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INTRODUCTION

» We introduce an attractor-based complexity measure for Boolean
recurrent neural networks.
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INTRODUCTION

» We introduce an attractor-based complexity measure for Boolean
recurrent neural networks.

» The measure reflects the ability of the networks to discriminate
between their input streams via the manifestation of attractor
dynamics.
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INTRODUCTION

» We introduce an attractor-based complexity measure for Boolean
recurrent neural networks.

» The measure reflects the ability of the networks to discriminate
between their input streams via the manifestation of attractor
dynamics.

» We provide an application of this complexity measure to a sim-

plified Boolean model of the basal ganglia-thalamocortical net-
work.
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EQUIVALENCE BETWEEN BOOLEAN NEURAL
NETWORKS AND AUTOMATA

THEOREM (MINSKY 67)

ATTRACTOR-BASED COMPLEXITY OF BOOLEAN RNNs JEREMIE CABESSA



INTRODUCTION BOOLEAN RNNS AND AUTOMATA ATTRACTOR-BASED COMPLEXITY OF RNNs APPLICATION CONCLUSION
o 0000800 e} 000000000 O

EQUIVALENCE BETWEEN BOOLEAN NEURAL
NETWORKS AND AUTOMATA

THEOREM (MINSKY 67)

“It is evident that each neural network of the kind we have been
considering is a finite-state machine.”
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EQUIVALENCE BETWEEN BOOLEAN NEURAL
NETWORKS AND AUTOMATA

THEOREM (MINSKY 67)

“It is evident that each neural network of the kind we have been
considering is a finite-state machine.”

“[...] It is interesting and even surprising that there is a converse
to this. Every finite-state machine is equivalent to, and can be
“simulated” by, some neural net.”
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ATTRACTORS AND CYCLES

Boolean Neural Network Automaton
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Attractors in a simulated network formed by interconnected
thalamocortical modules of spiking units.

ATTRACTOR-BASED COMPLEXITY OF BOOLEAN RNNs

JEREMIE CABESSA



INTRODUCTION BOOLEAN RNNS AND AUTOMATA ATTRACTOR-BASED COMPLEXITY OF
o 000000@ e}

ATTRACTORS IN SIMULATIONS

RNNs AppPLICATION CONCLUSION

000000000 O

| I T T T T T T I
J0 1 1 I [ i I
cell 5| | A A I G O T Rl (1 (h e (T e
| EEPRENSNNEY &~
cell 8] "Ifl |I Iy ll do lI |I LY |‘| I |l |I II |I II MI
T O T N T et Tt MY O Y (R 0 i
Ll 1 e BE R L e e e el
t.I||1l|llI||Il|lIIIII
e I T I T T T B B I T T N
. I |I |I 4' II |I vl ) |I ! |I |I |I lI I |I |I |I |I |
] Illllllllllllllllllll [ A
ez T NI R
1 50 time

Attractors in a simulated network formed by interconnected
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ATTRACTOR-BASED COMPLEXITY OF RNNS

» We assume that some aspect of the computational capabili-
ties of recurrent neural networks are related to their attractor
dynamics.
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» We assume that some aspect of the computational capabili-
ties of recurrent neural networks are related to their attractor
dynamics.

» We introduce attractor-based complexity measure inspired from
automata theory.
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ATTRACTOR-BASED COMPLEXITY OF RNNS

» We assume that some aspect of the computational capabili-
ties of recurrent neural networks are related to their attractor
dynamics.

» We introduce attractor-based complexity measure inspired from
automata theory.

» We assume that the attractors are classified into two categories:
meaningful or spurious.
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ATTRACTOR-BASED COMPLEXITY OF RNNS

» We assume that some aspect of the computational capabili-
ties of recurrent neural networks are related to their attractor
dynamics.

» We introduce attractor-based complexity measure inspired from
automata theory.

» We assume that the attractors are classified into two categories:
meaningful or spurious.

» The attractor-based complexity refers to the maximal number
of alternations between meaningful and spurious attractors that
are included one into the other.
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ATTRACTOR-BASED COMPLEXITY OF BRNNSs
Example:

» Assume that NV contains only one meaningful attractor; all oth-
ers being spurious.

Boolean Neural Network Automaton
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ATTRACTOR-BASED COMPLEXITY OF BRNNS
Example:
» Assume that NV contains only one meaningful attractor; all oth-
ers being spurious.
» Then, the attractor-based complexity of N is 2. Maximal “grow-

ing” sequence of 2 alternations between spurious and meaningful attractors.

Boolean Neural Network Automaton

(©),(9),(5),(1)
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BOOLEAN MODEL OF THE BASAL GANGLIA-
THALAMOCORTICAL NETWORK

Cerebral Cortex

IN input node
SC superior colliculus
GPi/SNr output nuclei of the basal ganglia

formed by the GABAergic projection
neurons of the intermediate part of
the pallidum and of the substantia
nigra pars reticulata

Thalamus thalamus
GPe external part of the pallidum
NRT thalamic reticular nucleus
Str-D1 striatopallidal component

of the striatum

Str-D2 striatonigral component
of the striatum

STN subthalamic nucleus

Cerebral Cortex cerebral cortex
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BOOLEAN MODEL OF THE BASAL GANGLIA-
THALAMOCORTICAL NETWORK

Cerebral Cortex

IN input node
SC superior colliculus
GPi/SNr output nuclei of the basal ganglia

formed by the GABAergic projection
neurons of the intermediate part of
the pallidum and of the substantia
nigra pars reticulata

Thalamus thalamus
GPe external part of the pallidum
NRT thalamic reticular nucleus
Str-D1 striatopallidal component

of the striatum

Str-D2 striatonigral component
of the striatum

STN subthalamic nucleus

Cerebral Cortex cerebral cortex
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BOOLEAN MODEL OF THE BASAL GANGLIA-
THALAMOCORTICAL NETWORK

Source Target (Node #)
Node# (Name) | O 1 2 3 4 5 6 7 8 9
0 (IN) . 1
1 (SC) inty . 1
2 (Thalamus) . . . 1 . 1 1 1 1 1
3 (RTN) : |
4 (GPi/SNr) S T |
5 (STN) : : 2 :
6 (GPe) . . I V- RS VP
7 (Str-D2) . . . .
8 (Str-D1) . . . . -1/2
9 (CCortex) inte 12 12 1)2 .

1/2

TABLE: Adjancency matrix
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CORRESPONDING AUTOMATON

> 9 activation nodes and 1 input node in the network =
512 states and a binary alphabet for the automaton

Cerebral Cortex

inty int,
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> 9 activation nodes and 1 input node in the network =
512 states and a binary alphabet for the automaton
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> 9 activation nodes and 1 input node in the network =
512 states and a binary alphabet for the automaton
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CORRESPONDING AUTOMATON

Meaningfulness criterion

» A constitutive cycle — i.e., a basic attractor — is spurious if it
is characterised either by active SC and quiet Thalamus at the
same time step, or by a quiet GPi/SNr during the majority of
the duration of the cycle.
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CORRESPONDING AUTOMATON

Meaningfulness criterion

» A constitutive cycle — i.e., a basic attractor — is spurious if it
is characterised either by active SC and quiet Thalamus at the
same time step, or by a quiet GPi/SNr during the majority of
the duration of the cycle.

» A constitutive cycle is meaningful otherwise.
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Meaningfulness criterion

» A constitutive cycle — i.e., a basic attractor — is spurious if it
is characterised either by active SC and quiet Thalamus at the
same time step, or by a quiet GPi/SNr during the majority of
the duration of the cycle.

» A constitutive cycle is meaningful otherwise.

» A non-constitutive cycle — i.e., a composed attractor — is con-
sidered meaningful if it contains a majority of meaningful con-
stitutive cycles.

ATTRACTOR-BASED COMPLEXITY OF BOOLEAN RNNs JEREMIE CABESSA



APPLICATION
000®00000

CORRESPONDING AUTOMATON

Meaningfulness criterion

» A constitutive cycle — i.e., a basic attractor — is spurious if it
is characterised either by active SC and quiet Thalamus at the
same time step, or by a quiet GPi/SNr during the majority of
the duration of the cycle.

» A constitutive cycle is meaningful otherwise.
» A non-constitutive cycle — i.e., a composed attractor — is con-

sidered meaningful if it contains a majority of meaningful con-
stitutive cycles.

» A non-constitutive cycle is spurious otherwise.
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ATTRACTOR-BASED COMPLEXITY

In the corresponding Muller automaton, we found a maximal
“alternating tree of cycles” of length w®

» = Complexity of the Boolean model is 6.
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ATTRACTOR-BASED COMPLEXITY

In the corresponding Muller automaton, we found a maximal
“alternating tree of cycles” of length w®

» = Complexity of the Boolean model is 6.
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In the corresponding Muller automaton, we found a maximal
“alternating tree of cycles” of length w®

» = Complexity of the Boolean model is 6.
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ATTRACTOR-BASED COMPLEXITY
In the corresponding Muller automaton, we found a maximal

“alternating tree of cycles” of length w®
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ATTRACTOR-BASED COMPLEXITY

Altractor-based complexity of the network
= as a function of its two interactive weights

weight int_1
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The interactive (or feedback) connections play a significant role in
the maintenance and robustness of an optimal level of complexity.
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Attractor-based complexity of the network
as a function of its two interactive weights
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By slightly varying the weights of the networks by +0.2, one could
increase the optimal complexity from 6 to 9.
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NUMBER OF BASIC ATTRACTORS:
GLOBAL THRESHOLD (OR WEIGHTS) MODIFICATIONS
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Lowering the global threshold, i.e., potentiating the global synaptic
level, increases the maximal numbers of attractors and improves
the robustness of the “no interactivity” configuration.

ATTRACTOR-BASED COMPLEXITY OF BOOLEAN RNNs JEREMIE CABESSA



INTRODUCTION  BOOLEAN RNNS AND AUTOMATA  ATTRACTOR-BASED COMPLEXITY OF RNNS APPLICATION CONCLUSION
o 0000000 e} 00000000® O

ATTRACTOR-BASED COMPLEXITY:
LOCAL WEIGHTS MODIFICATIONS

Even single weight variations of +0.1 can significantly affect the
complexity pattern.
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CONCLUSIONS

» The number of attractors and the attractor-based complexity
might be relevant measures of the computational capabilities
for Boolean recurrent neural networks.
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» The number of attractors and the attractor-based complexity
might be relevant measures of the computational capabilities
for Boolean recurrent neural networks.

» Global and local modifications of the it synaptic weights signif-
icantly affect the attractor complexity of the networks.

» The values of the interactive connections also play a significant
role in the maintenance and robustness of an optimal level of
attractor-based complexity.

» These considerations support the rationale that synaptic plas-

ticity might be crucially involved in the computational capabil-
ities of neural networks.
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