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Introduction

I We introduce an new attractor-based complexity measure-
ment for Boolean recurrent neural networks.

I The measurement reflects the complexity of the attractors’
structure of the networks.

I We provide an application of this measurement to a sim-
plified Boolean model of the basal ganglia-thalamocortical
network
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Boolean Recurrent Neural Networks
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Dynamics
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From Boolean Neural Networks to Automata
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From Automata to Boolean Neural Networks
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From Automata to Boolean Neural Networks
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Equivalence between Boolean Neural Networks
and Automata

Theorem (Minsky 67)

“It is evident that each neural network of the kind we have been
considering is a finite-state machine.”

“[...] It is interesting and even surprising that there is a converse
to this. Every finite-state machine is equivalent to, and can be
“simulated” by, some neural net.”
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Cycles and Attractors
Boolean Neural Network Automaton
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The Wagner Hierarchy

I In ω-automata theory, there is a transfinite classification of
ω-automata according to the way their cycles are intricated
one into the other...

I The Wagner hierarchy

I By translating the Wagner hierarchy from the ω-automata to
the Boolean neural network context, one obtains a transfi-
nite classification of Boolean neural networks according to
the way their attractors are intricated one into the other...

I The Boolean RNN hierarchy
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The Wagner Hierarchy

I A transfinite classification of Muller automata according to
the topological complexity of their underlying language

I Equivalently, a transfinite classification of Muller automata
according to the graph-theoretical complexity of their cycles

I Quasi well-ordering of transfinite height ωω
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The Wagner Hierarchy – Muller Automata
I A Muller automaton consists of an automaton provided with

an additional specification of every of its cycles into an ac-
cepting or a rejecting mode
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The Wagner Hierarchy – Degrees ωn
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The Wagner Hierarchy – Degrees ωn · k
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The Wagner Hierarchy – Degrees ωn · k + ωn′ · k′
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The Wagner Hierarchy – Summary

I A quasi well-ordering of transfinite height ωω

I Every ordinal α < ωω has a unique Cantor normal form
α = ωn0 ·p0 +ω

n1 ·p1 + · · ·+ωnk ·pk, where n0 > n1 > · · · > nk

I The degree α of a Muller automatonM in the Wagner hier-
archy is the maximal “tree of cycles” Tα inM
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The Boolean RNNs Hierarchy
I We assume that our Boolean RNNs are provided with an

additional specification of every of their attractors into a mean-
ingful or a spurious mode

I We can transpose the Wagner hierarchy from the Muller au-
tomata to the Boolean RNNs context.

I One obtains a transfinite classification of Boolean RNNs ac-
cording to the topological complexity of their attractors
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Boolean Model of the Basal-Ganglia Thalamo-
cortical Network
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Corresponding Muller Automaton

I We provide an accepting or rejecting value to each cycle of
the automaton, i.e., we provide an meaningful or spurious
value to each attractor of the network

I A constitutive cycle is considered to be spurious if it is char-
acterised either by active SC and quiet Thalamus at the
same time step or by a quiet GPi/SNR during the major-
ity of the duration of the constitutive cycle. A constitutive
cycle is meaningful otherwise

I A non-constitutive cycle is considered to be meaningful if
it contains a majority of meaningful constitutive cycles, and
spurious otherwise
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Attractor-Based Complexity of the Model
I In the corresponding Muller automaton, we found a maximal

“tree of cycles” of length ω6

I ⇒ Degree of the Boolean model is ω6
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Conclusions

I We introduced a new attractor-based complexity measure-
ment for Boolean recurrent neural networks

I We used this complexity measure on a simplified model of
the basal-ganglia thalamocortical network

I For future work, we aim to better understand the specific
biological features related to this measure of complexity
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