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Introduction

In 1967, Minsky proved the equivalence between McCulloch
and Pitts’s neural nets and finite state machines.

We extend this result for infinite word reading machines, and
provide a refined classification of simple neural nets.
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Neural nets and automata

McCulloch & Pitts’ neural net
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The set of stimuli accepted by this net is the language recog-
nized by this net.
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Definition

A MP neural net is a tuple N = (C, S, M, w, b), where
C is a finite set of cells,
S ⊆ C is a set of sensory cells,
M ⊆ C is a set of motor cells,
w : C × C → Q gives the weights of the connections,
b : C → Q gives the background activity.

The dynamic of cell i is given by

xi(t + 1) = σ

0@X
j∈C

w(j, i) · xj(t) + b(i)

1A , where σ(x) =

(
0 if x < 1 ,

1 if x ≥ 1.
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M
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-1
3/2

-1/2
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1 1/2

An infinite stimulus w is accepted by N iff it evokes
infinitely many motor responses.
The set of infinite stimuli accepted by N is called the
ω-language recognized by N .
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Büchi automaton
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The set of words accepted by this automaton is the language
recognized by this automaton.
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Definition

A det. Büchi automaton is a tuple A = (Q, A, δ, i, F), where
Q is a finite set of states,
A is an alphabet,
δ : Q× A −→ Q is the transition function,
i ∈ Q is the initial state,
F ⊆ Q is the set of finite states.

q0 q2

a

q1

b

a

b a
b

An infinite input w over A is accepted by A iff
Inf (w) ∩ F 6= ∅.
The set of infinite words accepted by A is called the
ω-language recognized by A.
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Theorem

Let L be an ω-language. Then the following are equivalent:
1 L is recognizable by some MP neural net;
2 L is recognizable by some det. Büchi automata;
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Proof: (1)⇒ (2): From MP neural nets to det. Büchi
automata. . .

Sb

Sb,M

Sb,c,Mø

Sa

Sb,c

Sa,c

c,M

Sa,c,M
Sa,M

c

M

MC

1

-1
3/2

-1/2
1 1/2

Sa

Sb

By construction, L(N ) = L(A).
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(2)⇒ (1): From det. Büchi automata to MP neural nets. . .
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A classification of neural nets

Let A and B be two ω-languages:

A ≤W B iff there exists f continuous s.t. A = f−1(B)
iff there exists f continuous s.t. x ∈ A ⇔ f (x) ∈ B

Then as usual

A <W B iff A ≤W B and B 6≤W A

A ≡W B iff A ≤W B and B ≤W A
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A ≤W B means intuitively than A is “less complicated” than B.
Indeed we have . . .

A ≤W B iffdef x ∈ A ⇔ f (x) ∈ B for some f continuous

Assume that for any element x, 
you know whether x ∈ B or not 

Does a given a ∈ A ? 

If f(a) ∈ B, then a ∈ A 

/If f(a) ∈ B, then a ∈ A /

In other terms, the belonging problem in A reduces via f to the
belonging problem in B.
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/If f(a) ∈ B, then a ∈ A /

In other terms, the belonging problem in A reduces via f to the
belonging problem in B.
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Definition

The collection of ω-languages recognized by Det-Büchi
automata ordered by ≤W is called the Det. Büchi hierarchy.
The collection of ω-languages recognized by MP-neural
nets ordered by ≤W is called the MP-neural hierarchy.

By the previous equivalence theorem, the Det-Büchi and the
MP-neural hierarchies are equal.
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Theorem

The Det-Büchi hierarchy is well-founded, has width 2 and
height ω + 1.
The MP-neural hierarchy is well-founded, has width 2 and
height ω + 1.

height ω+1
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Theorem

The Det-Büchi hierarchy is decidable.
The MP-Neural hierarchy is decidable.

Given a det. Büchi automaton
or a MP neural net

Decidabiliy
procedure

height ω+1
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Example

Consider the following MP neural net N .

Sa

M

1

-1
3/2

-1/2
Sb

1 1/2

Then the degree of L(N ) in the MP-neural hierarchy is ω.
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Significant extension of this work:

we are also able to establish another equivalence between
some kind of McCulloch and Pitts’ neural nets and Muller
automata; this induces another decidable hierarchy of networks
of height ωω.
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Conclusion

We presented a decidable transfinite classification of
simple neural nets based on their computational capability.
The height of a network in this hierarchy is the new index
of complexity that we propose.
Future work: investigate the computational capabilities of
more biologically plausible neural nets.
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