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Introduction

» We introduce an new attractor-based complexity measure-
ment for Boolean recurrent neural networks.

» The measurement reflects the complexity of the attractors’
structure of the networks.

» We provide an application of this measurement to a sim-
plified Boolean model of the basal ganglia-thalamocortical
network
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Conclusion

Equivalence between Boolean Neural Networks
and Automata

Theorem (Minsky 67)

“It is evident that each neural network of the kind we have been
considering is a finite-state machine.”

‘[...] It is interesting and even surprising that there is a converse
to this. Every finite-state machine is equivalent to, and can be
“simulated” by, some neural net.”
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» In w-automata theory, there is a transfinite classification of
w-automata according to the way their cycles are intricated
one into the other...
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» By translating the Wagner hierarchy from the w-automata to
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nite classification of Boolean neural networks according to
the way their attractors are intricated one into the other...
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The Wagner Hierarchy

» In w-automata theory, there is a transfinite classification of
w-automata according to the way their cycles are intricated
one into the other...

» The Wagner hierarchy

» By translating the Wagner hierarchy from the w-automata to
the Boolean neural network context, one obtains a transfi-
nite classification of Boolean neural networks according to
the way their attractors are intricated one into the other...

» The Boolean RNN hierarchy
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The Wagner Hierarchy

» A transfinite classification of Muller automata according to
the topological complexity of their underlying language
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The Wagner Hierarchy

» A transfinite classification of Muller automata according to
the topological complexity of their underlying language

» Equivalently, a transfinite classification of Muller automata
according to the graph-theoretical complexity of their cycles
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The Wagner Hierarchy

» A transfinite classification of Muller automata according to
the topological complexity of their underlying language

» Equivalently, a transfinite classification of Muller automata
according to the graph-theoretical complexity of their cycles

» Quasi well-ordering of transfinite height w*
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» A transfinite classification of Muller automata according to
the topological complexity of their underlying language

» Equivalently, a transfinite classification of Muller automata
according to the graph-theoretical complexity of their cycles

» Quasi well-ordering of transfinite height w*
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» A Muller automaton consists of an automaton provided with
an additional specification of every of its cycles into an ac-
cepting or a rejecting mode
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The Wagner Hierarchy — Summary

» A quasi well-ordering of transfinite height w*
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The Wagner Hierarchy — Summary

» A quasi well-ordering of transfinite height w*

» Every ordinal @ < w* has a unique Cantor normal form
a=w"-po+w" -pi+---+w" p, whereng >ny > - > my

» The degree « of a Muller automaton M in the Wagner hier-
archy is the maximal “tree of cycles” 7, in M
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The Boolean RNNs Hierarchy

» We assume that our Boolean RNNs are provided with an
additional specification of every of their attractors into a mean-
ingful or a spurious mode
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The Boolean RNNs Hierarchy

» We assume that our Boolean RNNs are provided with an
additional specification of every of their attractors into a mean-
ingful or a spurious mode

» We can transpose the Wagner hierarchy from the Muller au-
tomata to the Boolean RNNs context.
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The Boolean RNNs Hierarchy

» We assume that our Boolean RNNs are provided with an
additional specification of every of their attractors into a mean-
ingful or a spurious mode

» We can transpose the Wagner hierarchy from the Muller au-
tomata to the Boolean RNNs context.

» One obtains a transfinite classification of Boolean RNNs ac-
cording to the topological complexity of their attractors
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Boolean Model of the Basal-Ganglia Thalamo-
cortical Network

Cerebral Cortex [
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Corresponding Automaton

» 9 activation nodes and 1 input node in the network =
512 states and a binary alphabet for the automaton
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512 states and a binary alphabet for the automaton
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» We provide an accepting or rejecting value to each cycle of
the automaton,
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» We provide an accepting or rejecting value to each cycle of
the automaton, i.e., we provide an meaningful or spurious
value to each attractor of the network
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» We provide an accepting or rejecting value to each cycle of
the automaton, i.e., we provide an meaningful or spurious
value to each attractor of the network

» A constitutive cycle is considered to be spurious if it is char-
acterised either by active SC and quiet Thalamus at the
same time step or by a quiet GPi/SNR during the major-
ity of the duration of the constitutive cycle. A constitutive
cycle is meaningful otherwise
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Corresponding Muller Automaton

» We provide an accepting or rejecting value to each cycle of
the automaton, i.e., we provide an meaningful or spurious
value to each attractor of the network

» A constitutive cycle is considered to be spurious if it is char-
acterised either by active SC and quiet Thalamus at the
same time step or by a quiet GPi/SNR during the major-
ity of the duration of the constitutive cycle. A constitutive
cycle is meaningful otherwise

» A non-constitutive cycle is considered to be meaningful if
it contains a majority of meaningful constitutive cycles, and
spurious otherwise
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» In the corresponding Muller automaton, we found a maximal
“tree of cycles” of length w®
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» In the corresponding Muller automaton, we found a maximal
“tree of cycles” of length w®

» = Degree of the Boolean model is w*
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Conclusions

» We introduced a new attractor-based complexity measure-
ment for Boolean recurrent neural networks
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Conclusions

» We introduced a new attractor-based complexity measure-
ment for Boolean recurrent neural networks

» We used this complexity measure on a simplified model of
the basal-ganglia thalamocortical network
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Conclusions

» We introduced a new attractor-based complexity measure-
ment for Boolean recurrent neural networks

» We used this complexity measure on a simplified model of
the basal-ganglia thalamocortical network

» For future work, we aim to better understand the specific
biological features related to this measure of complexity
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