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Introduction

I
We assume that some aspects of information processing in the

brain can be approached from the perspective of computability

theory.

I
We consider neural network models involved in various (bio-

inspired) computational paradigms.

I
We analyze their computational capabilities...
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Turing Machine

A Turing machine (TM) consists of an infinite tape, a read-write

head, and a finite program.

0 1 10 01

input u

Finite
Program

state qin

I
input u is accepted by M if M(u) reaches the state qacc

I
input u is rejected by M if M(u) reaches the state qrej
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Church-Turing Thesis

A function is e↵ectively computable if and only if it is

Turing-computable.

I
Informal statement setting the limits of e↵ective computation.

I
Implications in philosophy of mind, theoretical psychology, cog-

nitive science, Artificial Intelligence, and Artificial Life.

I
Sometimes under debate...
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Turing Machine with Advice
A Turing machine with advice (TM/A) is a TM provided with an

additional advice tape and advice function ↵ : N �! {0, 1}⇤.

0 1 10 01

input u

advice ↵(|u|)

Finite
Program

state qin

P/poly is the class of languages recognized in polynomial time

by Turing machines with polynomial advices (TM/poly(A)).
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additional advice tape and advice function ↵ : N �! {0, 1}⇤.

0 1 10 01

input u

10 11 1 110 00 0

advice ↵(|u|)

Finite
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I
A TM/A si strictly more powerful than a TM...

We call this super-Turing.
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Recurrent Neural Network
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Boolean Recurrent Neural Networks

ci

ai1
ai2

aiN

biM

bi1

1

1

0

�

xi

neuron

xi(t+ 1) = ✓

0

@
NX

j=1

aij · xj(t) +
MX

j=1

bij · uj(t) + ci

1

A

Soutenance HDR Jérémie Cabessa



Introduction Turing Machines Neural Nets Classical Comp. Attractor-Based Comp. Conclusion

Sigmoidal Recurrent Neural Networks
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Sigmoidal Recurrent Neural Networks
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Recurrent Neural Networks
We consider eight models of RNNs:

1. Boolean rational RNNs: B-RNN[Q]s

2. Boolean real RNNs: B-RNN[R]s
3. Sigmoidal static rational RNNs: St-RNN[Q]s

4. Sigmoidal static real RNNs: St-RNN[R]s
5. Sigmoidal bi-valued evolving rational RNNs: Ev2-RNN[Q]s

6. Sigmoidal bi-valued evolving real RNNs: Ev2-RNN[R]s
7. Sigmoidal general evolving rational RNNs: Ev-RNN[Q]s

8. Sigmoidal general evolving real N-RNNs: Ev-RNN[R]s
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RNNs as Language Recognizers

We consider RNNs with Boolean input and output cells, Boolean

or sigmoidal internal cells.

Boolean
input

Boolean
outputBoolean or sigmoid

internal cells Boolean
validation

Boolean
validation

· · ·

· · ·
Boolean

output stream

Boolean
input stream

I
Input stream s 2 B⇤

rejected by N i↵ N (s) = 0.

I
Input stream s 2 B⇤

accepted by N i↵ N (s) = 1.
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The RNNs are provided with an additional evolution set.
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Conclusions

I
We provided a characterization of the expressive power of sev-

eral models of recurrent neural networks involved in various

computational paradigms.

I
The power of the continuum (real synaptic weights) does add

computational capabilities.

I
The synaptic plasticity (evolving synaptic weights) add equiva-

lent computational capabilities.

I
Future work: super-Turing hierarchization in terms of the evolv-

ing speed of the networks.
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Conclusions

I
In general, the super-Turing computational capabilities of neu-

ral models raise the issue of hypercomputation.

I
Current physical theories are consistent with the possibility of

hypercomputational systems (e.g., quantum, relativistic). No

such systems are currently feasible or harnessable.

I
Philosophical considerations: What is computation? Extension

of the Church-Turing Thesis; Thesis of Analog Computation

(Siegelmann & Sontag [1995]); Church-Turing Thesis of Inter-

active Computation (van Leeuven & Wiedermann [2001]).
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Epistemic Game Theory

I
Interactive Epistemology: mathematical modelling of knowl-

edge and belief of multiple interacting agents.

I
Epistemic Game theory: interactive epistemology applied in

the context of game theory.
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Common Knowledge

I2
I1

A

CK(E) =
\

m�0

Km(E)

E is common knowledge i↵ everybody knows E, and everybody

knows that everybody knows E, and everybody knows that

everybody knows that everybody knows E, etc.
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Limit Knowledge

I
It might be thought of that the higher-order mutual knowl-

edge claims Km(E) become closer and closer to common

knowledge CK(E). But it is not the case...

I
In fact, the standard set-based approach to interactive epis-

temology lacks a general framework providing some formal

notion of closeness between events.

I
An additional topological dimension introduces a perception

of closeness between events.
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We now consider the following epistemic-topological operator limit

knowledge.

Definition 1 (Limit Knowledge)

Let A be a topological Aumann structure, and E be some event. If

the (topological) limit point of the sequence of iterated mutual

knowledge claims (Km(E))m>0 is unique, then

LK(E) := lim
m!1

Km(E)

is the event that E is limit knowledge among the set I of agents.
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Limit Knowledge

Limit knowledge can be understood as the event which is

approached by the sequence of iterated mutual knowledge,

according to some notion of closeness between events (provided by

a topology on the event space).

Soutenance HDR Jérémie Cabessa



Introduction Aumann Structures Common Knowledge Limit Knowledge Results Conclusion

Limit Knowledge, Games, and Aumann’s

Agreement Theorem

I
Limit knowledge can provide alternative epistemic-topological

characterizations of solution concepts in games.

I
Limit knowledge of rationality can even potentially character-

ize any possible event and solution concept.

I
Aumann’s Agreement Theorem (1976): “Agents cannot agree

to disagree”. Limiting result: No-Trade Theorem: Milgrom and

Stokey (1982); Study of weakened or modified epistemic assump-

tions: Geanakoplos and Polemarchakis (1982), Bacharach (1985), Monderer

and Samet (1989), Samet (1990), Sonsino (1995), Neeman (1996a, 1996b),

Kajii and Morris (1997), Morris (1999).

I
We proved that “agents can limit-agree to disagree”...
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Conclusion

I
Limit knowledge is a new epistemic-topological operator capa-

ble of capturing reasoning patterns of agents based on close-

ness of events.

I
The operator has relevant implications in interactional situa-

tions or games.

I
Future work: topological foundation of common knowledge.
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