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Introduction

A central concept in epistemic game theory is common knowledge. It is used in basic back-
ground assumptions, such as common knowledge of the game structure, or in epistemic hy-
potheses, such as common knowledge of rationality, that can be employed to epistemically
characterize solution concepts. Originally, the notion has been introduced by Lewis (1969) as a
prerequisite for a rule to become a convention. Intuitively, some event is regarded as common
knowledge among a set of agents, if everyone knows the event, everyone knows that every-
one knows the event, everyone knows that everyone knows that everyone knows the event,
etc. Following Lewis’s (1969) original proposition, it has become standard to define common
knowledge as the infinite intersection, or conjunction, of iterated mutual knowledge claims.

A natural question that can be addressed concerns the relationship between the standard
definition of common knowledge and the infinite sequence of iterated mutual knowledge un-
derlying it. Indeed, Lipman (1994) considers a specific notion of limit such that common know-
ledge of the particular event rationality is not equivalent to the limit of iterated mutual know-
ledge of rationality. Here, a topological approach to set-based epistemic game theory is pur-
sued and it is shown that common knowledge is not equivalent to the topological limit of the
sequence of iterated mutual knowledge. On the basis of this observation the new epistemic op-
erator limit knowledge is introduced, and some consequences of limit knowledge of the specific
event rationality are scrutinized for games.

Discussion

Limit knowledge can be understood as the event which is approached by the sequence of it-
erated mutual knowledge, according to some notion of closeness between events. Moreover,
likewise other epistemic hypotheses, limit knowledge of rationality can also be associated with
a kind of reasoning pattern of the agents. Indeed, by definition LK(R) = limm→∞ Km(R), hence
it follows that LK(R) holds i.e. the actual world ω belongs to LK(R), if and only if there exists
some event E such that both ω ∈ E and E = limm→∞ Km(R), meaning that everyone consid-
ers possible a true event which is the topological limit of the sequence (Km(R))m>0. Hence
ω ∈ LK(R) can be interpreted as everyone considering possible a true event which is even-
tually topologically indistinguishable from all remaining higher-order mutual knowledge of
rationality.

The main theorem ensures that several implications of limit knowledge of rationality for
epistemic hypotheses as well as for solution concepts in games could be relevant. This epistemic-
topological insight can be apprehended from two different angles. A first approach would
study possible topological characterizations via limit knowledge of rationality for a given epis-
temic hypothesis or solution concept. Relevant topological reasoning patterns of the agents in
accordance with some given epistemic hypothesis or solution concept could thus be unveiled.

A second approach would derive the epistemic hypotheses or solution concepts in accor-
dance with limit knowledge of rationality, for some given topology. It might be of particular
interest to explore the game-theoretic consequences of topologies being defined on the basis
of relevant descriptions of the event space or revealing cogent underlying reasoning patterns
of the agents. Such topologies could be called epistemically plausible. Solution concepts char-
acterizable in this way might be argued to gain in credibility compared to ones that are not.
An instance of such an epistemically plausible topological foundation for the solution concept
n-times strict dominance in pure strategies SDn is given in the full paper.

Finally, it is envisioned to construct a general topological framework for Aumann struc-
tures to enrich the epistemic analysis of games. Such an approach could, for instance, be capa-
ble of phrasing and reflecting the epistemic properties of an interactive situation in topological
terms.
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Consider also the infinite sequence (sn
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Bob)n≥0 of strategy combinations for Alice and Bob as
well as the epistemic model AΓ = (Ω, (Ii)i∈I, (σi)i∈I) defined by:
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Ω ={α, β, γ, δ, α0, β0, γ0, δ0, α1, β1, γ1, δ1, α2, β2, γ2, δ2, . . .},
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Consider finally the topology on P(Ω) given by {O ⊆ P(Ω) : {α} &∈ O} ∪ {P(Ω)}. Then
all these definitions imply that first, the sequence (Km(R))m>0 is strictly shrinking, second CK(R) =
⋂

m>0 Km(R) = {α, β, γ, δ}, and third LK(R) = limm→∞(Km(R))m>0 = {α}. It follows that
σ(CK(R)) = {1

3}×{
1
3}×{ U, D}×{ L, R} = ISDΓ, while σ(LK(R)) = {(1

3, 1
3, U, L)} = (ISD +

WD)Γ. Therefore, the solution in accordance with LK(R) is a strict refinement of the solution induced
by CK(R). !

We now generally show that, for any given game and epistemic model of it satisfying the
strictly shrinking condition with respect to iterated mutual knowledge of rationality, every pos-
sible event as well as every solution concept can be characterized by limit knowledge of ratio-
nality for some appropriate topology.

Theorem. " Let Γ be a normal form and AΓ an epistemic model of it such that (Km(R))m>0 is strictly
shrinking.

1. Let E be an event. Then, there exists a topology on P(Ω) such that LK(R) = E.

2. Let SC be a solution concept. Then, there exists a topology on P(Ω) such that σ(LK(R)) ⊆ SCΓ. !
Epistemic hypotheses being particular events, the above theorem shows that limit know-

ledge of rationality can be used as a topological foundation for any epistemic hypothesis as
well as an epistemic-topological foundation for any solution concept. Yet note that this uni-
versal characterization capability of limit knowledge of rationality indispensably requires the
strictly shrinking condition to hold. Hence, the expressive power of this epistemic operator is
somewhat countered by this significant constraint.

Moreover, observe that the above theorem can be refined towards equality in the sense
that for any epistemic model AΓ fulfilling its assumptions as well as the additional condition
σ(Ω) ⊇ SCΓ, there exists a topology such that σ(LK(R)) = SCΓ. In this case, limit knowledge
of rationality thus provides an exact epistemic-topological foundation for the given solution
concept.

Finally, the proof of the theorem actually provides a generic method to construct a topol-
ogy such that limm→∞(Km(R))m>0 = σ−1(SCΓ). The definition of this topology is completely
independent from the specific game considered. However, the convergence properties of the
sequence (Km(R))m>0 according to this topology do depend on the underlying game. Conse-
quently, the well-definedness and characterization capability of limit knowledge of rationality
do also depend on the underlying game.

Limit Knowledge of Rationality

Results

According to the standard definition, common knowledge of an event is the countably infinite
intersection of all successive higher-order mutual knowledge of the event. The existence of
situations in which a unique limit point of the sequence of iterated mutual knowledge differs
from common knowledge motivates the following definition of the new epistemic operator
limit knowledge.

Definition. ! Let A = (Ω, (Ii)i∈I) be an Aumann structure, T a topology on P(Ω), and E an event.
If the limit point of the sequence (Km(E))m>0 is unique, then LK(E) := limm→∞ Km(E) is the event
that E is limit knowledge among the set I of agents. "

With limit knowledge, a novel operator is proposed that can be employed for epistemic
characterizations of existing or new game-theoretic solution concepts. In this context, situations
in which limit knowledge differs from common knowledge are of distinguished interest. It
can be shown that such situations necessarily involve sequences of iterated mutual knowledge
that are strictly shrinking. A possible application of limit knowledge is given by the following
example.

Example. ! Consider the Cournot-type game Γ = (I, (Si)i∈I, (ui)i∈I) in normal form with player set
I = {Alice, Bob, Claire, Donald}, strategy sets SAlice = SBob = [0, 1], SClaire = {U, D}, SDonald =
{L, R}, and utility functions ui : SAlice × SBob × SClaire × SDonald → R for all i ∈ I defined as
uAlice(x, y, v, w) = x(1 − x − y) and uBob(x, y, v, w) = y(1 − x − y), and uClaire(x, y, v, w) and
uDonald(x, y, v, w) given as follows:
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