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Introduction

• automata → many applications: computer science,

electronics, linguistics, pure maths ...

• relationships between topics

COMPUTER SCIENCE
automata theory

ALGEBRA
semigroups

SET THEORY
games

LOGIC
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Automata and Semigroups

• automaton A on finite words recognizing language L+(A)

1 2

a

b

a b

L+(A) = a{a, b}∗

• semigroup (S, ·): S a set and · an associative law

(A+, ·) = ({finite words on the alphabet A}, concatenation)
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automaton ⇒ semigroup

From an aut. A recog. language L+(A) ⊂ A∗

we associate a semigroup S and morphism φA

A* SAφ

φA simulates the behaviour of A.

construction: S = {binary rel. on Q}, where Q = {states of A}

φA(a) = {(p, q) ∈ Q × Q : (p, a, q) is a trans. of A}
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semigroup ⇒ automaton

From a semigroup S and a morphism φ : A∗ −→ S rec. L ⊂ A∗

we associate automaton Aφ s.t.

construction: states = elements of S

trans. q ∗ a = q · φ(a)

Theorem

equivalence between automata recognizing finite words and

finite semigroups
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• automaton A on infinite words recognizing language Lω(A)

1 2

a

b

1 3

a

b

Büchi condition: F = {1, 2, 3}

Muller condition: F = {{1, 2}, {2, 3}}
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• ω-semigroup S = (S+, Sω)

S+ is a finite semigroup

Sω is a set s.t. every infinite product of elements of S+

belong to Sω

S = ({0, 1}, {a}), with every infinite product equal to a.

Theorem

equivalence between automata recognizing infinite words and

ω-semigroups
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Automata and Logic

• MF2(<) monadic sec. order logic with predicate symbol ”<”

φ = ∀X(∃x∀y(X(x) ∧ x < y))

→ semantic: models are finite or infinite words!

u word of A∞ ⇒ Mu = (Dom(u), (a)a∈A)

Dom(u) = {0, 1, ..., |u|}, a = {i < |u| : u(i) = a}

u = abbaab ⇒ Mu = ({0, 1, ..., 6},a = {0, 3, 4}),b = {1, 2, 5})
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automaton ⇒ logic MF2(<)

Proposition

any language recognized by a Büchi automaton can be

expressed by a formula of MF2(<)

proof: build a formula s.t. the words (i.e models) satisfying it are exactely

the words recognized by the automaton.
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logic MF2(<) ⇒ automaton

Proposition

any subset of words defined by a formula of MF2(<) can be

recognized by a Büchi automaton

constructive proof: subset of words defined by the formula is built

inductively, we check at each step that it is recognizable by a Büchi

automaton

Corrolary

MF2(<) is decidable

proof: can calculate subset def. by φ and decide whether it is Aω or ∅
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Games and Logic

• Parity Games

3

4
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Proposition

parity games are determined
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• µ-calculus : logic with two fixed points operators

– very common in mathematical practice

– simple way of expressing and checking behavioural

properties of computer programs

ν : least fixed point operator

µ : greatest fixed point operator

φ = νy.µx.f(x, g(x, y))

→ semantic (vectorial boolean case): models are parity

games!
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Proposition

each parity game can be characterized by a boolean µ-term

that characterizes its winning positions

conversely,

Proposition

the value of a boolean µ-term can be characterized by the

winning conditions of a parity game

Corrolary

boolean µ-calculus is decidable

proof: can compute parity game associated with the closed µ-term and

since parity game is determined, µ-calculus is decidable.

15



Conclusion

• Topics very interconnected

• Applications of automata theory and game theory in logic

• Algebraic point of view of automata becomes heavy in the

infinite case → try game theory point of view
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