational path ends up in a final state
» All computational paths are of the same length
» A word w is accepted by a PTM if strictly more than half of the
computational paths on w end up in an ACCEPT state (i.e. if
the probability of acceptance is above 1/2).
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Probabilistic Turing Machines

» A probabilistic Turing machine (PTM) is a non-deterministic
Turing machine such that:

» Every step of the computation can be made in exactly two pos-
sible ways chosen randomly with probability 1/2
» Every computational path ends up in a final state
» All computational paths are of the same length
» A word w is accepted by a PTM if strictly more than half of the
computational paths on w end up in an ACCEPT state (i.e. if
the probability of acceptance is above 1/2).

» The error probability of a PTM M is the function

# wrong answers for x

EM T > - .
M # total computations

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa



Intro Boolean RNNs Rational RNNs Real RNNs Evolving RNNs Stochastic RNNs Conclusion

[e] 000000 00000000 000000000 000000000000 00000000000 0000000 OO0
0000000000 0000000000000 000

Probabilistic Turing Machines

» BPP is the class of languages recognized by polynomial time
PTMs whose error probabilities are bounded above by some
constant € < 1/2.
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Probabilistic Turing Machines

» BPP is the class of languages recognized by polynomial time
PTMs whose error probabilities are bounded above by some
constant ¢ < 1/2.

» BPP/log* is the class of languages recognized by such PTMs
which further use logarithmic monotone advice functions.
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Probabilistic Turing Machines

» BPP is the class of languages recognized by polynomial time
PTMs whose error probabilities are bounded above by some
constant ¢ < 1/2.

» BPP/log* is the class of languages recognized by such PTMs
which further use logarithmic monotone advice functions.

» Remark: P C BPP/log" C BPP/log, whereas P/polyx =
P/poly.
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Dynamics of Stochastic RNNs

An stochastic RNN (S-RNN) consists of a RNN including a set of
binary input neurons x;'s taking activation values 1 with
probabilities p;'s

azl a12
neuron

N M
zi(t+1) =0 Zaij-afj —1—2%] z(t szj'Uj(t)+Ci
j=1 j=1
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Dynamics of Stochastic RNNs

Let L € {0,1}* and 0 < e < 1/2. The language L is e-recognized
in time T' by some S-RNN N/ if for every input w of length n

» all computation paths of A classify w in time T'(n)

> en(w) <e<1/2
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Models of Stochastic RNNs

We consider the following models of stochastic (or probabilistic)
recurrent neural networks:

1. rational-weighted Q-stochastic RNNs: Sg-RNN[Q]s
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Models of Stochastic RNNs

We consider the following models of stochastic (or probabilistic)
recurrent neural networks:

1. rational-weighted Q-stochastic RNNs: Sg-RNN[Q]s
2. rational-weighted R-stochastic RNNs: Sg-RNN[Q]s
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Models of Stochastic RNNs

We consider the following models of stochastic (or probabilistic)
recurrent neural networks:

1. rational-weighted Q-stochastic RNNs: Sg-RNN[Q]s
2. rational-weighted R-stochastic RNNs: Sg-RNN[Q]s
3. real-weighted stochastic RNNs: S-RNN[R]s
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Models of Stochastic RNNs

We consider the following models of stochastic (or probabilistic)
recurrent neural networks:

1. rational-weighted Q-stochastic RNNs: Sg-RNN[Q]s

2. rational-weighted R-stochastic RNNs: Sg-RNN[Q]s

3. real-weighted stochastic RNNs: S-RNN[R]s

4. Rational-weighted stochastic evolving RNNs: S-Ev-RNN[Q]s
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Models of Stochastic RNNs

We consider the following models of stochastic (or probabilistic)
recurrent neural networks:

1. rational-weighted Q-stochastic RNNs: Sg-RNN[Q]s
rational-weighted R-stochastic RNNs: Sg-RNN[Q]s
real-weighted stochastic RNNs: S-RNN[R]s
Rational-weighted stochastic evolving RNNs: S-Ev-RNN[Q]s
Real-weighted stochastic evolving RNNs: S-Ev-RNN[R]s

oW

@il ago
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We first consider rational-weighted stochastic networks whose
probabilities are also rational.

Theorem (Siegelmann 99)

Let L C {0,1}* be some language. Then L is e-recognizable in
polynomial time by some Sgo-RNN[Q] iff L € BPP.
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Proof — First Implication

Let L C {0,1}* be e-recognizable in polynomial time by some
So-RNN[Q] V.
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Proof — First Implication

Let L C {0,1}* be e-recognizable in polynomial time by some
So-RNN[Q] V.
» The networks dynamics F : QY — Q¥ given by

M

N K
xi(t + 1) =0 Zaij . xj(t) + Za;j . x;(t) —+ Z bij . u]'(t) +c;
j=1 j=1 j=1

with rational underlying probabilities can easily be simulated by
some PTM with rational probabilities, and hence also by some
fair PTM, up to some polynomial time increase.
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Proof — First Implication

Let L C {0,1}* be e-recognizable in polynomial time by some
So-RNN[Q] V.
» The networks dynamics F : QY — Q¥ given by

M

N K
xi(t + 1) =0 Zaij . xj(t) + Za;j . x;(t) —+ Z bij . ’I.Lj(t) +c;
j=1 j=1 j=1

with rational underlying probabilities can easily be simulated by
some PTM with rational probabilities, and hence also by some
fair PTM, up to some polynomial time increase.

Therefore, L € BPP.
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Proof — Second Implication

Let L € BPP.
> Then there exists a PTM M that e-recognizes L.

» By the real time equivalence between TMs and RNN[Q]s (The-
orem 2), one can build a Sp-RNN[Q] N that simulates M.
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Proof — Second Implication

Let L € BPP.
> Then there exists a PTM M that e-recognizes L.

» By the real time equivalence between TMs and RNN[Q]s (The-
orem 2), one can build a Sp-RNN[Q] N that simulates M.

Therefore, L is e-recognizable in polynomial time by some

So-RNN[Q] V.
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We now consider rational-weighted stochastic networks whose
probabilities are real.

Theorem (Siegelmann 99)

Let L C {0,1}* be some language. Then L is e-recognizable in
polynomial time by some Sg-RNN[Q] iff L € BPP/log*.
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Proof — First Implication

Let L C {0,1}* be e-recognizable in polynomial time by some
Sr-RNN[Q] V.
» The networks dynamics F : QY — Q¥ given by

M

N K
zi(t+1) =0 | > aiy-z;(t)+ > aj; - ai(t)+ D bij-u(t) +c
j=1 Jj=1 Jj=1

with real underlying probabilities can easily be simulated by
some PTM with real probabilities M.
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Proof — First Implication

> Now, if M is a PTM with real probability p computing in time
T, we consider the fair PTM/log(A)* M’ with advice function

n = [Pliog(T(n))

and which simulates every binary choice of M as follows:

1 toss of the PTM M log(T'(n)) tosses of the fair PTM/log(A)* M’
where p € R
17
<
=, < advice = state s
%/7 PR !
S1 e <1
, 2
s < simulated by s <
So <1 > advice = state s
PN

17
<i
2

log(T(n)) tosses
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Proof — First Implication

> Now, if M is a PTM with real probability p computing in time
T, we consider the fair PTM/log(A)* M’ with advice function

n = [Pliog(T(n))

and which simulates every binary choice of M as follows:

1 toss of the PTM M log(T'(n)) tosses of the fair PTM/log(A)* M’
where p € R
L7
<2
%/7 %\ < advice = state s
s1 1
" %/ ™
s < simulated by s <
So <1 > advice = state s
AN

1.7
<3

1

2
log(T'(n)) tosses

M/’ e-recognizes L in time O(T'log(T)), and thus L € BPP/log*.

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa



Intro Boolean RNNs Rational RNNs Real RNNs Evolving RNNs Stochastic RNNs Conclusion

[e] 000000 00000000 000000000 000000000000 000000000000 eO000000 00O
0000000000 0000000000000 000

Proof — Second Implication

Let L € {0,1}* be e-recognizable in polynomial time T by some
fair PTM/log(A)* M.

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa



Intro Boolean RNNs Rational RNNs Real RNNs Evolving RNNs Stochastic RNNs Conclusion

[e] 000000 00000000 000000000 000000000000 000000000000 eO000000 00O
0000000000 0000000000000 000

Proof — Second Implication

Let L € {0,1}* be e-recognizable in polynomial time T by some
fair PTM/log(A)* M.
» We consider the PTM M’ with real probability given by the

binary expansion p = 0.0ladvice - - - and which works on every
input of length n as follows:
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Proof — Second Implication

Let L € {0,1}* be e-recognizable in polynomial time T by some
fair PTM/log(A)* M.
» We consider the PTM M’ with real probability given by the

binary expansion p = 0.0ladvice - - - and which works on every
input of length n as follows:

» Advice reconstruction: M’ tosses its fair coin ¢T?(n) times,
writes the resulting binary sequence on a tape, and uses it as
M would have done with its advice string
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Proof — Second Implication

Let L € {0,1}* be e-recognizable in polynomial time T by some
fair PTM/log(A)* M.

» We consider the PTM M’ with real probability given by the
binary expansion p = 0.0ladvice - - - and which works on every
input of length n as follows:

» Advice reconstruction: M’ tosses its fair coin ¢T?(n) times,
writes the resulting binary sequence on a tape, and uses it as
M would have done with its advice string

» Fair toss simulation: M’ simulates every fair toss of M by at
most 27'(n) p-tosses following a specific algorithm

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa



n RNNs Rational RNNs

Intro Boo
o] [e]e]e 00000 000000000000 e000000 000
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Proof — Second Implication

Let L € {0,1}* be e-recognizable in polynomial time T by some
fair PTM/log(A)* M.

» We consider the PTM M’ with real probability given by the
binary expansion p = 0.0ladvice - - - and which works on every
input of length n as follows:

» Advice reconstruction: M’ tosses its fair coin ¢T?(n) times,
writes the resulting binary sequence on a tape, and uses it as
M would have done with its advice string

» Fair toss simulation: M’ simulates every fair toss of M by at
most 27'(n) p-tosses following a specific algorithm

» We can show that the PTM M’ e-recognizes L in time O(T?).
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Proof — Second Implication

Let L € {0,1}* be e-recognizable in polynomial time T by some
fair PTM/log(A)* M.
» We consider the PTM M’ with real probability given by the

binary expansion p = 0.0ladvice - - - and which works on every
input of length n as follows:

» Advice reconstruction: M’ tosses its fair coin ¢T?(n) times,
writes the resulting binary sequence on a tape, and uses it as
M would have done with its advice string

» Fair toss simulation: M’ simulates every fair toss of M by at
most 27'(n) p-tosses following a specific algorithm

» We can show that the PTM M’ e-recognizes L in time O(T?).

Then, there exists a Sg-RNN[Q] A — using real probability p also —
which can simulate M’, and thus recognizes L in poly time.
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Results

We finally consider the cases of real-weighted as well as all kinds of
evolving networks. In this case, the addition of rational or real
stochasticity does not further increase the computational power of
the networks.

Theorem (Siegelmann 99, Cabessa & Siegelmann 14)
S-RNN[R]s, S-Ev-RNN[Q]s, and S-Ev-RNN[R]s are all
super-Turing equivalent:

» They can decide any possible language in exponential time.

» They compute exactly the class P/poly in polynomial time.
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Proof — First Implication

We prove the case of S-RNN[R]s. The other cases are similar...
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Proof — First Implication

We prove the case of S-RNN[R]s. The other cases are similar...

Let L € P/poly
» By Theorem 3, L is recognizable by some RNN[R].

» Note that the addition of stochasticity does obviously not de-
crease the computational power of the networks.

Hence, L is also e-recognizable by some S-RNN[R].
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Proof — Second Implication

Let L be e-recognizable by some S-RNN[R] A\ of size N in
polynomial time 7.
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Proof — Second Implication

Let L be e-recognizable by some S-RNN[R] A\ of size N in
polynomial time 7.

» Then there exists a family of feedforward RNN[R] {F, },,>0 of
depths T'(n) + 1 and sizes en NT'(n) + 1 such that each F,
recognizes L N {0,1}" (for some constant ¢).
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Proof — Second Implication

Let L be e-recognizable by some S-RNN[R] A\ of size N in
polynomial time 7.

> Then there exists a family of feedforward RNN[R] {F}, },>0 of
depths T'(n) + 1 and sizes enNT'(n) + 1 such that each F,
recognizes L N {0,1}" (for some constant ¢).

» Each network F;, consists of cn copies of a T'(n)-layer unfolding
of N and related by a majority cell. We can prove that there
exists a constant ¢ and a suitable fixed choice of the random
input cells (orange) such that F,, recognizes L N {0,1}".
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Proof — Second Implication
A network F,, of the family {F,},>0

'\‘i\‘i /° '\‘i\‘@ /° S
layer 1 Tager 1

g 4 {

’\3\3 /° ’\3\3 /° N
layer 2 layer 2

4 {

0 {

{
{
%o

layer T'(n)
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Proof — Second Implication

» Then, there exists some (static) RNN[R] A/ which contains
a suitable encoding of the family {F,},>0 as one of its real
synaptic weight.
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Proof — Second Implication

» Then, there exists some (static) RNN[R] A/ which contains
a suitable encoding of the family {F,},>0 as one of its real
synaptic weight.

» On every u input of length n, N is able to decode the network
Fn from its real weight, simulate it, and provide the answer
whether v € L or not.
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Proof — Second Implication

» Then, there exists some (static) RNN[R] A/ which contains
a suitable encoding of the family {F,},>0 as one of its real
synaptic weight.

» On every u input of length n, N is able to decode the network

Fn from its real weight, simulate it, and provide the answer
whether v € L or not.

» N’ works with a polynomial slowdown.

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa



Intro Boolean RNNs Rational RNNs Real RNNs Evolving RNNs Stochastic RNNs Conclusion

[e] 000000 00000000 000000000 000000000000 O00O000O00000O00000e0 OO0
0000000000 0000000000000 000

Proof — Second Implication

» Then, there exists some (static) RNN[R] A/ which contains
a suitable encoding of the family {F,},>0 as one of its real
synaptic weight.

» On every u input of length n, N is able to decode the network

Fn from its real weight, simulate it, and provide the answer
whether v € L or not.

» N’ works with a polynomial slowdown.
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Proof — Second Implication

» Then, there exists some (static) RNN[R] A/ which contains
a suitable encoding of the family {F,},>0 as one of its real
synaptic weight.

» On every u input of length n, N is able to decode the network

Fn from its real weight, simulate it, and provide the answer
whether v € L or not.

» N’ works with a polynomial slowdown.

By Theorem 3, L € P/poly.
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Results — Summary

Computational power of recurrent neural networks in polynomial
time of computation.

Static  Sto[Q] Static  Sto[R] Static  Sto. Evolving
Q P BPP BPP/log* P/poly
R P/poly P/poly P/poly P/poly
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Results — Summary

Computational power of recurrent neural networks in polynomial
time of computation.

Static  Evolving (bi-valued) Evolving (general)
Q P P/poly P/poly
R P/poly P/poly P/poly

Sto[Q] Static  Sto[R] Static  Sto. Evolving
Q BPP BPP/log* P /poly
R P/poly P/poly P/poly
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Thesis of Natural Computation

» The fact that the complexity class P/poly seems to cannot be
overcome led Siegelmann and Sontag to propose the following
Thesis of Natural Computation:

“Every natural computational phenomenon can be
captured within the TM/poly(A) model.”
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.
Hypercomputation

The fact P/poly contains P as well as non-recursive languages
raises the issue of the co-called hypercomputation.

» Some physical theories allow for the theoretical possibility of
hypercomputational systems (quantum, relativistic, etc.).
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.
Hypercomputation

The fact P/poly contains P as well as non-recursive languages
raises the issue of the co-called hypercomputation.

» Some physical theories allow for the theoretical possibility of
hypercomputational systems (quantum, relativistic, etc.).

» No such system is actually feasible.
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H tation

The fact P/poly contains P as well as non-recursive languages
raises the issue of the co-called hypercomputation.

» Some physical theories allow for the theoretical possibility of
hypercomputational systems (quantum, relativistic, etc.).

» No such system is actually feasible.

» Martin Davis is strongly opposed to the relevance of the “hy-
percomputational issue”.
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Hypercomputation

The fact P/poly contains P as well as non-recursive languages
raises the issue of the co-called hypercomputation.

» Some physical theories allow for the theoretical possibility of
hypercomputational systems (quantum, relativistic, etc.).
» No such system is actually feasible.

» Martin Davis is strongly opposed to the relevance of the “hy-
percomputational issue”.

» Philosophical and scientific literature about hypercomputation
is however more and more flourishing.
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