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INTRODUCTION

» We consider a simplified Boolean model of the basal ganglia-
thalamocortical network (case study).
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» We consider a simplified Boolean model of the basal ganglia-
thalamocortical network (case study).

» The Boolean context, although relatively simple, allows for a
complete analysis of the attractor dynamics of the networks.

> We show that both local and global variations of the synaptic
weights significantly influence the attractor dynamics of the
network.
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INTRODUCTION

» We consider a simplified Boolean model of the basal ganglia-
thalamocortical network (case study).

» The Boolean context, although relatively simple, allows for a
complete analysis of the attractor dynamics of the networks.

> We show that both local and global variations of the synaptic
weights significantly influence the attractor dynamics of the
network.

» We introduce an adaptive Spike Timing-Dependent Plasticity
rule (STDP) which improves and stabilizes the attractor dy-
namics of the network.
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BOOLEAN MODEL OF THE BASAL GANGLIA-
THALAMOCORTICAL NETWORK

Cerebral Cortex

IN input node
SC superior colliculus
GPi/SNr output nuclei of the basal ganglia

formed by the GABAergic projection
neurons of the intermediate part of
the pallidum and of the substantia
nigra pars reticulata

Thalamus thalamus
GPe external part of the pallidum
NRT thalamic reticular nucleus
Str-D1 striatopallidal component
of the striatum
Str-D2 striatonigral component
of the striatum
STN subthalamic nucleus
Cerebral Cortex cerebral cortex
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BOOLEAN MODEL OF THE BASAL GANGLIA-
THALAMOCORTICAL NETWORK
Source Target (Node #)

Node # (Name) 0 1 2 3 4 5 6 7 8 9

0 (IN) - 11

1 (SC) inty . 1

2 (Thalamus) . . . 1 . 1 1 1 1 1

3 (RTN) 1

4 (GPi/SNr) 11 -1

5 (STN) : 2 : 2 : 2

6 (GPe) -2 12 12 -2 -1)2

7 (Str-D2) : : a1

8 (Str-D1) -1/2 -1/2

9 (CCortex) inte 12 12 12 . 1/2 . 12 1/

TABLE: Adjancency matrix

ATTRACTOR DYNAMICS OF THE BASAL GANGLIA-THALAMOCORTICAL NETWORK

JEREMIE CABESSA



INTRODUCTION B-RNNs & FSA  BGT NETWORK  WEIGHTS & ATTRACTORS  STDP & ATTRACTORS ~ CONCLUSION
o 000 ooe 00000 0000000 oo

BGT NETWORK AND CORRESPONDING FSA
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SYNAPTIC WEIGHTS AND ATTRACTOR DYNAMICS
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time steps

SYNAPTIC WEIGHTS AND ATTRACTOR DYNAMICS

» Both global and local variations of the synaptic weights signif-

icantly influence the attractor dynamics of the network

threshold 6 = 0.5
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SYNAPTIC WEIGHTS AND ATTRACTOR DYNAMICS

» Both global and local variations of the synaptic weights signif-

icantly influence the attractor dynamics of the network

threshold 8 = 0.6

tput I 10 001

time steps
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SYNAPTIC WEIGHTS AND ATTRACTOR DYNAMICS

» Both global and local variations of the synaptic weights signif-
icantly influence the attractor dynamics of the network

threshold § = 0.6 and weight “Thala — STN” wy 5 = 0.9

50 time steps
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INTERACTIVITY AND ATTRACTOR DYNAMICS
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> A key feature to neural networks' information processing is the

“circular causal relationships” (Winer 48) — i.e., feedback loop
or interactivity — between the system and its environment.
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ApAPTIVE STDP RULE

» Can we improve the attractor dynamics of the network by means
of a spike-timing dependent plasticity (STDP) rule?
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» Can we improve the attractor dynamics of the network by means
of a spike-timing dependent plasticity (STDP) rule?

» Yes. We consider an adaptive STDP rule.

> Adaptive: the learning rate of the rule evolves over time.
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ApaprTIiVE STDP RULE

» Can we improve the attractor dynamics of the network by means
of a spike-timing dependent plasticity (STDP) rule?

» Yes. We consider an adaptive STDP rule.
> Adaptive: the learning rate of the rule evolves over time.

» The application of the rule improves the attractor complexity
of the BGT network throughout its computational process.

ATTRACTOR DYNAMICS OF THE BASAL GANGLIA-THALAMOCORTICAL NETWORK JEREMIE CABESSA



INTRODUCTION B-RNNs & FSA BGT NETWORK WEIGHTS & ATTRACTORS ~ STDP & ATTRACTORS  CONCLUSION
o 000 000 00000 0®00000 oo

ApAPTIVE STDP RULE: MEMORY

M = memory of the network
n(t) = number of attractors of the network at time ¢
Nmin(t) = min{n(t') :max(0,t — M) < t < t}
Nmaz(t) = max{n(t'): max(0,t — M) < t' < t}.

nb of attractors

Nmin, (t)

t—M M t time
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ADAPTIVE STDP RULE: LEARNING RATE

» The learning rate A\(t) depends on the current, min and max
number of attractors seen during the last M time steps.

(n(t) = nmin(t)) Amin — Amaz)

Ay = 4 et Nimaa (t) — Nunin () if omin () # Nmaz (1)
Amaa otherwise
Amaz
A(t)
Amin

Nmin(t)  n(t) Nimaz (1)
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ADAPTIVE STDP RULE: LEARNING RATE

» The learning rate A\(t) depends on the current, min and max
number of attractors seen during the last M time steps.

(n(t) = nmin(t)) Amin — Amaz)

Ay = 4 et Nimaa (t) — Nunin () if omin () # Nmaz (1)
Amaa otherwise
Amaz
A)
Amin

Tomin (t) n(t) Nmaz(t)
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ApAPTIVE STDP RULE

» a;;(t): synaptic weight between z; and z; at time ¢

aji(t + 1) = aji(t) + )\(t) [azi(t)xj(t + 1) - C$j(t)$i(t + 1)

O——0
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» Feedback — or interactivity — regulation as well as global and
local variations of the synaptic weights significantly influence
the attractor dynamics of the BGT network.
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» Feedback — or interactivity — regulation as well as global and
local variations of the synaptic weights significantly influence
the attractor dynamics of the BGT network.

» These processes can be combined with each other to stabilize
and/or improve the attractor dynamics of the network.

» It is possible to improve the attractor dynamics of the BGT
network by means of an adaptive STDP rule.

» The adaptive STDP rule implements a twofold evolving process:
the synaptic weights evolve according to the STDP rule, and
the STDP rule also evolves due to its adaptive learning rate.

P> These considerations support the rationale that synaptic plas-
ticity might be crucially involved in the computational capabil-
ities of neural networks.
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