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INTRODUCTION

> We recall important results about the computational capabili-
ties of recurrent neural networks.
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INTRODUCTION

> We recall important results about the computational capabili-
ties of recurrent neural networks.

» We introduce a Turing complete bio-inspired paradigm for neu-
ral computation based on the concept of synfire rings.
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FINITE STATE AUTOMATON (FSA)

» input u is accepted by A if A(u) reaches a final state
» input u is rejected by A if A(u) otherwise
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TURING MACHINE (TM)

input u
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Finite
Program

state q;,

» input u is accepted by M if M(u) reaches the state qucc
> input u is rejected by M if M(u) reaches the state gre;
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TURING MACHINE WITH ADVICE (TM/A)

Additional advice tape and advice function o : N — {0, 1}*

input u

Clofifofofs ] FT TP T P11 g

Finite
Program

K state gin
HEEN

AUTOMATA AND TURING COMPLETE COMPUTATION WITH BIO-INSPIRED NEURAL NETWORKS JEREMIE CABESSA



INTRO FSMs
o ooe

& TMs CONCLUSION
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TURING MACHINE WITH ADVICE (TM/A)

Additional advice tape and advice function o : N — {0, 1}*

input u

Cloftfofof« ] FT TP T PT T

Finite
Program

K state gin

advice a(|u|)

» The class of languages recognized in polynomial time by Turing
machines with polynomial advices (TM/poly(A)) is P/poly.
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TURING MACHINE WITH ADVICE (TM/A)

Additional advice tape and advice function o : N — {0, 1}*

input u
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» TM/As are strictly more powerful than TMs: P/poly 2 P
They are super-Turing...
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BOOLEAN RECURRENT NEURAL NETWORKS
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SIGMOID RECURRENT NEURAL NETWORKS
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EvVOLVING RECURRENT NEURAL NETWORKS
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B10-INSPIRED NEURAL NETWORKS
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Izhikevich or Hodgkin-Huxley differential equations
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RESULTS: CLASSICAL COMPUTATION

BOOLEAN SIGMOID
STATIC
FSA ™
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Kl 56, Mi 67 Si & So 95
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RESULTS: CLASSICAL COMPUTATION

BOOLEAN SIGMOID
STATIC
FSA ™
Q REG P
Kl 56, Mi 67 Si & So 95
FSA TM/poly(A)
R REG P/poly
Kl 56, Mi 67 Si & So 94
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BOOLEAN SIGMOID
STATIC BI1-VALUED EVOLVING EvorviNng
Muller FSA Muller TM super-Turing super-Turing
el -l = -1
Ca & Vi1l0,14 Ca & Vil5,16 Ca & Vi 15,16 Ca & Vi 15,16
Muller FSA super-Turing super-Turing super-Turing
€ E% = 2% - E]i _ Eji
Ca & Vi 10,14 Ca & Vi1l5,16 Ca & Vi 15,16 Ca & Vi 15,16

AUTOMATA AND TURING COMPLETE COMPUTATION WITH BIO-INSPIRED NEURAL NETWORKS

JEREMIE CABESSA



INTRO FSMs PoweRr oF RNNs SRs SN-RNNs & FSA SR-RNNs & TMs CONCLUSION
o 000 00000000@ oo 000000000000 0000 oo

DRAWBACKS OF THE CONSTRUCTIONS

» Computational states of the machines are represented as Boolean
states, i.e., spiking configurations of the networks.
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DRAWBACKS OF THE CONSTRUCTIONS

» Computational states of the machines are represented as Boolean
states, i.e., spiking configurations of the networks.

* Computational states should rather be represented by sustained
activities of neural assemblies, e.g., by attractors.
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DRAWBACKS OF THE CONSTRUCTIONS

» Computational states of the machines are represented as Boolean
states, i.e., spiking configurations of the networks.

* Computational states should rather be represented by sustained
activities of neural assemblies, e.g., by attractors.

P> Networks are not robust to cell death, synaptic plasticity, archi-
tectural plasticity in general.
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DRAWBACKS OF THE CONSTRUCTIONS

» Computational states of the machines are represented as Boolean
states, i.e., spiking configurations of the networks.

* Computational states should rather be represented by sustained
activities of neural assemblies, e.g., by attractors.

P> Networks are not robust to cell death, synaptic plasticity, archi-
tectural plasticity in general.

* Networks should be robust to architectural plasticity and synap-
tic noises.
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DRAWBACKS OF THE CONSTRUCTIONS

» Computational states of the machines are represented as Boolean
states, i.e., spiking configurations of the networks.

* Computational states should rather be represented by sustained
activities of neural assemblies, e.g., by attractors.

P> Networks are not robust to cell death, synaptic plasticity, archi-
tectural plasticity in general.

* Networks should be robust to architectural plasticity and synap-
tic noises.

» We propose a novel paradigm for abstract neural computation
based on synfire rings.
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SYNFIRE CHAINS

» Synfire chains have been theorized and experimentally validated
as fundamental neuronal structures (ABELES 82).
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SYNFIRE CHAINS

» Synfire chains have been theorized and experimentally validated
as fundamental neuronal structures (ABELES 82).

» They allow for robust and highly precise transmission of infor-
mation in neural networks.
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» They allow for robust and highly precise transmission of infor-
mation in neural networks.
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SYNFIRE CHAINS

» Synfire chains have been theorized and experimentally validated
as fundamental neuronal structures (ABELES 82).

» They allow for robust and highly precise transmission of infor-
mation in neural networks.
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SYNFIRE CHAINS

» Synfire chains have been theorized and experimentally validated
as fundamental neuronal structures (ABELES 82).

» They allow for robust and highly precise transmission of infor-
mation in neural networks.
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SYNFIRE RINGS

» Synfire rings are looping synfire chains that have been observed
in self-organizing neural networks (ZHENG & TRIESCH 14).
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SYNFIRE RINGS

» Synfire rings are looping synfire chains that have been observed
in self-organizing neural networks (ZHENG & TRIESCH 14).

» Synfire rings allow for robust and temporally precise self-sustained
activities.
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» Synfire rings allow for robust and temporally precise self-sustained
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BINARY ADDER AUTOMATON
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BINARY ADDER AUTOMATON
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Play movie...
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AUTOMATA & BOOLEAN RNNS WITH SYNFIRE
RiINGs

Since the construction is generic, one has the following result:

THEOREM

Any finite state automaton can be simulated by some Boolean
neural network composed of synfire rings.

AUTOMATA AND TURING COMPLETE COMPUTATION WITH BIO-INSPIRED NEURAL NETWORKS JEREMIE CABESSA



INTRO FSMs PowER OF RNNs SRs SN-RNNs & FSA SR-RNNs & TMs CONCLUSION
o 000 000000000 oo 000000080000 0000 00

GENERALIZATIONS

> \We generalize these results to the contexts of more biological
neural networks:

1. lzhikevich spiking neural networks (not here)

2. Hodgkin-Huxley neural networks
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HODGKIN-HUXLEY NEURONS

0.01(10 — V) B ~Vin
n(Vin) = exp(10= Vm) 1 Bn(Vim) = 0.125 exp( 0 )
O 0.1(25— Vi) ~Vim
am (Vi) = oxp(BVa) — 1 Bm(Vin) = dexp(—5— 13 )
Vim) = 0.07 —Vin Br(Vin) = !
an(Vin) = exp(—-— 20 =) h(Vin) = m
dn
i an(Vim)(L = n) — Bn(Vin)n
B (Vi) (1= 1) = B (Vi)
dh
i an(Vin)(1 = k) = Brn(Vin)h
dVm _ 4 _ 3 _
Cm? =1 — gkn (Vm - VK) — gNam h’(V’m - VNG) 7gl(Vm - ‘/l)
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AUuTOMATA & HODGKIN-HUXLEY RNNS WITH
SYNFIRE RINGS

Since the construction is generic, one has the following result:

RESuULT

Any finite state automaton can be simulated by some
Hodgkin-Huxley based neural network composed of synfire rings.
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FIBRES OF CONNECTIONS & INHIBITORY SYSTEM
We consider the following kinds of (fibres of) connections.

> cell to ring excitatory

AUTOMATA AND TURING COMPLETE COMPUTATION WITH BIO-INSPIRED NEURAL NETWORKS JEREMIE CABESSA



INTRO FSMs Powgr or RNNs SRs SN-RNNs & FSA SR-RNNs & TMs CONCLUSION
o 000 000000000 [e]e} 000000000000 €000 [ole}

FIBRES OF CONNECTIONS & INHIBITORY SYSTEM
We consider the following kinds of (fibres of) connections.

P constant excitatory

e —""o""— SN e 7077% ~
Pb o o /,Qb 0 dQ\
0 %o 0 %o
000 o000 000 000
oo — el el )
N o O Lo\ 0 "o /
O o © O o ©
NN N\
bl o )l o
O—0 O—0

AUTOMATA AND TURING COMPLETE COMPUTATION WITH BIO-INSPIRED NEURAL NETWORKS JEREMIE CABESSA



INTRO FSMs PowER OF RNNs SRs SN-RNNs & FSA SR-RNNs & TMs CONCLUSION
o 000 000000000 oo 000000000000 0000 oo

FIBRES OF CONNECTIONS & INHIBITORY SYSTEM
We consider the following kinds of (fibres of) connections.

> constant excitatory / one-shot inhibitory
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FIBRES OF CONNECTIONS & INHIBITORY SYSTEM
We consider the following kinds of (fibres of) connections.

» one-shot inhibitory / one-shot inhibitory
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TURING MACHINES & BOOLEAN RNNS WITH
SYNFIRE RINGS

Since the construction is generic, one has the following result:

THEOREM

Any bounded-space Turing machine can be simulated by some
Boolean neural network composed of synfire rings.
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SIMULATION OF THE BOUNDED-SPACE TURING
MACHINE RECOGNIZING THE NON-REGULAR
LANGUAGE L = {0"1"0" : n > 0}

Play movie...
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CONCLUSIONS

» We introduced a new paradigm for abstract neural computation
based on the concept of synfire rings.
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CONCLUSIONS

» We introduced a new paradigm for abstract neural computation
based on the concept of synfire rings.

» Research project:
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CONCLUSIONS

» We introduced a new paradigm for abstract neural computation
based on the concept of synfire rings.

» Research project:

* Develop bio-inspired and ML-based learning algorithms on the
synfire ring architecture.
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CONCLUSIONS

» We introduced a new paradigm for abstract neural computation
based on the concept of synfire rings.

» Research project:

* Develop bio-inspired and ML-based learning algorithms on the
synfire ring architecture.

* Neuromorphic implementation of these bio-inspired neural net-
works.
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CONCLUSIONS

» We introduced a new paradigm for abstract neural computation
based on the concept of synfire rings.

» Research project:

* Develop bio-inspired and ML-based learning algorithms on the
synfire ring architecture.

* Neuromorphic implementation of these bio-inspired neural net-
works.

* Biological implementation via cultures of neurons: TOWARDS
NEURONAL COMPUTERS...
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CONCLUSIONS

Thank you!
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