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brain can be approached from the perspective of computability
theory.
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INTRODUCTION

» We assume that some aspects of information processing in the
brain can be approached from the perspective of computability
theory.

» We consider neural network models involved in various (bio-
inspired) computational paradigms.

» We analyze their computational capabilities...
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TURING MACHINE

A Turing machine (TM) consists of an infinite tape, a read-write
head, and a finite program.

input u
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Finite
Program

state qin

SOUTENANCE HDR JEREMIE CABESSA



TURING MACHINES
©00

TURING MACHINE

A Turing machine (TM) consists of an infinite tape, a read-write
head, and a finite program.

input u
Cfofajojolal T I T T T T 100 f-
Finite
Program
state qin

> input u is accepted by M if M(u) reaches the state gy
> input u is rejected by M if M(u) reaches the state g,.;
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A Turing machine (TM) consists of an infinite tape, a read-write
head, and a finite program.

input u

f_J%
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Programme fini
(@in,0) = (q1,0,R)
(¢in,1) = (@1,1,R)
(91,0) = (a1,0,R)
(‘117 ) = (¢, LR)
(q1,) = (g2,0,L)
(g2,0) = (dace, 0, R)
(92,1) = (qrej> 1, R)
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TURING MACHINE

A Turing machine (TM) consists of an infinite tape, a read-write

head, and a finite program.
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input u

r—J%

Lfofrfojofaf TP I T PTHT L]

Programme fini

(¢in,0) = (q1,0,R)
(@in,1) = (@1, 1,R)
(@1,0) = (¢1,0,R)
(@,1) = (¢, 1,R)
(q1,0)  — (g2,b,L)
(@2,0) = (dace, 0, R)
(2,1) = (qTﬂjtlﬁR)
Etat q1
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A Turing machine (TM) consists of an infinite tape, a read-write
head, and a finite program.
input u

f_J%
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Programme fini
(@in,0) = (q1,0,R)
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TURING MACHINE

A Turing machine (TM) consists of an infinite tape, a read-write
head, and a finite program.
input u

f_J%
Lfofefojofaf T PP 1T T PT L]~

Programme fini

(q1,0,R)
a,1,R)

SOUTENANCE HDR JEREMIE CABESSA



INTRODUCTION TURING MACHINES NEURAL NETS CrassicaL Comp ATTRACTOR-BASED COMP CONCLUSION
e} e 1] 00000 0o 0000 oo

CHURCH-TURING THESIS

A function is effectively computable if and only if it is
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CHURCH-TURING THESIS

A function is effectively computable if and only if it is
Turing-computable.

> Informal statement setting the limits of effective computation.

» Implications in philosophy of mind, theoretical psychology, cog-
nitive science, Artificial Intelligence, and Artificial Life.
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CHURCH-TURING THESIS

A function is effectively computable if and only if it is
Turing-computable.

> Informal statement setting the limits of effective computation.

» Implications in philosophy of mind, theoretical psychology, cog-
nitive science, Artificial Intelligence, and Artificial Life.

» Sometimes under debate...
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TURING MACHINE WITH ADVICE

A Turing machine with advice (TM/A) is a TM provided with an
additional advice tape and advice function o : N — {0, 1}*.

input u

Cjofajofofs ] T TPTPT T J--

Finite
Program

state ¢,
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TURING MACHINE WITH ADVICE

A Turing machine with advice (TM/A) is a TM provided with an
additional advice tape and advice function o : N — {0, 1}*.

input u

Cjofijofofs ] P T T PTPT T J--

Finite
Program

state g,

S [EN [E 5 E E  E EE
N—

—

—
advice a(|u|)

» P/poly is the class of languages recognized in polynomial time
by Turing machines with polynomial advices (TM/poly(A)).
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TURING MACHINE WITH ADVICE

A Turing machine with advice (TM/A) is a TM provided with an
additional advice tape and advice function o : N — {0, 1}*.

input u
(efofajojoa] 1 T T T L £ 00 J--
Finite
Program
state g,

S 15 S I G I
— —

—
advice a(|ul)

» A TM/A si strictly more powerful than a TM...
We call this super-Turing.
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BOOLEAN RECURRENT NEURAL NETWORKS

neuron //
by
bin
Ci
N M
zi(t+1)=40 Za” x; t)+ZbU ui(t) + ¢
j=1 j=1
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SIGMOIDAL RECURRENT NEURAL NETWORKS
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SIGMOIDAL RECURRENT NEURAL NETWORKS

a;1(t) ain(t)
neuron eain(t)
Iy
b (t) -

()=

N M
z(t+1) =0 (Z aij(t) - x5 (t) + > bij (1) i (t) + ci(t))
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NEURAL ACTIVITY

Video of firing neurons...
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RECURRENT NEURAL NETWORKS
We consider eight models of RNNs:
1. Boolean rational RNNs: B-RNN[Q]s

N M
zi(t+1) =10 (Z aj - x;(t) + Zbi] cuy(t) + c,:)

j=1 j=1
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RECURRENT NEURAL NETWORKS
We consider eight models of RNNs:
1. Boolean rational RNNs: B-RNN[Q]s
2. Boolean real RNNs: B-RNNJ[R]s

N M
(t+1) =0 (Za] '(I7]<f/)+zl)qj]'1l/]<[/)+07j>
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RECURRENT NEURAL NETWORKS
We consider eight models of RNNs:
1. Boolean rational RNNs: B-RNN[Q]s
2. Boolean real RNNs: B-RNNJ[R]s
3. Sigmoidal static rational RNNs: St-RNN[Q]s

| o N M
/ zi(t+1)=0 (Zu,] <xj(t)+2b,] ~u,j(t)+c,,)
j=1 j=1
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RECURRENT NEURAL NETWORKS
We consider eight models of RNNs:

1. Boolean rational RNNs: B-RNN[Q]s
2. Boolean real RNNs: B-RNNJ[R]s
3. Sigmoidal static rational RNNs: St-RNN[Q]s
4. Sigmoidal static real RNNs: St-RNN[R]s

i(t+1) (Zu] x5 t)+Zb uj(t)+(:,,)
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RECURRENT NEURAL NETWORKS
We consider eight models of RNNs:

1. Boolean rational RNNs: B-RNN[Q]s
2. Boolean real RNNs: B-RNNJ[R]s
3. Sigmoidal static rational RNNs: St-RNN[Q]s
4. Sigmoidal static real RNNs: St-RNN[R]s
5. Sigmoidal bi-valued evolving rational RNNs: Evo-RNN[Q]s
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RECURRENT NEURAL NETWORKS
We consider eight models of RNNs:

1. Boolean rational RNNs: B-RNN[Q]s
2. Boolean real RNNs: B-RNNJ[R]s
3. Sigmoidal static rational RNNs: St-RNN[Q]s
4. Sigmoidal static real RNNs: St-RNN[R]s
5. Sigmoidal bi-valued evolving rational RNNs: Evo-RNN[Q]s
6. Sigmoidal bi-valued evolving real RNNs: Eva-RNN[R]s

N M
zt+1) =0 (Z aig(t) i (8) + > by (1) - u;(t) + c,,(f))
=

J=1
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RECURRENT NEURAL NETWORKS
We consider eight models of RNNs:

1.

W

e o

Boolean rational RNNs:

Boolean real RNNs:

Sigmoidal static rational RNNs:

Sigmoidal static real RNNs:

Sigmoidal bi-valued evolving rational RNNs:
Sigmoidal bi-valued evolving real RNNs:
Sigmoidal general evolving rational RNNs:

J=1

SOUTENANCE HDR

B-RNN[Q]s
B-RNN[R]s
St-RNN[Q]s
St-RNN[R]s
Evo-RNN[Q]s
Evo-RNN[R]s
Ev-RNN[Q]s

N M
zt+1) =0 (Z aig(t) i (8) + > by (1) - u;(t) + c,,(f))
=
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RECURRENT NEURAL NETWORKS
We consider eight models of RNNs:

1. Boolean rational RNNs:

2. Boolean real RNNs:

3. Sigmoidal static rational RNNs:

4. Sigmoidal static real RNNs:

5. Sigmoidal bi-valued evolving rational RNNs:
6. Sigmoidal bi-valued evolving real RNNs:

7. Sigmoidal general evolving rational RNNs:
8. Sigmoidal general evolving real N-RNNs:

N
nnnnnn + a(t)
N N

J=1

SOUTENANCE HDR

M
bl ni(t+1) =0 (Z aii(t) - z;(t) + > bis(t)
j=1

B-RNN[Q]s
B-RNN[R]s
St-RNN[Q]s
St-RNN[R]s
Evo-RNN[Q]s
Evo-RNN[R]s
Ev-RNN[Q]s
Ev-RNN[R]s

-uy(t) +0,,(f))
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RNNsS AS LANGUAGE RECOGNIZERS

We consider RNNs with Boolean input and output cells, Boolean
or sigmoidal internal cells.

Boolean Boolean
input O— o . O output
Boolean or sigmoid
Boolean internal cells Boolean
validation validation
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RNNsS AS LANGUAGE RECOGNIZERS

We consider RNNs with Boolean input and output cells, Boolean
or sigmoidal internal cells.

Boolean 0 Boolean
Input Boolean or sigmoid output
Boolean o> internal cells Boolean

validation validation

Boolean
input stream
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RNNsS AS LANGUAGE RECOGNIZERS

We consider RNNs with Boolean input and output cells, Boolean
or sigmoidal internal cells.

Boolean o Boolean
input Boolean or sigmoid output
Boolean internal cells Boolean
validation validation

Boolean

oo
oce
oce
oo

input stream

Boolean
output stream

o
°

-
oe
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RNNsS AS LANGUAGE RECOGNIZERS

We consider RNNs with Boolean input and output cells, Boolean
or sigmoidal internal cells.

Boolean o Boolean
input Boolean or sigmoid output
Boolean internal cells o Boolean
validation validation
Boolean 0eeo
input stream ocooo0
Boolean ° jeio @

oo
o]
oo
oce
oce
oo
oe
LXK J
oo
o]

ceocooo0eocoe
output stream Oooo0o0o0o000O0

» Input stream s € B* rejected by N iff N(s) = 0.
» Input stream s € B* accepted by N iff N'(s) = 1.
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RESULTS
BOOLEAN STATIC BI-VALUED EVOLVING EvoLvING
FSA ™ TM/poly(A) TM/poly(A)
Q REG P P/poly P/poly
Kl 56, Mi 67 Si & So 95 Ca & Si 11,14 Ca & Si 11,14
FSA TM/poly(A) TM/poly(A) TM/poly(A)
R REG P/poly P/poly P/poly
Kl 56, Mi 67 Si & So 94 Ca & Si 11,14 Ca & Si 11,14
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DETERMINISTIC w-RNNS

We consider RNNs with Boolean input and output cells, sigmoidal
internal cells, and working on infinite input streams.

O
Boolean O\) Sigmoid O Boolean
input . internal . output
cells o cells . cells
O
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DETERMINISTIC w-RNNS

We consider RNNs with Boolean input and output cells, sigmoidal
internal cells, and working on infinite input streams.

O
Boolean O— Sigmoid (O Boolean
input . internal . output
cells o cells . cells
O
Infinite Boolean ©000000000000000000
O0Oeo0OO0O@O0O@0O0OeO0OO0OO0O@®@O0OeEEeO '

input stream
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DETERMINISTIC w-RNNS

We consider RNNs with Boolean input and output cells, sigmoidal
internal cells, and working on infinite input streams.

O
Boolean O\> Sigmoid O Boolean
input . internal . output
cells o cells . cells
O

Infinite Boolean

oce
oo
®O0
ce
[ee]
[ X ]
[ee]
0
oce
oce
® 0
[ee]
[ee]
oce
0
oo
®O0
®O0
o

input stream o’

. y eo0o0 ocoeoe ecee0 e
Infinite Boolean 0C0@0@0000000000000 e
output stream oeo ceooe @e0o0eO0O0

SOUTENANCE HDR JEREMIE CABESSA



INTRODUCTION [URING MACHINES NEURAL NETS CrassicaL Comp ATTRACTOR-BASED COMP. CONCLUSION
e} 000 00000 0o €000 oo

DETERMINISTIC w-RNNS

We consider RNNs with Boolean input and output cells, sigmoidal
internal cells, and working on infinite input streams.

Boolean O— Sigmoid QO Boolean
input . internal . output
cells o cells . cells

Infinite Boolean 0000000000000 00000
input stream O0Oeo0OO0O@O0O@0O0OeO0OO0OO0O@®@O0OeEEeO '
s y eo0o0 00e0e08®0®000O00
Infinite Boolean 0O000@000000000000C0S -
output stream 000000000000 @00@00

—
Attractor (periodic)
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DETERMINISTIC w-RNNS

We consider RNNs with Boolean input and output cells, sigmoidal
internal cells, and working on infinite input streams.

Boolean O— Sigmoid (O Boolean
input . internal . output
cells o cells . cells
Infinite Boolean ©000000000000000000
input stream 0C0@00008@00000000 e 8O0

" y 000000000000 0000 80
Infinite Boolean 0O0@0@000000000000806
output stream coeo o oco,e00e@ O e®o0o0

—
Attractor (periodic)

> Input stream s € (BM)“ accepted by N iff N'(s) enters a
meaningful attractor.

» Input stream s € (BM)“ rejected by N iff N'(s) enters a spu-

rious attractor.
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GENERAL EVOLVING

D-St-RNN[Q]s
€ BO(MY)
Turing (Muller)

D-Eva-RNN[Q]s
= BC(13)

super-Turing

D-Ev-RNN[Q]s
= BC(3)

super-Turing

D-St-RNN[R]s
= BC(13)

super-Turing

D-Eva-RNN[R]s
= BC(13)

super-Turing

D-Ev-RNN[R]s
= BC(13)

super-Turing
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NONDETERMINISTIC w-RNNs (TypE II)

The RNNs are provided with an additional evolution set.

0]
Boolean O— Sigmoid QO Boolean
input internal . output
cells o— cells . cells
O

5.8 — S
S
7/ T~

————— 2

timeit;//\_/\

Evolution
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NONDETERMINISTIC w-RNNs (TypE II)

The RNNs are provided with an additional evolution set.
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NONDETERMINISTIC w-RNNs (TypE II)
The RNNs are provided with an additional evolution set.
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NONDETERMINISTIC w-RNNs (TypE II)

The RNNs are provided with an additional evolution set.
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NONDETERMINISTIC w-RNNs (TypE II)

The RNNs are provided with an additional evolution set.

O
Boolean O— Sigmoid O Boolean
input . internal . output
cells o cells . cells
O
~ 7
T _
Evolution - /7>7<J/'\
j—> timet _ ,/\
Infinite Boolean ©00@@0@®@000ee000e@00000
input stream 0O0@00@@00000000000eo
s . e000O®@0O0GO0CO000000O0S®
Infinite Boolean 0O0@0@@0000000000000Ee
output stream OC0O®0000800®@00®00®O0O0

et
Attractor (periodic)

{

Input stream s € (BM)“ accepted by N iff there exists some
evolution e € E s.t. N(s,e) enters a meaningful attractor.
Input stream s € (BM)“ rejected by N otherwise.
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CONCLUSIONS

» We provided a characterization of the expressive power of sev-
eral models of recurrent neural networks involved in various
computational paradigms.

» The power of the continuum (real synaptic weights) does add
computational capabilities.

» The synaptic plasticity (evolving synaptic weights) add equiva-
lent computational capabilities.

» Future work: super-Turing hierarchization in terms of the evolv-
ing speed of the networks.
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CONCLUSIONS

> In general, the super-Turing computational capabilities of neu-
ral models raise the issue of hypercomputation.

» Current physical theories are consistent with the possibility of
hypercomputational systems (e.g., quantum, relativistic). No
such systems are currently feasible or harnessable.

» Philosophical considerations: What is computation? Extension
of the Church-Turing Thesis; Thesis of Analog Computation
(Siegelmann & Sontag [1995]); Church-Turing Thesis of Inter-
active Computation (van Leeuven & Wiedermann [2001]).
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LiMiT KNOWLEDGE: A TOPOLOGICAL
APPROACH TO EPISTEMIC GAME THEORY

Jérémie Cabessa
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» Interactive Epistemology: mathematical modelling of knowl-
edge and belief of multiple interacting agents.
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ErisTEMIC GAME THEORY

» Interactive Epistemology: mathematical modelling of knowl-
edge and belief of multiple interacting agents.

» Epistemic Game theory: interactive epistemology applied in
the context of game theory.
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CoMMON KNOWLEDGE

FE is common knowledge iff everybody knows E, and everybody
knows that everybody knows F/, and everybody knows that
everybody knows that everybody knows F, etc.
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LiMiT KNOWLEDGE

> It might be thought of that the higher-order mutual knowl-
edge claims K™ (FE) become closer and closer to common
knowledge C K (FE). But it is not the case...
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LiMiT KNOWLEDGE

> It might be thought of that the higher-order mutual knowl-
edge claims K™ (FE) become closer and closer to common
knowledge C K (FE). But it is not the case...

» In fact, the standard set-based approach to interactive epis-
temology lacks a general framework providing some formal
notion of closeness between events.

» An additional topological dimension introduces a perception
of closeness between events.
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We now consider the following epistemic-topological operator /imit
knowledge.
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We now consider the following epistemic-topological operator /imit
knowledge.

DEFINITION 1 (LiMIT KNOWLEDGE)

Let A be a topological Aumann structure, and E be some event. If
the (topological) limit point of the sequence of iterated mutual
knowledge claims (K" (E))m>0 is unique, then
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LiMiT KNOWLEDGE

We now consider the following epistemic-topological operator /imit
knowledge.

DEFINITION 1 (LiMIT KNOWLEDGE)

Let A be a topological Aumann structure, and E be some event. If
the (topological) limit point of the sequence of iterated mutual
knowledge claims (K" (E))m>0 is unique, then

LK(E):= lim K™(E)

m— 00

is the event that E is limit knowledge among the set I of agents.
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LiMiT KNOWLEDGE

Limit knowledge can be understood as the event which is
approached by the sequence of iterated mutual knowledge,
according to some notion of closeness between events (provided by
a topology on the event space).
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LimiT KNOWLEDGE, GAMES, AND AUMANN’S
AGREEMENT THEOREM

» Limit knowledge can provide alternative epistemic-topological
characterizations of solution concepts in games.
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LimiT KNOWLEDGE, GAMES, AND AUMANN’S
AGREEMENT THEOREM

» Limit knowledge can provide alternative epistemic-topological
characterizations of solution concepts in games.

» Limit knowledge of rationality can even potentially character-
ize any possible event and solution concept.
» Aumann’s Agreement Theorem (1976): “Agents cannot agree
to disagree”. Limiting result: No-Trade Theorem:
; Study of weakened or modified epistemic assump-

tions:
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LimiT KNOWLEDGE, GAMES, AND AUMANN’S
AGREEMENT THEOREM

» Limit knowledge can provide alternative epistemic-topological
characterizations of solution concepts in games.

» Limit knowledge of rationality can even potentially character-
ize any possible event and solution concept.
» Aumann’s Agreement Theorem (1976): “Agents cannot agree
to disagree”. Limiting result: No-Trade Theorem:
; Study of weakened or modified epistemic assump-

tions:

> We proved that “agents can limit-agree to disagree”...
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ble of capturing reasoning patterns of agents based on close-
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CONCLUSION

» Limit knowledge is a new epistemic-topological operator capa-
ble of capturing reasoning patterns of agents based on close-

ness of events.

» The operator has relevant implications in interactional situa-

tions or games.

» Future work: topological foundation of common knowledge.
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