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Introduction

I We follow the so-called mind-computer analogy approach
to cognitive science.

I We study the computational capabilities of basic models of
recurrent neural networks.

I We show that recurrent neural networks provide a natural
model of computation beyond the Turing limits.
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Turing machine

A Turing machine (TM) consists of an infinite tape, a read-write
head, and a finite program.

1 0

Finite
Program
state qin

Tape 1 10 0

input u

I input u is accepted by M if M(u) reaches the state qacc

I input u is rejected by M if M(u) reaches the state qrej
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Turing machine

A Turing machine (TM) consists of an infinite tape, a read-write
head, and a finite program.
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Finite
Program
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Tape 1 10 0

I input u is accepted by M if M(u) reaches the state qacc
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Turing machine

A Turing machine (TM) consists of an infinite tape, a read-write
head, and a finite program.

0 1

Finite
Program
state q13

Tape 1 10 0

I input u is accepted by M if M(u) reaches the state qacc
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The Church-Turing thesis

The Church-Turing Thesis states that the Turing machine model
is capable of capturing all possible aspects of algorithmic
computation.

A function is algorithmically computable if and only if it
is computable by a Turing machine.

Recurrent neural networks actually provide a natural model
beyond the Turing limits.
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Turing machine with advice

A Turing machine with advice (TM/A) is a Turing machine
provided with an additional advice tape and advice function
α : N −→ {0, 1}∗.

Finite
Program
state qin

Tape

Advice
Tape

0 1 10 01

input u

advice α(|u|)
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Turing machine with advice

A Turing machine with advice (TM/A) is a Turing machine
provided with an additional advice tape and advice function
α : N −→ {0, 1}∗.

Finite
Program
state qadv

Tape

Advice
Tape

0 1 10 01

input u

10 11 1 110 00 0

advice α(|u|)
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TM vs TM/A

The complexity class P (PTIME) is the collections of all
languages decidable in polynomial time by some TM.

The complexity class P/poly is the collections of all languages
decidable in polynomial time by some TM/poly(A).

Lemma

TM/poly(A)s are strictly more powerful than TMs (super-Turing)
already in polynomial time of computation, i.e. P/poly ) P.

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa



Introduction TMs and TM/As RNNs and Classical Computation RNNs and Interactive Computation Conclusion

TM vs TM/A

The complexity class P (PTIME) is the collections of all
languages decidable in polynomial time by some TM.

The complexity class P/poly is the collections of all languages
decidable in polynomial time by some TM/poly(A).

Lemma

TM/poly(A)s are strictly more powerful than TMs (super-Turing)
already in polynomial time of computation, i.e. P/poly ) P.

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa



Introduction TMs and TM/As RNNs and Classical Computation RNNs and Interactive Computation Conclusion

TM vs TM/A

The complexity class P (PTIME) is the collections of all
languages decidable in polynomial time by some TM.

The complexity class P/poly is the collections of all languages
decidable in polynomial time by some TM/poly(A).

Lemma

TM/poly(A)s are strictly more powerful than TMs (super-Turing)
already in polynomial time of computation, i.e. P/poly ) P.

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa



Introduction TMs and TM/As RNNs and Classical Computation RNNs and Interactive Computation Conclusion

Recurrent neural networks
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Dynamics: static synaptic weights

ci

ai1 ai2

aiN

biM

bi1

1

1

0

σ

xi

neuron

xi(t + 1) = σ

 N∑
j=1

aij · xj(t) +
M∑

j=1

bij · uj(t) + ci


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Computational power

RNN[Q]s: networks with static rational weights

RNN[R]s: networks with static real (analog) weights

Theorem (Siegelmann & Sontag 94, 95)

I RNN[Q]s are Turing equivalent.
I RNN[R]s are super-Turing, i.e.

RNN[R]s are equivalent to TM/poly(A) in poly time.
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Evolving recurrent neural networks
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Dynamics: evolving synaptic weights

ci(t)

ai1(t)ai2(t)

aiN (t)

biM (t)

bi1(t)
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xi(t + 1) = σ

 N∑
j=1

aij(t) · xj(t) +
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j=1

bij(t) · uj(t) + ci(t)
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Computational power

Ev-RNN[Q]s: networks with evolving rational weights

Ev-RNN[R]s: networks with evolving real (analog) weights

Theorem (Cabessa & Siegelmann 11)

I Ev-RNN[Q]s are super-Turing, i.e.
Ev-RNN[Q]s are equivalent to TM/poly(A) in poly time.

I Ev-RNN[R]s are super-Turing, i.e.
Ev-RNN[R]s are equivalent to TM/poly(A) in poly time.
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Summary of the results

Static Evolving

Q Turing Super-Turing
Siegelmann & Sontag 95 Cabessa & Siegelmann 11

R Super-Turing Super-Turing
Siegelmann & Sontag 94 Cabessa & Siegelmann 11
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Classical computation

Environment

Device
initial state

Closed-box and amnesic...
“[...] no longer fully corresponds to the current notion
of computing in modern systems.” (Van Leeuwen &
Wiedermann 2008)
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Classical computation

Environment

Device
final state

output

Closed-box and amnesic...
“[...] no longer fully corresponds to the current notion
of computing in modern systems.” (Van Leeuwen &
Wiedermann 2008)
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Interactive computation

Environment

Device
initial state

Sequentially interactive and memory active... More appropriate
for bio-inspired complex information processing systems.
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Interactive computation

Environment

Device
state qi

output

Sequentially interactive and memory active... More appropriate
for bio-inspired complex information processing systems.
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Interactive computation

Environment

Device
state qj

output

Sequentially interactive and memory active... More appropriate
for bio-inspired complex information processing systems.
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Interactive Turing machine

An interactive Turing machine (Int-TM) consists of a work tape,
an input and an output port, a read-write head, and a finite
program.

Finite
Program
state qin

1 0 011· · · 0 1 λ 0 0 · · ·

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa



Introduction TMs and TM/As RNNs and Classical Computation RNNs and Interactive Computation Conclusion

Interactive Turing machine

An interactive Turing machine (Int-TM) consists of a work tape,
an input and an output port, a read-write head, and a finite
program.

Finite
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Interactive Turing machine with advice
An interactive TM with advice (Int-TM/A) is an Int-TM provided
with additional advice input and output tapes and advice
function α : N −→ {0, 1}∗.

α(n)

Finite
Program

state qi

0 1 10 01

1 0 011· · · 0 1 λ 0 0 · · ·
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Interactive Turing machine with advice
An interactive TM with advice (Int-TM/A) is an Int-TM provided
with additional advice input and output tapes and advice
function α : N −→ {0, 1}∗.

α(n)

Finite
Program
state qadv

0 1 10 01

1 0 011· · · 0 1 λ 0 0 · · ·

01 1 01 1

n
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Interactive Turing machine with advice
An interactive TM with advice (Int-TM/A) is an Int-TM provided
with additional advice input and output tapes and advice
function α : N −→ {0, 1}∗.

10 11 1 110 00 0

α(n)

Finite
Program
state qadv

0 1 10 01

1 0 011· · · 0 1 λ 0 0 · · ·

01 1 01 1

n
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Lemma

Int-TM/As are strictly more powerful than int-TMs, i.e., they can
compute strictly more ω-translations.
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Computational power
The results concerning the computational power of RNNs in
classical computation generalize to the interactive
computational framework.

Static Evolving

Q Turing Super-Turing
Cabessa & Siegelmann 12 Cabessa 12

R Super-Turing Super-Turing
Cabessa & Siegelmann 12 Cabessa 12

Cabessa & Villa 12
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Conclusions
I Recurrent neural networks provide a natural abstract

model of computation beyond the Turing limits (Cabessa &
Villa 12).

I Architectural Evolution represents an equivalent alternative
to the power of the continuum towards the achievement of
super-Turing capabilities.

I The results support the idea that architectural evolution
might play a crucial role in the computational capabilities of
biological neural networks.

I Future work: study the computational power of other kinds
of architecturally evolving networks: other sigmoid
functions, other learning rules, spiking networks, etc.
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