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Introduction

I We introduce an attractor-based complexity measure for Boolean
recurrent neural networks.

I The measure reflects the ability of the networks to discriminate
between their input streams via the manifestation of attractor
dynamics.

I We provide an application of this complexity measure to a sim-
plified Boolean model of the basal ganglia-thalamocortical net-
work.
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Boolean Recurrent Neural Network
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From Boolean Neural Networks to Automata
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Equivalence between Boolean Neural
Networks and Automata

Theorem (Minsky 67)

“It is evident that each neural network of the kind we have been
considering is a finite-state machine.”

“[...] It is interesting and even surprising that there is a converse
to this. Every finite-state machine is equivalent to, and can be
“simulated” by, some neural net.”
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Attractors and Cycles
Boolean Neural Network Automaton
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Attractors in Simulations

Attractors in a simulated network formed by interconnected
thalamocortical modules of spiking units.
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Attractor-Based Complexity of RNNs

I We assume that some aspect of the computational capabili-
ties of recurrent neural networks are related to their attractor
dynamics.

I We introduce attractor-based complexity measure inspired from
automata theory.

I We assume that the attractors are classified into two categories:
meaningful or spurious.

I The attractor-based complexity refers to the maximal number
of alternations between meaningful and spurious attractors that
are included one into the other.
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Attractor-Based Complexity of BRNNs
Example:

I Assume that N contains only one meaningful attractor; all oth-
ers being spurious.

I Then, the attractor-based complexity of N is 2. Maximal “grow-

ing” sequence of 2 alternations between spurious and meaningful attractors.
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Boolean Model of the Basal Ganglia-
Thalamocortical Network
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Boolean Model of the Basal Ganglia-
Thalamocortical Network

Source Target (Node #)

Node # (Name) 0 1 2 3 4 5 6 7 8 9

0 (IN) · 1 1 · · · · · · ·
1 (SC) int1 · 1 · · · · · · ·
2 (Thalamus) · · · 1 · 1 1 1 1 1

3 (RTN) · · -1 · · · · · · ·
4 (GPi/SNr) · -1 -1 -1 · · · · · ·
5 (STN) · · · · 2 · 2 · · 2

6 (GPe) · · · -1/2 -1/2 -1/2 · -1/2 -1/2 ·
7 (Str-D2) · · · · · · -1 · · ·
8 (Str-D1) · · · · -1/2 · -1/2 · · ·
9 (CCortex) int2 1/2 1/2 1/2 · 1/2 · 1/2 1/2 ·

Table: Adjancency matrix
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Corresponding Automaton
I 9 activation nodes and 1 input node in the network ⇒

512 states and a binary alphabet for the automaton
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Corresponding Automaton

Meaningfulness criterion

I A constitutive cycle – i.e., a basic attractor – is spurious if it
is characterised either by active SC and quiet Thalamus at the
same time step, or by a quiet GPi/SNr during the majority of
the duration of the cycle.

I A constitutive cycle is meaningful otherwise.

I A non-constitutive cycle – i.e., a composed attractor – is con-
sidered meaningful if it contains a majority of meaningful con-
stitutive cycles.

I A non-constitutive cycle is spurious otherwise.
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Attractor-Based Complexity
In the corresponding Muller automaton, we found a maximal
“alternating tree of cycles” of length ω6

I ⇒ Complexity of the Boolean model is 6.
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Attractor-Based Complexity

The interactive (or feedback) connections play a significant role in
the maintenance and robustness of an optimal level of complexity.
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Attractor-Based Complexity

By slightly varying the weights of the networks by ±0.2, one could
increase the optimal complexity from 6 to 9.
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Number of Basic Attractors:
global threshold (or weights) modifications

Lowering the global threshold, i.e., potentiating the global synaptic
level, increases the maximal numbers of attractors and improves
the robustness of the “no interactivity” configuration.
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Attractor-Based Complexity:
local weights modifications

Even single weight variations of ±0.1 can significantly affect the
complexity pattern.
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Conclusions

I The number of attractors and the attractor-based complexity
might be relevant measures of the computational capabilities
for Boolean recurrent neural networks.

I Global and local modifications of the it synaptic weights signif-
icantly affect the attractor complexity of the networks.

I The values of the interactive connections also play a significant
role in the maintenance and robustness of an optimal level of
attractor-based complexity.

I These considerations support the rationale that synaptic plas-
ticity might be crucially involved in the computational capabil-
ities of neural networks.
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