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Introduction

» We follow the so-called mind-computer analogy approach
to cognitive science.
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Introduction

» We follow the so-called mind-computer analogy approach
to cognitive science.

» We study the computational capabilities of basic models of
recurrent neural networks.

» We show that recurrent neural networks provide a natural
model of computation beyond the Turing limits.
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TMs and TM/As
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Turing machine

A Turing machine (TM) consists of an infinite tape, a read-write
head, and a finite program.

input u

———
Tape [1fof1foJofn] T [T TT TP T]-

Finite
Program
state g
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Turing machine

A Turing machine (TM) consists of an infinite tape, a read-write
head, and a finite program.

Tape [of1ftfoJofaf | J [ [P T ] 0] -

Finite
Program
state qg

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa



TMs and TM/As
€000

Turing machine

A Turing machine (TM) consists of an infinite tape, a read-write
head, and a finite program.

Tape Jof1]1]ofJofa] J PP O] T T ]--
Finite
Program
state qg

> input u is by M if M(u) reaches the state

» input u is rejected by M if M(u) reaches the state ¢,.;
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The Church-Turing thesis

The Church-Turing Thesis states that the Turing machine model
is capable of capturing all possible aspects of algorithmic
computation.

A function is algorithmically computable if and only if it
is computable by a Turing machine.
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The Church- Turmg thesis

The Church-Turing Thesis states that the Turing machine model

is capable of capturing all possible aspects of algorithmic
computation.

A function is algorithmically computable if and only if it
is computable by a Turing machine.

Recurrent neural networks actually provide a natural model
beyond the Turing limits.
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Turing machine with advice

A Turing machine with advice (TM/A) is a Turing machine
provided with an additional advice tape and advice function
a:N— {0,1}*.

input u

Tape [1Jof1foJof+] J J I VPP QO] )--

Finite
Program
state g,

Advice
ope LITTTTTTTTTTTITT11]-

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa



Introduction ~ TMs and TM/As RNNs and Classical Computation RNNs and Interactive Computation Conclusion
o [eYe] Yo 0000000 000000 oo

Turing machine with advice

A Turing machine with advice (TM/A) is a Turing machine
provided with an additional advice tape and advice function
a:N— {0,1}*.

input u

Tape [1JofifoJof+] J J IV PP ] O] ]--

Finite
Program
state q adv

Advice
Tape Lol1l1foftjofofafaf1fol F [ 1 J--
N— —

~
advice a(|ul)
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TM vs TM/A

The complexity class P (PTIME) is the collections of all
languages decidable in polynomial time by some TM.
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TM vs TM/A

The complexity class P (PTIME) is the collections of all
languages decidable in polynomial time by some TM.

The complexity class P/poly is the collections of all languages
decidable in polynomial time by some TM/poly(A).
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TM vs TM/A

The complexity class P (PTIME) is the collections of all
languages decidable in polynomial time by some TM.

The complexity class P/poly is the collections of all languages
decidable in polynomial time by some TM/poly(A).

Lemma

TM/poly(A)s are strictly more powerful than TMs (super-Turing)
already in polynomial time of computation, i.e. P/poly D P.
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Recurrent neural networks
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Dynamics: static synaptic weights

neuron

“ |

C;

x(t+1)=0 Zau xj(t +ZbJ ui(t) +c;
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Computational power

RNN[Q]s: networks with static rational weights

RNN[R]s: networks with static real (analog) weights
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Computational power

RNN[Q]s: networks with static rational weights

RNN[R]s: networks with static real (analog) weights

Theorem (Siegelmann & Sontag 94, 95)

» RNN[Q]s are Turing equivalent.
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Computational power

RNN[Q]s: networks with static rational weights

RNN[R]s: networks with static real (analog) weights

Theorem (Siegelmann & Sontag 94, 95)

» RNN[Q]s are Turing equivalent.

» RNN[R]s are super-Turing, i.e.
RNN|R s are equivalent to TM/poly(A) in poly time.
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Evolving recurrent neural networks

ass(t

co(t)

es(t)
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Dynamics: evolving synaptic weights
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Computational power

Ev-RNN[Q]s: networks with evolving rational weights

Ev-RNN[R]s: networks with evolving real (analog) weights
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Computational power

Ev-RNN[Q]s: networks with evolving rational weights

Ev-RNN[R]s: networks with evolving real (analog) weights

Theorem (Cabessa & Siegelmann 11)

» Ev-RNN[Q]s are super-Turing, i.e.
Ev-RNN[Q]s are equivalent to TM/poly(A) in poly time.
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Computational power

Ev-RNN[Q]s: networks with evolving rational weights

Ev-RNN[R]s: networks with evolving real (analog) weights

Theorem (Cabessa & Siegelmann 11)

» Ev-RNN[Q]s are super-Turing, i.e.

Ev-RNN[Q]s are equivalent to TM/poly(A) in poly time.
» Ev-RNN|R]s are super-Turing, i.e.

Ev-RNN|R]s are equivalent to TM/poly(A) in poly time.
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Summary of the results

Static Evolving

Q Turing Super-Turing

Siegelmann & Sontag 95 Cabessa & Siegelmann 11

R | Super-Turing | Super-Turing

Siegelmann & Sontag 94 Cabessa & Siegelmann 11
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Device
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Device
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Classical computation
[ N
Environment
Device
final state @iFBL
) J

Closed-box and amnesic...

“l...] no longer fully corresponds to the current notion
of computing in modern systems.” (Van Leeuwen &
Wiedermann 2008)
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Interactive computation

e N
Environment

Device

initial state

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa



Introduction  TMs and TM/As ~ RNNs and Classical Computation ~ RNNs and Interactive Computation  Conclusion
[e] 0000 0000000 0®@0000 oo}

Interactive computation
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Interactive computation

e N
Environment

Device
output

state q;
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Interactive computation

e N
Environment

Device

computation...

Sequentially interactive and memory active... More appropriate
for bio-inspired complex information processing systems.
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Interactive Turing machine

An interactive Turing machine (Int-TM) consists of a work tape,
an input and an output port, a read-write head, and a finite
program.

K Finite

C——>{ Program —>

state q;,,
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Interactive Turing machine

An interactive Turing machine (Int-TM) consists of a work tape,
an input and an output port, a read-write head, and a finite
program.

Cilofifojofaf T PP TP ]

Finite

+11010 =—=p>| Program ——> 01100

state q

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa



Introduction  TMs and TM/As ~ RNNs and Classical Computation ~ RNNs and Interactive Computation  Conclusion
o 0000 0000000 000000 [ele}

Interactive Turing machine with advice

An interactive TM with advice (Int-TM/A) is an Int-TM provided
with additional advice input and output tapes and advice
function o : N — {0, 1}*.

Clofifojoft] T 11T F]-

Finite

<+11010 > Program ——=> 011200

state q
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Interactive Turing machine with advice

An interactive TM with advice (Int-TM/A) is an Int-TM provided
with additional advice input and output tapes and advice
function o : N — {0, 1}*.

Clofifojoft] T 11T F]-

Finite

<+11010 —=>]{ Program ——=> 01200
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Interactive Turing machine with advice

An interactive TM with advice (Int-TM/A) is an Int-TM provided
with additional advice input and output tapes and advice
function o : N — {0, 1}*.
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Lemma

Int-TM/As are strictly more powerful than int-TMs, i.e., they can
compute strictly more w-translations.
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Computational power

The results concerning the computational power of RNNs in
classical computation generalize to the interactive
computational framework.

Static Evolving

Q Turing Super-Turing

Cabessa & Siegelmann 12 Cabessa 12

R | Super-Turing | Super-Turing

Cabessa & Siegelmann 12 Cabessa 12
Cabessa & Villa 12
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Conclusions

» Recurrent neural networks provide a natural abstract
model of computation beyond the Turing limits (Cabessa &
Villa 12).

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa



Introduction  TMs and TM/As RNNs and Classical Computation NNs and Interactive Computation =~ Conclusion
[ Je]

Conclusions

» Recurrent neural networks provide a natural abstract
model of computation beyond the Turing limits (Cabessa &
Villa 12).

» Architectural Evolution represents an equivalent alternative

to the power of the continuum towards the achievement of
super-Turing capabilities.
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Conclusions

» Recurrent neural networks provide a natural abstract
model of computation beyond the Turing limits (Cabessa &
Villa 12).

» Architectural Evolution represents an equivalent alternative
to the power of the continuum towards the achievement of
super-Turing capabilities.

» The results support the idea that architectural evolution

might play a crucial role in the computational capabilities of
biological neural networks.

Computational Capabilities of Recurrent Neural Networks Jérémie Cabessa



Conclusion
[ le]

Conclusions

» Recurrent neural networks provide a natural abstract
model of computation beyond the Turing limits (Cabessa &
Villa 12).

» Architectural Evolution represents an equivalent alternative
to the power of the continuum towards the achievement of
super-Turing capabilities.

» The results support the idea that architectural evolution
might play a crucial role in the computational capabilities of
biological neural networks.

» Future work: study the computational power of other kinds
of architecturally evolving networks: other sigmoid
functions, other learning rules, spiking networks, etc.
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