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Introduction

The fields of artificial neural networks and theoretical computer
science have been linked since their inception (McCulloch and
Pitts 1943, Kleene 1956, Minsky 1967).

Synaptic weights Activation function Computational power
rational hard-threshold finite state automaton
rational (linear) sigmoid Turing machine

real (linear) sigmoid super-Turing machine

We provide a refined classification of first-order recurrent neural
networks with rational weights and hard-threshold activation
function.
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First-order recurrent neural networks
Definition

A RNN is a tuple N = (X, U, a, b, c) where:

X is a finite set of activation cells,
U is a finite set of input cells,
a : X × X → Q describes the synaptic weights,
b : X × U → Q describes the input synaptic weights,
c : X → Q describes the incoming background activity.

The dynamic of cell i is given by

xi(t + 1) = σ

0@ NX
j=1

aij · xj(t) +
MX

j=1

bij · uj(t) + ci

1A , where σ(x) =

(
0 if x < 1 ,

1 if x ≥ 1.

The dynamic of the whole N network is is given by

x(t + 1) = σ (A · x(t) + B · u(t) + c)
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Every stimulation s induced an evolution es. For instance:
time steps t = 0 1 2 3 4 5 · · · · · ·
stimulation s =

(
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) (
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) (
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) (
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) (
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) (
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)
· · · · · ·

evolution es =
(
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For every infinite stimulation s, let Attr(es) denote the set of
states of N that appear infinitely often in the evolution es.

Attr(es) is called the attractor of the evolution es
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We assume that all attractors can be classified as either
meaningful or spurious.

An infinite evolution es is called meaningful if Attr(es) is
meaningful and es is spurious if Attr(es) is spurious.

An infinite stimulation s is called meaningful if it induces a
meaningful evolution es and s is spurious if it induces a
meaningful evolution es.

Given a network N , we let MeanStim(N ) denote the set of
all meaningful infinite stimulations of N .
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A classification of recurrent neural networks

Let N and N ′ be two RNN, we set:

N ≤W N ′ iff there exists f : Stim(N ) → Stim(N ′) continuous s.t.

s ∈ MeanStim(N ) ⇔ f (s) ∈ MeanStim(N ′)

Then as usual

N <W N ′ iff N ≤W N ′ and N ′ 6≤W N
N ≡W N ′ iff N ≤W N ′ and N ′ ≤W N

Definition

The collection of all RNN ordered by ≤W is called the RNN
hierarchy.
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Theorem

• The RNN hierarchy is well-founded, has width 2 and height ωω.
• The RNN hierarchy is decidable.

height ωω height ωω

Decidabiliy
procedure

Given any network  
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Proof: We consider Muller automata. . .

1q0

0

q

1

1

0

We show that, for any set of k-dimensional infinite stimulations
L ⊆ (Bk)ω, we have that:
L is to the set of meaningful stimulation of some RNN if and
only if L is accepted by some deterministic Muller automaton.

Therefore the classification of RNN by ≤W coincide with the
classification of Muller automata by ≤W , namely a decidable
pre-well ordering of width 2 and height ωω.
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By construction, MeanStim(N ) = L(A), thus MeanStim(N ) is ω-
rational.
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meaningful attractor
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C3 = {q1, q2} accepting cycle A3 =
˘

11,6,10, 11,4,6
¯

, A4 =
˘

11,5,6, 11,6,10, 11,4,6
¯

,

A5 =
˘

11,6,10, 11,4,6, 11,6,9
¯

, A6 =
˘

11,5,6, 11,6,10, 11,4,6, 11,6,9
¯

meaningful attractors
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By construction, L(A) = MeanStim(N ).
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Example

Consider the following RNN N :
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Then the degree of N in the RNN hierarchy is ω.
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Conclusion

We presented a decidable transfinite classification of
simple neural nets based on their computational capability.

The height of a network in the RNN hierarchy is the new
index of complexity that we propose.

This classification is more refined than classifications
based on the number of layers or cells of the network

Future work: search for more biologically oriented
classification; investigate the computational capabilities of
more biologically plausible neural nets.
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