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Introduction

The fields of artificial neural networks and theoretical computer
science have been linked since their inception (McCulloch and
Pitts 1943, Kleene 1956, Minsky 1967).
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Introduction

The fields of artificial neural networks and theoretical computer
science have been linked since their inception (McCulloch and
Pitts 1943, Kleene 1956, Minsky 1967).

Synaptic weights | Activation function | Computational power
rational hard-threshold finite state automaton
rational (linear) sigmoid Turing machine

real (linear) sigmoid super-Turing machine

We provide a refined classification of first-order recurrent neural
networks with rational weights and hard-threshold activation
function.
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First-order recurrent neural networks

ARNN s atuple N = (X, U,a,b,c) where:
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B a: X x X — Q describes the synaptic weights,
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The dynamic of cell i is given by

N M .
0 ifx<l1,
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A RNN is a tuple N' = (X, U, a, b, c) where: @/
m X is a finite set of activation cells, m;@ 12
m U is a finite set of input cells, %

B a: X x X — Q describes the synaptic weights,
B b: X x U— Q describes the input synaptic weights,
B ¢ : X — Q describes the incoming background activity.

The dynamic of cell i is given by

N M .
0 ifx<l1,
xi(t+1)=o0o (Zaij - xi(1) + Zb,-j - u;(1) +ci> , Where o(x) = {1 x> 1,

j=1 j=1

The dynamic of the whole A network is is given by

x(t+1) =0 (A-x(t)+ B-u(t) +¢)
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Every stimulation s induced an evolution ;. For instance

stimulation § = (

1 0

0 1

. 0 1
evolution e; = 0 0
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m For every infinite stimulation s, let Artr(es) denote the set of
states of NV that appear infinitely often in the evolution e;.

Attr(ey) is called the attractor of the evolution e
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B We assume that all attractors can be classified as either
meaningful or spurious.
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B We assume that all attractors can be classified as either
meaningful or spurious.

m An infinite evolution e, is called meaningful if Artr(ey) is
meaningful and e, is spurious if Attr(e,) is spurious.

m An infinite stimulation s is called meaningful if it induces a
meaningful evolution e; and s is spurious if it induces a
meaningful evolution e;.

m Given a network N, we let MeanStim(N') denote the set of
all meaningful infinite stimulations of .
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A classification of recurrent neural networks

Let M and A7 be two RNN, we set:

N <w N’ iff there exists f : Stim(N') — Stim(N") continuous s.t.
s € MeanStim(N') < f(s) € MeanStim(N")
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A classification of recurrent neural networks

Let M and A7 be two RNN, we set:

N <w N’ iff there exists f : Stim(N') — Stim(N") continuous s.t.
s € MeanStim(N') < f(s) € MeanStim(N")

Then as usual

N <y N iff N <y N and N Ly N
N=y N iff N<yNandN' <y N

Definition
The collection of all RNN ordered by <y is called the RNN
hierarchy.
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e The RNN hierarchy is well-founded, has width 2 and height *.
e The RNN hierarchy is decidable.

height w® height w®

_--
-

Decidabiliy
procedure
I

|
|
|

|
Given any network A’
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Proof: We consider Muller automata. ..
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We show that, for any set of k-dimensional infinite stimulations
L C (B")“, we have that:

L is to the set of meaningful stimulation of some RNN if and
only if L is accepted by some deterministic Muller automaton.
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Proof: We consider Muller automata. ..

We show that, for any set of k-dimensional infinite stimulations
L C (B")“, we have that:

L is to the set of meaningful stimulation of some RNN if and
only if L is accepted by some deterministic Muller automaton.

Therefore the classification of RNN by <y coincide with the
classification of Muller automata by <y, namely a decidable
pre-well ordering of width 2 and height w®.
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From RNN to deterministic Muller automata. . .
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From RNN to deterministic Muller automata. . .

Attractors of the network Cycles in the automaton

Al = {(i)} attractor C) = {(D} cycle

Ay = {(é) , (?) } spurious attractor C, = {(é) 7 (‘f) } rejecting cycle
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From RNN to deterministic Muller automata. . .

By construction, MeanStim(N') = L(A), thus MeanStim(N') is w-
rational.
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From deterministic Muller automata to RNN. ..
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From deterministic Muller automata to RNN. ..
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From deterministic Muller automata to RNN. ..
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From deterministic Muller automata to RNN. ..
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Cycles in the automaton Attractors of the network
Cr = {q2} cycle Ar={156} attractor
C, = {q:} rejecting cycle A; = {1, 6,9} spurious attractor
G ={q1,92} cycle Az = {1i6,10,1146},44 = {1156, 11,610, 11,46} 5
As = {116,10,11.46- 11,69} A6 = {1156, 11,6,10, 11,46, 11,69}
attractors

El
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From deterministic Muller automata to RNN. ..
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By construction, L(A) = MeanStim(N').
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Consider the following RNN V-

+1‘>—< 4>”2
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Ay = {156} attractor
Ay ={1160} spurious attractor

Az = {1y 6,10, 11,46} attractor
Ay ={1156,11 6,10, 1146} attractor
As = {116,10, 11,46, 11,60} attractor
Ao = {1156,11 6,10, 11,46, 11,69} attractors
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Consider the following RNN V-
A @B

Then the degree of A in the RNN hierarchy is w.
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m We presented a decidable transfinite classification of
simple neural nets based on their computational capability.
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Conclusion

m We presented a decidable transfinite classification of
simple neural nets based on their computational capability.

m The height of a network in the RNN hierarchy is the new
index of complexity that we propose.

m This classification is more refined than classifications
based on the number of layers or cells of the network

m Future work: search for more biologically oriented
classification; investigate the computational capabilities of
more biologically plausible neural nets.
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