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Introduction

I Artificial neural networks have a tremendous range of applica-

tions in current artificial intelligence, mainly due to their capa-

bility to implement efficient learning algorithms.

I However, the theoretical approach to neural computation is

rather limited.

I Here, we provide a review of some important theoretical results

concerning the computational capabilities of various kinds of

neural models.

I It hopes to shed a light on the crucial issue of information pro-

cessing in the brain, and ultimately, on biological and artificial

intelligences.
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Boolean Recurrent Neural Networks
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Dynamics of Boolean RNNs

ci

ai1 ai2

aiN

biM

bi1

1

1

0

�

xi

neuron

xi(t+ 1) = σ




N∑

j=1

aij · xj(t) +

M∑

j=1

bij · uj(t) + ci




Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa



Intro Boolean RNNs Rational RNNs Real RNNs Evolving RNNs Stochastic RNNs Conclusion

Dynamics of Boolean RNNs

x3

x2

x1

u1

u2

�1/21/2

1/2

1/2

1/2

1/2

1/2

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa



Intro Boolean RNNs Rational RNNs Real RNNs Evolving RNNs Stochastic RNNs Conclusion

Dynamics of Boolean RNNs

0

0

0

0

0 �1/21/2

1/2

1/2

1/2

1/2

1/2

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa



Intro Boolean RNNs Rational RNNs Real RNNs Evolving RNNs Stochastic RNNs Conclusion

Dynamics of Boolean RNNs

0

0

0

0

1 �1/21/2

1/2

1/2

1/2

1/2

1/2

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa



Intro Boolean RNNs Rational RNNs Real RNNs Evolving RNNs Stochastic RNNs Conclusion

Dynamics of Boolean RNNs

0

0

0

0

1 �1/21/2

1/2

1/2

1/2

1/2

1/2

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa



Intro Boolean RNNs Rational RNNs Real RNNs Evolving RNNs Stochastic RNNs Conclusion

Dynamics of Boolean RNNs

0

0

0

1

1 �1/21/2

1/2

1/2

1/2

1/2

1/2

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa



Intro Boolean RNNs Rational RNNs Real RNNs Evolving RNNs Stochastic RNNs Conclusion

Dynamics of Boolean RNNs

1

0

0

1

0 �1/21/2

1/2

1/2

1/2

1/2

1/2

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa



Intro Boolean RNNs Rational RNNs Real RNNs Evolving RNNs Stochastic RNNs Conclusion

Dynamics of Boolean RNNs

1

0

0

1

0 �1/21/2

1/2

1/2

1/2

1/2

1/2

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa



Intro Boolean RNNs Rational RNNs Real RNNs Evolving RNNs Stochastic RNNs Conclusion

Dynamics of Boolean RNNs

1

1

1

0

0 �1/21/2

1/2

1/2

1/2

1/2

1/2

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa



Intro Boolean RNNs Rational RNNs Real RNNs Evolving RNNs Stochastic RNNs Conclusion

From Boolean Neural Networks to Automata
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Equivalence between Boolean Neural Networks and

Automata

Theorem (Minsky 67)

“It is evident that each neural network of the kind we have been

considering is a finite-state machine.”

“[...] It is interesting and even surprising that there is a converse

to this. Every finite-state machine is equivalent to, and can be

“simulated” by, some neural net.”
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Introduction

I By translating the so-called Wagner hierarchy from the au-

tomaton to the neural network context, we introduce a new

attractor-based complexity measurement for Boolean recurrent

neural networks.

I The measurement reflects the complexity of the attractors’

structure of the networks.
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Cycles and Attractors
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The Wagner Hierarchy

I In ω-automata theory, there is a transfinite classification of ω-

automata according to the way their cycles are intricated one

into the other...

I The Wagner hierarchy

I By translating the Wagner hierarchy from the ω-automata to

the Boolean neural network context, one obtains a transfinite

classification of Boolean neural networks according to the way

their attractors are intricated one into the other...

I The Boolean RNN hierarchy
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The Wagner Hierarchy

I A transfinite classification of Muller automata according to the

topological complexity of their underlying language

I Equivalently, a transfinite classification of Muller automata ac-

cording to the graph-theoretical complexity of their cycles

I Quasi well-ordering of transfinite height ωω
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cording to the graph-theoretical complexity of their cycles

I Quasi well-ordering of transfinite height ωω
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I A Muller automaton consists of an automaton provided with an

additional specification of every of its cycles into an accepting
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The Wagner Hierarchy – Degrees ωn
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The Wagner Hierarchy – Degrees ωn · k

Muller
automaton

Wagner
degree

1,20,1,2 1 00,1,20 00,1,21

2 2
q0

q1

q2

q5q3

q4

[+] !1 · 3

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa



Intro Boolean RNNs Rational RNNs Real RNNs Evolving RNNs Stochastic RNNs Conclusion

The Wagner Hierarchy – Degrees ωn · k

Muller
automaton

Wagner
degree

1,20,1,2 1 00,1,20 00,1,21

2 2
q0

q1

q2

q5q3

q4

[+] !1 · 3

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa



Intro Boolean RNNs Rational RNNs Real RNNs Evolving RNNs Stochastic RNNs Conclusion

The Wagner Hierarchy – Degrees ωn · k

Muller
automaton

Wagner
degree

1,20,1,2 1 00,1,20 00,1,21

2 2
q0

q1

q2

q5q3

q4

[+] !1 · 3

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa



Intro Boolean RNNs Rational RNNs Real RNNs Evolving RNNs Stochastic RNNs Conclusion

The Wagner Hierarchy – Degrees ωn · k + ωn
′ · k′
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The Wagner Hierarchy – Summary

I A quasi well-ordering of transfinite height ωω

I Every ordinal α < ωω has a unique Cantor normal form α =

ωn0 · p0 + ωn1 · p1 + · · ·+ ωnk · pk, where n0 > n1 > · · · > nk

I The degree α of a Muller automaton M in the Wagner hierar-

chy is the maximal “tree of cycles” Tα in M
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The Boolean RNNs Hierarchy

I We assume that our Boolean RNNs are provided with an addi-

tional specification of every of their attractors into a meaningful

or a spurious mode

I We can transpose the Wagner hierarchy from the Muller au-

tomata to the Boolean RNNs context.

I One obtains a transfinite classification of Boolean RNNs ac-

cording to the topological complexity of their attractors
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Introduction

I Siegelmann and Sontag studied the computational power or

RNNs whose activation function is given by a simple sigmoid

function and whose synaptic weights are allowed to range over

rational numbers.

I The so-called rational-weighted RNNs are shown to be Turing

equivalent.
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Dynamics of rational-weighted RNNs

A rational-weighted RNN (RNN[Q]) is a RNN whose synaptic

weights are allowed to range over rational numbers and whose

activation function is given by a linear sigmoid function.

ci

ai1 ai2

aiN

biM

bi1

1

1

0

σ

xi

neuron
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)
, aij , bij , ci ∈ Q
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Formal RNNs

We define a formal RNN which can compute partial functions of

the form ϕ : {0, 1}+ → {0, 1}+.
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Results

Rational-weighted RNNs are actually Turing equivalent.

Theorem (Siegelmann & Sontag 95)

I Let ϕ : {0, 1}+ → {0, 1}+ be a partial function. Then ϕ is

Turing computable (i.e. partial recursive) iff ϕ can be computed

by some RNN[Q].

I Moreover, for any p-stack machine M (p ≥ 2) computing ϕ,

there exists a RNN[Q] N which simulates M in real time.
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Proof – First Implication

Let ϕ : {0, 1}+ → {0, 1}+ be some partial function computable by

some RNN[Q] N .

I The networks dynamics F : QN → QN given by the equations

xi(t+ 1) = σ

(
N∑
j=1

aij · xj(t) +
M∑
j=1

bij · uj(t) + ci

)

is clearly recursive.

Therefore, ϕ is obviously Turing-computable.
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Proof – Second Implication

Let ϕ : {0, 1}+ → {0, 1}+ be some Turing-computable partial

function.

I Then ϕ is computable by some p-stack machine M.

I We simulate the behaviour of M by some RNN[Q] N .

I Towards this purpose, we first show how to perform the stack

operations with sigmoid rational-weighted neurons.

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa



Intro Boolean RNNs Rational RNNs Real RNNs Evolving RNNs Stochastic RNNs Conclusion

Proof – Second Implication

Let ϕ : {0, 1}+ → {0, 1}+ be some Turing-computable partial

function.

I Then ϕ is computable by some p-stack machine M.

I We simulate the behaviour of M by some RNN[Q] N .

I Towards this purpose, we first show how to perform the stack

operations with sigmoid rational-weighted neurons.

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa



Intro Boolean RNNs Rational RNNs Real RNNs Evolving RNNs Stochastic RNNs Conclusion

Proof – Second Implication

Let ϕ : {0, 1}+ → {0, 1}+ be some Turing-computable partial

function.

I Then ϕ is computable by some p-stack machine M.

I We simulate the behaviour of M by some RNN[Q] N .

I Towards this purpose, we first show how to perform the stack

operations with sigmoid rational-weighted neurons.

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa



Intro Boolean RNNs Rational RNNs Real RNNs Evolving RNNs Stochastic RNNs Conclusion

Proof – Second Implication

Let ϕ : {0, 1}+ → {0, 1}+ be some Turing-computable partial

function.

I Then ϕ is computable by some p-stack machine M.

I We simulate the behaviour of M by some RNN[Q] N .

I Towards this purpose, we first show how to perform the stack

operations with sigmoid rational-weighted neurons.

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa



Intro Boolean RNNs Rational RNNs Real RNNs Evolving RNNs Stochastic RNNs Conclusion

Proof – Second Implication

I We encode every stack content w = w1 · · ·wn as the rational

number qw =
∑n

i=1
2·w(i)+1

4i

I For instance, w = 0110 is encoded into qw = 1
4 + 3

16 + 3
44 + 1

256

I Reading the top of the stack: top(q) = σ(4q − 2)

I Pushing 0 into the stack: push0(q) = σ(14q + 1
4)

I Pushing 1 into the stack: push1(q) = σ(14q + 3
4)

I Popping the stack: pop(q) = σ(4q − (2top(q) + 1))

I Emptiness of the stack: empty(q) = σ(4q)
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Proof – Second Implication

The q-stack machine M is then simulated by the network below,

showing that ϕ is RNN[Q]-computable.

validationyv

outputydinput ud

validation uv

states of M

···
···

stack s1

top empty

stack sp

encoding top empty

transition
function
of M

encoding
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Introduction

I Siegelmann and Sontag assumed that the variables appearing

in the underlying chemical and physical phenomena could be

modelled by continuous rather than discrete (rational) numbers.

I They proposed an approach to the computational power of re-

current neural networks from the perspective of analog compu-

tation.
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Turing machine with advice

I A Turing machine with advice (TM/A) is a Turing machine

provided with an additional advice tape and advice function

α : N −→ {0, 1}∗.
I P/poly is the class of languages recognized in polynomial time

by Turing machines with polynomial advices (TM/poly(A)).

Finite
Program
state qadv

Tape

Advice
Tape

0 1 10 01

input u

10 11 1 110 00 0

advice α(|u|)
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Dynamics of real-weighted RNNs

A real-weighted or analog RNN (RNN[R]) is a RNN whose

synaptic weights are allowed to range over real numbers.
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Results

In this case, the computational power of RNNs is drastically

increased.

Theorem (Siegelmann & Sontag 94)

RNN[R]s are super-Turing:

I They can decide any possible language in exponential time.

I They compute exactly the class P/poly in polynomial time.
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Proof – First Implication

Let L ∈ P/poly.

I By some alternative characterization of P/poly, there exists a

polynomial size circuits family C = {Cn : n ≥ 0} such that

each circuit Cn decides the language L ∩ {0, 1}n.

I We provide a suitable encoding of the circuit family C into some

real number r(C): first C is represented by some infinite word

wC ∈ {0, 2, 4, 6, 8}ω, and then r(C) =
∑∞

i=0
wC(i)
9i

.
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Proof – First Implication

I Then, one can build some RNN[R] N which contains the real

r(C) as a synaptic weight, and which, given some input u of

length n, is able to retrieve the circuit Cn of the family C,

simulate it, and output its result in polynomial time.

validation

output Cn(u)

yv

ydinput u

validation

ud

uv

From the synaptic real weight r(C),
decode and simulate the circuit Cn

Store u in memory

Compute the length n of u

r(C)

Since the circuits family C decides L, so does N in polynomial

time, i.e. L(N ) = L.
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Proof – Second Implication

Let L be decidable in polynomial time p by some RNN[R] N .

I Then, by some technical lemma, there exists a so-called p-

truncated family of Ev-RNN[Q]s {Np(n) : n ≥ 0} such that

each network Np(n) computes exactly like N up to time p(n).

real weights of N
truncated after K · f(n) bits

ãij(t), b̃ij(t), c̃i(t)

activation values computed
up to K · p(n) precision bits

x̃i(t), ỹd(t), ỹv(t)

RNN[Q] Np(n)

ũd

ũv ỹv

ỹd
2

2

� 1
2

� 1
2

ỹ�
v

ỹ�
d

real weights
aij(t), bij(t), ci(t)

activation values computed
with infinite precision

ud

uv yv

yd

RNN[R] N
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ỹ�
v

ỹ�
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Proof – Second Implication

I We build a TM/poly(A) M with the advice α(n) = pNp(n)q
for each n ≥ 0, and which, on every input u of length n:

1. calls the polynomial-bounded advice value pNp(n)q
2. simulates the behaviour of Np(n) on u in polynomial time

input: u of length n

program that simulates
network Np(n) on u

…
…

TM/poly(A) M

advice: Encoding(Np(n))

The machine M answers precisely like the RNN[R] N , hence

decides L in polynomial time. Therefore L ∈ P/poly.
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Result – Summary

Computational power of recurrent neural networks in polynomial

time of computation.

Recurrent Neural Networks

Q P

R P/poly
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Analog RNNs over infinite words

We now extend the study of the computational power of analog

recurrent neural networks to the context of infinite word reading

machines.

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa



Intro Boolean RNNs Rational RNNs Real RNNs Evolving RNNs Stochastic RNNs Conclusion

Topology over the Cantor Space

Let C = {0, 1}ω be the Cantor space.

I The basic open sets of C are of the form p · {0, 1}ω, for some

p ∈ {0, 1}+.

I The class ∆1
1 of Borel sets of C consists of the σ-algebra gen-

erated by the open sets.

I The levels of the Borel hierarchy are defined by induction on
α < ω1 as follows:

I Σ0
1 = {A ⊆ C : A is open}

I Σ0
α = {⋃n∈NAn : An ∈ Π0

β for β < α}
I Π0

α = {A : A{ ∈ Σ0
α}

I ∆0
α = {A : A ∈ Σ0

α ∩Π0
α}
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Topology over the Cantor Space

Let C × C be equipped with the product topology of C.

I A set X ⊆ C is analytic (Σ1
1) iff it is the projection of some

Π0
2-set, or more generally, of some Borel set Y ⊆ C × C, i.e.

X = π1(Y ) = {x ∈ C : (x, y) ∈ Y for some y ∈ C}
I A set X ⊆ C is effectively analytic (Σ1

1) iff it is recognized by

some non-deterministic Büchi Turing machine.

I The class of analytic sets strictly contains that of Borel sets and

that of effectively analytic sets, i.e. Σ1
1 ) ∆1

1 and Σ1
1 ) Σ1

1.
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Deterministic Analog RNN on Infinite Words

A deterministic real-weighted (or analog) RNN over infinite words

(ω-Det-RNN[R]) is a real-weighted RNN equipped with one binary

input cell u and one binary output cell y.

xi(t + 1) = �

�
⇤

N⇧

j=1

aijxj(t) +
M⇧

j=1

bijuj(t) + ci

⇥
⌅

i = 1, . . . , N and aij , bij , cij � R

0 0 1 0 1 · · ·u y1 0 1 1 0 · · ·

I Any ω-Det-RNN[R] can naturally be identified with some func-

tion fN : {0, 1}ω → {0, 1}ω.

I By its sequential nature, fN is Lipschitz, thus continuous.
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Deterministic Analog RNN on Infinite Words

I An infinite word w ∈ {0, 1}ω is accepted by N if it induces

infinitely many output responses (i.e. 1’s) to the output cell y

(Büchi-like accepting condition).

I The neural language L(N ) recognized by N consists of the set

of infinite words accepted by N .

I Remark: Let 1∞ = {w ∈ {0, 1}ω : w contains ∞-many 1’s}.
One has by definition that L(N ) = f−1N (1∞).

xi(t + 1) = �

�
⇤

N⇧

j=1

aijxj(t) +
M⇧

j=1

bijuj(t) + ci

⇥
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Result

Deterministic analog RNNs on infinite words recognize precisely

the Π0
2-sets.

Theorem (Cabessa & Villa 12)

Let L ⊆ {0, 1}ω. The following conditions are equivalent:

I L is recognizable by some ω-Det-RNN[R]

I L ∈ Π0
2
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Proof – First Implication

Let L ⊆ {0, 1}ω be recognizable by some ω-Det-RNN[R] N . One

has:

I L(N ) = f−1N (1∞)

I fN is continuous

I 1∞ =
⋂
n≥0

⋃
m≥0{0, 1}n+m1{0, 1}ω ∈ Π0

2

It follows that L(N ) ∈ Π0
2.
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Proof – Second Implication

Let L ∈ Π0
2. Then L is of the form L =

⋂
i≥0

⋃
j≥0 pi,j · {0, 1}ω,

where each pi,j ∈ {0, 1}+.

I We provide a suitable encoding of the infinite sequence (pi,j)i,j≥0
into some real number r(L).

I (technical lemma) There exists a RNN[R]Nr(L), which contains

the real r(L) as a synaptic weight, and which, given some

encoding of (i, j) as input, is able to output some suitable

encoding of pi,j .
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Proof – Second Implication
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⋃
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Proof – Second Implication

I We build an ω-Det-RNN[R] N which contains Nr(L) as a sub-

network and which performs the following algorithm:

Algorithm 1

1: Input s is provided bit by bit at successive time steps
2: i← 0, j ← 0
3: loop
4: Submit input (i, j) to Nr(L) and get pi,j as output
5: Wait until |s| ≥ |pi,j |
6: if pi,j ⊆ s then # s ∈

⋃
j≥0 pi,j{0, 1}ω

7: return 1 and do i← i+ 1, j ← 0 # test if s ∈ pi+1,j{0, 1}ω
8: else # s 6∈

⋃
k≤j pi,k{0, 1}ω

9: return 0 and do i← i, j ← j + 1 # test if s ∈ pi,j+1{0, 1}ω
10: end if
11: end loop

In this way, N outputs infinitely many 1’s iff s ∈ L, i.e L(N ) = L.
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Non-Deterministic Analog RNN on Infinite Words

A non-deterministic real-weighted (or analog) RNN over infinite

words (ω-NDet-RNN[R]) is a real-weighted RNN equipped with

two binary input cells u and u′ and one binary output cell y.

xi(t + 1) = �

�
⇤

N⇧

j=1

aijxj(t) +
M⇧

j=1

bijuj(t) + ci

⇥
⌅

i = 1, . . . , N and aij , bij , cij � R

0 0 1 0 1 · · ·y

1 0 1 1 0 · · ·

u0

u

1 1 0 0 1 · · ·

I Any ω-NDet-RNN[R] can naturally be identified with some

function fN : {0, 1}ω × {0, 1}ω → {0, 1}ω.

I By its sequential nature, fN is Lipschitz, thus continuous.
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Non-Deterministic Analog RNN on Infinite Words

I An infinite word w ∈ {0, 1}ω is accepted by N if there exists

a guess stream w′ such that w and w′ induces infinitely many

output responses to the output cell y (Büchi-like condition).

I The neural language L(N ) recognized by N consists of the set

of infinite words accepted by N .

I Remark: L(N ) = {w ∈ {0, 1}ω : ∃w′ ∈ {0, 1}ω (w,w′) ∈
f−1N (1∞)} = π1(f

−1
N (1∞)).

xi(t + 1) = �

�
⇤

N⇧

j=1

aijxj(t) +

M⇧

j=1

bijuj(t) + ci

⇥
⌅
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Result

Non-deterministic analog RNNs on infinite words recognize

precisely the Σ1
1-sets.

Theorem (Cabessa & Villa 12)

Let L ⊆ {0, 1}ω. The following conditions are equivalent:

I L is recognizable by some ω-NDet-RNN[R]

I L ∈ Σ1
1
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Proof – First Implication

Let L ⊆ {0, 1}ω be recognizable by some ω-NDet-RNN[R] N . One

has:

I L(N ) = π1(f
−1
N (1∞))

I fN is continuous

I 1∞ ∈ Π0
2

It follows that L(N ) ∈ Σ1
1.
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Proof – Second Implication

Let L ∈ Σ1
1. Then L = π1(X), for some Π0

2-set X of the form

X =
⋂

i≥0

⋃

j≥0
(pi,j · {0, 1}ω × qi,j · {0, 1}ω),

where each pi,j and qi,j ∈ {0, 1}+.

I We provide a suitable encoding of the infinite sequence of pairs

((pi,j , qi,j))i,j≥0 into some real number r(X).

I (technical lemma) There exists a RNN[R] Nr(X), which con-

tains the real r(X) as a synaptic weight, and which, given some

encoding of (i, j) as input, is able to output some suitable en-

coding of (pi,j , qi,j).
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Proof – Second Implication

I We build an ω-NDet-RNN[R] N which contains Nr(L) as a

sub-network and which performs the following algorithm:

Algorithm 2

1: Input s is provided bit by bit at successive time steps
2: Guess g is provided bit by bit at successive time steps
3: i← 0, j ← 0
4: loop
5: Submit input (i, j) to Nr(X) and get (pi,j , qi,j) as output
6: Wait until |s| ≥ pi,j , qi,j
7: if pi,j ⊆ s and qi,j ⊆ g then
8: return 1 and do i← i+ 1, j ← 0
9: else

10: return 0 and do i← i, j ← j + 1
11: end if
12: end loop

N outputs ∞-many 1’s iff (s, g) ∈ X, i.e L(N ) = π1(X) = L.
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Results – Summary

Büchi Turing Machines

Deterministic case

�1
1

�1
1

�0
2

�1
1

�1
1

�0
2

Non-deterministic case

Analog !-RNN
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Introduction

I We study the computational capabilities of recurrent neural net-

works whose synaptic weights might evolve over time.

I These considerations are related to the biological concept of

plasticity – in particular synaptic plasticity – which is crucially

involved in the processing of information in the brain.

I These considerations are also related to the key concept of

learning for artificial neural networks.
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Dynamics of Evolving RNNs

An evolving RNN (Ev-RNN) consists of a RNN whose synaptic

weights might evolve over time (between bounded values)

ci(t)

ai1(t)ai2(t)

aiN (t)

biM (t)

bi1(t)

1

1

0

σ

xi

neuron

xi(t+ 1) = σ

(
N∑
j=1

aij(t) · xj(t) +
M∑
j=1

bij(t) · uj(t) + ci(t)

)
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Models of Evolving RNNs

We consider four models of evolving recurrent neural networks:

1. rational-weighted bi-valued evolving RNNs: Ev2-RNN[Q]s

2. rational-weighted (general) evolving RNNs: Ev-RNN[Q]s

3. real-weighted bi-valued evolving RNNs: Ev2-RNN[R]s

4. real-weighted (general) evolving RNNs: Ev-RNN[R]s

ci(t)

ai1(t)ai2(t)

aiN (t)

biM (t)

bi1(t)

1

1

0

σ

xi

neuron

xi(t + 1) = σ

 N∑
j=1

aij(t) · xj(t) +
M∑
j=1

bij(t) · uj(t) + ci(t)


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Models of Evolving RNNs

One has the following relations between those models

L(Ev2-RNN[Q]s)

L(Ev2-RNN[R]s)

L(Ev-RNN[R]s)

L(Ev-RNN[Q]s)

✓ ✓

✓ ✓
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Results

Theorem (Cabessa & Siegelmann 11, 14)

The four models of Evolving RNNs are super-Turing equivalent:

I They can decide any possible language in exponential time.

I They compute exactly the class P/poly in polynomial time.

Bi-valued General

Q super-Turing super-Turing

R super-Turing super-Turing
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Proof – General Idea

Lpoly(Ev-RNN[R]s)

Lpoly(Ev2-RNN[Q]s)

Lpoly(Ev2-RNN[R]s) Lpoly(Ev-RNN[Q]s)

✓

✓ ✓

P/poly

P/poly

✓
✓

✓
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Proof – The Lower Bound

Lemma

Let L ⊆ {0, 1}∗. If L ∈ P/poly, then L is decidable in polynomial

time by some Ev2-RNN[Q].

Lpoly(Ev-RNN[R]s)

Lpoly(Ev2-RNN[Q]s)

Lpoly(Ev2-RNN[R]s) Lpoly(Ev-RNN[Q]s)

✓

✓ ✓

P/poly

✓

✓
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Proof – The Lower Bound

Let L ∈ P/poly. Then there exists some TM/poly(A) M with

advice function α that decides L in polynomial time.

I We build an Ev2-RNN[Q] N as described below which decides

L in polynomial time.

validation

input u

validation

output M(u)

yv

ydud

uv

xp0xp

↵(1) 0 ↵(2) 0 ↵(3) 0 ↵(4) 0 ↵(5) 0 · · ·
1|↵(1)| 0 1|↵(2)| 0 1|↵(3)| 0 1|↵(4)| 0 1|↵(5)| 0 · · ·

Simulate the behaviour of the TM/poly(A) M
working on input u with advice ↵(n)

Wait for the word ↵(n) to occur
and store it in memory

Store u in memory

Compute the length n of u
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Proof – The Upper Bound

Lemma

Let L ⊆ {0, 1}∗. If L is decidable in polynomial time by some

Ev-RNN[R], then L ∈ P/poly.

Lpoly(Ev-RNN[R]s)

Lpoly(Ev2-RNN[Q]s)

Lpoly(Ev2-RNN[R]s) Lpoly(Ev-RNN[Q]s)

✓

✓ ✓

P/poly

✓
✓
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Proof – The Upper Bound

Let L be decidable in polynomial time p by some Ev-RNN[R] N .

I Then, by some technical lemma, there exists a so-called p-

truncated family of Ev-RNN[Q]s {Np(n) : n ≥ 0} such that

each network Np(n) computes exactly like N up to time p(n).

real weights of N
truncated after K · f(n) bits

ãij(t), b̃ij(t), c̃i(t)

activation values computed
up to K · p(n) precision bits
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Ev-RNN[Q] Np(n)
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ũv ỹv

ỹd
2

2

� 1
2

ỹ�
v

ỹ�
d

real weights
aij(t), bij(t), ci(t)

Ev-RNN[R] N

activation values computed
with infinite precision

ud

uv yv

yd

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa



Intro Boolean RNNs Rational RNNs Real RNNs Evolving RNNs Stochastic RNNs Conclusion

Proof – The Upper Bound

Let L be decidable in polynomial time p by some Ev-RNN[R] N .

I Then, by some technical lemma, there exists a so-called p-

truncated family of Ev-RNN[Q]s {Np(n) : n ≥ 0} such that

each network Np(n) computes exactly like N up to time p(n).

real weights of N
truncated after K · p(n) bits
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ũv ỹv

ỹd
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Proof – The Upper Bound

I We build a TM/poly(A) M with the advice α(n) = pNp(n)q
for each n ≥ 0, and which, on every input u of length n:

1. calls the polynomial-bounded advice value pNp(n)q
2. simulates the behaviour of Np(n) on u in polynomial time

input: u of length n

program that simulates
network Np(n) on u

…
…

TM/poly(A) M

advice: Encoding(Np(n))

The machine M answers precise like the Ev-RNN[R] N , hence

decides L in polynomial time. Therefore L ∈ P/poly.
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Results – Summary

Computational power of recurrent neural networks in polynomial

time of computation.

Static Evolving (bi-valued) Evolving (general)

Q P P/poly P/poly

R P/poly P/poly P/poly
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Introduction

I We study the computational capabilities of recurrent neural net-

works provided with some discrete source of stochasticity.

I The discrete stochasticity might add to the computational power

of the networks, but only up to the level P/poly.
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Probabilistic Turing Machines

I A probabilistic Turing machine (PTM) is a non-deterministic
Turing machine such that:

I Every step of the computation can be made in exactly two pos-

sible ways chosen randomly with probability 1/2
I Every computational path ends up in a final state
I All computational paths are of the same length

I A word w is accepted by a PTM if strictly more than half of the

computational paths on w end up in an ACCEPT state (i.e. if

the probability of acceptance is above 1/2).

I The error probability of a PTM M is the function

eM : x 7→ # wrong answers for x

# total computations
.

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa



Intro Boolean RNNs Rational RNNs Real RNNs Evolving RNNs Stochastic RNNs Conclusion

Probabilistic Turing Machines

I A probabilistic Turing machine (PTM) is a non-deterministic
Turing machine such that:

I Every step of the computation can be made in exactly two pos-

sible ways chosen randomly with probability 1/2
I Every computational path ends up in a final state
I All computational paths are of the same length

I A word w is accepted by a PTM if strictly more than half of the

computational paths on w end up in an ACCEPT state (i.e. if

the probability of acceptance is above 1/2).

I The error probability of a PTM M is the function

eM : x 7→ # wrong answers for x

# total computations
.

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa



Intro Boolean RNNs Rational RNNs Real RNNs Evolving RNNs Stochastic RNNs Conclusion

Probabilistic Turing Machines

I A probabilistic Turing machine (PTM) is a non-deterministic
Turing machine such that:

I Every step of the computation can be made in exactly two pos-

sible ways chosen randomly with probability 1/2
I Every computational path ends up in a final state
I All computational paths are of the same length

I A word w is accepted by a PTM if strictly more than half of the

computational paths on w end up in an ACCEPT state (i.e. if

the probability of acceptance is above 1/2).

I The error probability of a PTM M is the function

eM : x 7→ # wrong answers for x

# total computations
.

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa



Intro Boolean RNNs Rational RNNs Real RNNs Evolving RNNs Stochastic RNNs Conclusion

Probabilistic Turing Machines

I A probabilistic Turing machine (PTM) is a non-deterministic
Turing machine such that:

I Every step of the computation can be made in exactly two pos-

sible ways chosen randomly with probability 1/2
I Every computational path ends up in a final state
I All computational paths are of the same length

I A word w is accepted by a PTM if strictly more than half of the

computational paths on w end up in an ACCEPT state (i.e. if

the probability of acceptance is above 1/2).

I The error probability of a PTM M is the function

eM : x 7→ # wrong answers for x

# total computations
.

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa



Intro Boolean RNNs Rational RNNs Real RNNs Evolving RNNs Stochastic RNNs Conclusion

Probabilistic Turing Machines

I A probabilistic Turing machine (PTM) is a non-deterministic
Turing machine such that:

I Every step of the computation can be made in exactly two pos-

sible ways chosen randomly with probability 1/2
I Every computational path ends up in a final state
I All computational paths are of the same length

I A word w is accepted by a PTM if strictly more than half of the

computational paths on w end up in an ACCEPT state (i.e. if

the probability of acceptance is above 1/2).

I The error probability of a PTM M is the function

eM : x 7→ # wrong answers for x

# total computations
.

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa



Intro Boolean RNNs Rational RNNs Real RNNs Evolving RNNs Stochastic RNNs Conclusion

Probabilistic Turing Machines

I A probabilistic Turing machine (PTM) is a non-deterministic
Turing machine such that:

I Every step of the computation can be made in exactly two pos-

sible ways chosen randomly with probability 1/2
I Every computational path ends up in a final state
I All computational paths are of the same length

I A word w is accepted by a PTM if strictly more than half of the

computational paths on w end up in an ACCEPT state (i.e. if

the probability of acceptance is above 1/2).

I The error probability of a PTM M is the function

eM : x 7→ # wrong answers for x

# total computations
.

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa



Intro Boolean RNNs Rational RNNs Real RNNs Evolving RNNs Stochastic RNNs Conclusion

Probabilistic Turing Machines

I BPP is the class of languages recognized by polynomial time

PTMs whose error probabilities are bounded above by some

constant ε < 1/2.

I BPP/log∗ is the class of languages recognized by such PTMs

which further use logarithmic monotone advice functions.

I Remark: P ( BPP/log∗ ( BPP/log, whereas P/poly∗ =

P/poly.
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Dynamics of Stochastic RNNs

An stochastic RNN (S-RNN) consists of a RNN including a set of

binary input neurons x′j ’s taking activation values 1 with

probabilities pj ’s.

ci

ai1 ai2

aiN

biMbi1

1

1

0

�

xi

neuron

a0
i1

a0
iK

xi(t+ 1) = σ

(
N∑
j=1

aij · xj(t) +
K∑
j=1

a′ij · x′j(t) +
M∑
j=1

bij · uj(t) + ci

)
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Dynamics of Stochastic RNNs

Let L ( {0, 1}∗ and 0 < ε < 1/2. The language L is ε-recognized

in time T by some S-RNN N if for every input w of length n

I all computation paths of N classify w in time T (n)

I eN (w) < ε < 1/2
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Models of Stochastic RNNs

We consider the following models of stochastic (or probabilistic)

recurrent neural networks:

1. rational-weighted Q-stochastic RNNs: SQ-RNN[Q]s

2. rational-weighted R-stochastic RNNs: SR-RNN[Q]s

3. real-weighted stochastic RNNs: S-RNN[R]s

4. Rational-weighted stochastic evolving RNNs: S-Ev-RNN[Q]s

5. Real-weighted stochastic evolving RNNs: S-Ev-RNN[R]s
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aiN

biMbi1

1

1
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Result

We first consider rational-weighted stochastic networks whose

probabilities are also rational.

Theorem (Siegelmann 99)

Let L ⊆ {0, 1}∗ be some language. Then L is ε-recognizable in

polynomial time by some SQ-RNN[Q] iff L ∈ BPP .
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Proof – First Implication

Let L ⊆ {0, 1}∗ be ε-recognizable in polynomial time by some

SQ-RNN[Q] N .

I The networks dynamics F : QN → QN given by

xi(t+ 1) = σ

 N∑
j=1

aij · xj(t) +
K∑
j=1

a′ij · x′j(t) +
M∑
j=1

bij · uj(t) + ci


with rational underlying probabilities can easily be simulated by

some PTM with rational probabilities, and hence also by some

fair PTM, up to some polynomial time increase.

Therefore, L ∈ BPP .
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Proof – Second Implication

Let L ∈ BPP .

I Then there exists a PTM M that ε-recognizes L.

I By the real time equivalence between TMs and RNN[Q]s (The-

orem 2), one can build a SQ-RNN[Q] N that simulates M.

Therefore, L is ε-recognizable in polynomial time by some

SQ-RNN[Q] N .
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Result

We now consider rational-weighted stochastic networks whose

probabilities are real.

Theorem (Siegelmann 99)

Let L ⊆ {0, 1}∗ be some language. Then L is ε-recognizable in

polynomial time by some SR-RNN[Q] iff L ∈ BPP/log∗.
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Proof – First Implication

Let L ⊆ {0, 1}∗ be ε-recognizable in polynomial time by some

SR-RNN[Q] N .

I The networks dynamics F : QN → QN given by

xi(t+ 1) = σ

 N∑
j=1

aij · xj(t) +
K∑
j=1

a′ij · x′j(t) +
M∑
j=1

bij · uj(t) + ci


with real underlying probabilities can easily be simulated by

some PTM with real probabilities M.
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Proof – First Implication

I Now, if M is a PTM with real probability p computing in time

T , we consider the fair PTM/log(A)*M′ with advice function

n 7−→ [p]log(T (n))

and which simulates every binary choice of M as follows:
1 toss of the PTM M

where p 2 R

 advice ) state s1

simulated by s

1
2

1
2

1
2
1
2

1
2
1
2

1
2
1
2

1
2
1
2

…

…
…

…

…
…

log(T (n)) tosses

> advice ) state s2

log(T (n)) tosses of the fair PTM/log(A)* M0

p

p

s1

s2

s

M′ ε-recognizes L in time O(T log(T )), and thus L ∈ BPP/log∗.
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Proof – Second Implication

Let L ⊆ {0, 1}∗ be ε-recognizable in polynomial time T by some

fair PTM/log(A)* M.

I We consider the PTM M′ with real probability given by the
binary expansion p = 0.01advice · · · and which works on every
input of length n as follows:

I Advice reconstruction: M′ tosses its fair coin cT 2(n) times,

writes the resulting binary sequence on a tape, and uses it as

M would have done with its advice string
I Fair toss simulation: M′ simulates every fair toss of M by at

most 2T (n) p-tosses following a specific algorithm

I We can show that the PTMM′ ε-recognizes L in time O(T 2).

Then, there exists a SR-RNN[Q] N – using real probability p also –

which can simulate M′, and thus recognizes L in poly time.

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa



Intro Boolean RNNs Rational RNNs Real RNNs Evolving RNNs Stochastic RNNs Conclusion

Proof – Second Implication

Let L ⊆ {0, 1}∗ be ε-recognizable in polynomial time T by some

fair PTM/log(A)* M.

I We consider the PTM M′ with real probability given by the
binary expansion p = 0.01advice · · · and which works on every
input of length n as follows:

I Advice reconstruction: M′ tosses its fair coin cT 2(n) times,

writes the resulting binary sequence on a tape, and uses it as

M would have done with its advice string
I Fair toss simulation: M′ simulates every fair toss of M by at

most 2T (n) p-tosses following a specific algorithm

I We can show that the PTMM′ ε-recognizes L in time O(T 2).

Then, there exists a SR-RNN[Q] N – using real probability p also –

which can simulate M′, and thus recognizes L in poly time.

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa



Intro Boolean RNNs Rational RNNs Real RNNs Evolving RNNs Stochastic RNNs Conclusion

Proof – Second Implication

Let L ⊆ {0, 1}∗ be ε-recognizable in polynomial time T by some

fair PTM/log(A)* M.

I We consider the PTM M′ with real probability given by the
binary expansion p = 0.01advice · · · and which works on every
input of length n as follows:

I Advice reconstruction: M′ tosses its fair coin cT 2(n) times,

writes the resulting binary sequence on a tape, and uses it as

M would have done with its advice string
I Fair toss simulation: M′ simulates every fair toss of M by at

most 2T (n) p-tosses following a specific algorithm

I We can show that the PTMM′ ε-recognizes L in time O(T 2).

Then, there exists a SR-RNN[Q] N – using real probability p also –

which can simulate M′, and thus recognizes L in poly time.

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa



Intro Boolean RNNs Rational RNNs Real RNNs Evolving RNNs Stochastic RNNs Conclusion

Proof – Second Implication

Let L ⊆ {0, 1}∗ be ε-recognizable in polynomial time T by some

fair PTM/log(A)* M.

I We consider the PTM M′ with real probability given by the
binary expansion p = 0.01advice · · · and which works on every
input of length n as follows:

I Advice reconstruction: M′ tosses its fair coin cT 2(n) times,

writes the resulting binary sequence on a tape, and uses it as

M would have done with its advice string
I Fair toss simulation: M′ simulates every fair toss of M by at

most 2T (n) p-tosses following a specific algorithm

I We can show that the PTMM′ ε-recognizes L in time O(T 2).

Then, there exists a SR-RNN[Q] N – using real probability p also –

which can simulate M′, and thus recognizes L in poly time.

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa



Intro Boolean RNNs Rational RNNs Real RNNs Evolving RNNs Stochastic RNNs Conclusion

Proof – Second Implication

Let L ⊆ {0, 1}∗ be ε-recognizable in polynomial time T by some

fair PTM/log(A)* M.

I We consider the PTM M′ with real probability given by the
binary expansion p = 0.01advice · · · and which works on every
input of length n as follows:

I Advice reconstruction: M′ tosses its fair coin cT 2(n) times,

writes the resulting binary sequence on a tape, and uses it as

M would have done with its advice string
I Fair toss simulation: M′ simulates every fair toss of M by at

most 2T (n) p-tosses following a specific algorithm

I We can show that the PTMM′ ε-recognizes L in time O(T 2).

Then, there exists a SR-RNN[Q] N – using real probability p also –

which can simulate M′, and thus recognizes L in poly time.
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Results

We finally consider the cases of real-weighted as well as all kinds of

evolving networks. In this case, the addition of rational or real

stochasticity does not further increase the computational power of

the networks.

Theorem (Siegelmann 99, Cabessa & Siegelmann 14)

S-RNN[R]s, S-Ev-RNN[Q]s, and S-Ev-RNN[R]s are all

super-Turing equivalent:

I They can decide any possible language in exponential time.

I They compute exactly the class P/poly in polynomial time.
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Proof – First Implication

We prove the case of S-RNN[R]s. The other cases are similar...

Let L ∈ P/poly
I By Theorem 3, L is recognizable by some RNN[R].

I Note that the addition of stochasticity does obviously not de-

crease the computational power of the networks.

Hence, L is also ε-recognizable by some S-RNN[R].
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Proof – Second Implication

Let L be ε-recognizable by some S-RNN[R] N of size N in

polynomial time T .

I Then there exists a family of feedforward RNN[R] {Fn}n≥0 of

depths T (n) + 1 and sizes cnNT (n) + 1 such that each Fn
recognizes L ∩ {0, 1}n (for some constant c).

I Each network Fn consists of cn copies of a T (n)-layer unfolding

of N and related by a majority cell. We can prove that there

exists a constant c and a suitable fixed choice of the random

input cells (orange) such that Fn recognizes L ∩ {0, 1}n.
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Proof – Second Implication

layer 1

layer 2

layer T (n)

layer 1 layer 1

layer T (n)layer T (n)

layer 2layer 2

A network Fn of the family {Fn}n�0
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Proof – Second Implication

I Then, there exists some (static) RNN[R] N ′ which contains

a suitable encoding of the family {Fn}n≥0 as one of its real

synaptic weight.

I On every u input of length n, N ′ is able to decode the network

Fn from its real weight, simulate it, and provide the answer

whether u ∈ L or not.

I N ′ works with a polynomial slowdown.

By Theorem 3, L ∈ P/poly.
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Results – Summary

Computational power of recurrent neural networks in polynomial

time of computation.

Static Sto[Q] Static Sto[R] Static Sto. Evolving

Q P BPP BPP/log∗ P/poly

R P/poly P/poly P/poly P/poly
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Results – Summary

Computational power of recurrent neural networks in polynomial

time of computation.

Static Evolving (bi-valued) Evolving (general)

Q P P/poly P/poly

R P/poly P/poly P/poly

Sto[Q] Static Sto[R] Static Sto. Evolving

Q BPP BPP/log∗ P/poly

R P/poly P/poly P/poly
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Thesis of Natural Computation

I The fact that the complexity class P/poly seems to cannot be

overcome led Siegelmann and Sontag to propose the following

Thesis of Natural Computation:

“Every natural computational phenomenon can be

captured within the TM/poly(A) model.”
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Hypercomputation

The fact P/poly contains P as well as non-recursive languages

raises the issue of the co-called hypercomputation.

I Some physical theories allow for the theoretical possibility of

hypercomputational systems (quantum, relativistic, etc.).

I No such system is actually feasible.

I Martin Davis is strongly opposed to the relevance of the “hy-

percomputational issue”.

I Philosophical and scientific literature about hypercomputation

is however more and more flourishing.
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