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INTRODUCTION

» This work focuses on the simulation of digital computers by
biological neural networks.
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INTRODUCTION

» This work focuses on the simulation of digital computers by
biological neural networks.

> It is known that first-order discrete-time recurrent neural net-
works with integer, rational or real weights are computationally
equivalent to automata (Kteene 56, Minsky 67), Turing machines
(SiecELMANN & Sontac 95), and Turing machines with advices
(su per-Tu ring) (SIEGELMANN & SONTAG 94, CABESSA & SIEGELMANN 14),
respectively.
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INTRODUCTION

» This work focuses on the simulation of digital computers by
biological neural networks.

> It is known that first-order discrete-time recurrent neural net-
works with integer, rational or real weights are computationally
equivalent to automata (Kteene 56, Minsky 67), Turing machines
(SiecELMANN & Sontac 95), and Turing machines with advices
(su per-Tu ring) (SIEGELMANN & SONTAG 94, CABESSA & SIEGELMANN 14),
respectively.

» What about the possibility to simulate abstract machines with
more biological neural networks?
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AuTtomMATA & BOOLEAN RNNS

THEOREM (MINSKY 1967)

Any finite state automaton can be simulated by some Boolean
recurrent neural network.
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SIMULATION
time ‘ 0 1 2 3 4 5 6 7 8
states q0 q1 a0 q0 q1 q1 q1 q0 -
s ()@ ® O O O © -
outputs 0 1 1 0 0 1 1 - -
start 1 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0
“(3)
u((l)) 0 0 0 0 1 0 0 0 0
u(é) 0 0 1 0 0 0 0 0 0
uG) 1 0 0 1 0 1 0 0 0
Cs,i - 90, G) q1, ( q0, (é) 90, (}) q1, (? a1, ( q1, (8) -
Cout,0 0 0 1 0 0 1 1 0 0
Cout,1 0 0 1 0 0 1 1
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DRAWBACKS OF THE CONSTRUCTION

» Computational states of the automaton are represented as Boolean
states, i.e., spiking configurations of the network.
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» Computational states of the automaton are represented as Boolean
states, i.e., spiking configurations of the network.

* Computational states should rather be represented by sustained
activities of neural assemblies, e.g., by cyclic attractors.
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DRAWBACKS OF THE CONSTRUCTION

» Computational states of the automaton are represented as Boolean
states, i.e., spiking configurations of the network.

* Computational states should rather be represented by sustained
activities of neural assemblies, e.g., by cyclic attractors.

» Network is not robust to cell death, synaptic plasticity, archi-
tectural plasticity in general.
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DRAWBACKS OF THE CONSTRUCTION

» Computational states of the automaton are represented as Boolean
states, i.e., spiking configurations of the network.

* Computational states should rather be represented by sustained
activities of neural assemblies, e.g., by cyclic attractors.

» Network is not robust to cell death, synaptic plasticity, archi-
tectural plasticity in general.

* Network should be robust to architectural plasticity and synap-
tic noises.
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NEURAL COMPUTATION WITH SYNFIRE RINGS

» We introduce a paradigm of neural computation based on syn-
fire rings.
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NEURAL COMPUTATION WITH SYNFIRE RINGS

» We introduce a paradigm of neural computation based on syn-
fire rings.

» Computational states are represented by sustained activities
within synfire rings.
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» We introduce a paradigm of neural computation based on syn-
fire rings.

» Computational states are represented by sustained activities
within synfire rings.

» Hence, the successive computational states are encoded into
cyclic attractors.
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NEURAL COMPUTATION WITH SYNFIRE RINGS

» We introduce a paradigm of neural computation based on syn-
fire rings.

» Computational states are represented by sustained activities
within synfire rings.

» Hence, the successive computational states are encoded into
cyclic attractors.

» The transitions between such attractors are perfectly controlled
by the inputs.
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NEURAL COMPUTATION WITH SYNFIRE RINGS

» We introduce a paradigm of neural computation based on syn-
fire rings.

» Computational states are represented by sustained activities
within synfire rings.

» Hence, the successive computational states are encoded into
cyclic attractors.

» The transitions between such attractors are perfectly controlled
by the inputs.

» The global computational process is robust to various kinds of
architectural plasticities and noises.
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SYNFIRE CHAINS

» Synfire chains allow for robust and highly precise transmission
of information in neural networks (ABELES 82).
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SYNFIRE CHAINS

» Synfire chains allow for robust and highly precise transmission
of information in neural networks (ABELES 82).

» Synfire chains are likely to be crucially involved in the processing
and coding of information in neural networks.
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and coding of information in neural networks.
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and coding of information in neural networks.
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SYNFIRE RINGS

» Synfire rings are looping synfire chains that have been observed
in self-organizing neural networks (ZHENG & TRIESCH 14).
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SYNFIRE RINGS

» Synfire rings are looping synfire chains that have been observed
in self-organizing neural networks (ZHENG & TRIESCH 14).

» Synfire rings allow for robust and temporally precise self-sustained
activities.
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HODGKIN-HUXLEY NEURONS (SOFTWARE DEMO)

0.01(10 — Vi) —Vm
(Vi) = ——————7— n(Vim) = 0.125 _
an( eXp(mIg/’“)fl Bn(Vin) exp( 30 )

ORIl (Vi) = dexp(T)

o (Vi) = 120
exp(2ym) — 1 8
—Vm 1
an(Vin) = 0.07 exp(—~) Br(Vm) = oxp(BVa) 1 1
10
I (Vo)1 =) = Bu (Vi)
T = (Vi) (1 = m) = B (Vi)
S = an(V) (1 = b) = B (V)b
de _ 4 _ 3 _
me =1 — gkn (Vm - VK) — gNam h(Vm - VNa) _gl(Vm - ‘/l)
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RESULTS

Algorithm 1
Require: DFSA A= (Q,%,64,q0,F) (resp. DFST T = (Q, %, 67,90))

1. consider K input cells (uq)qes, where K = |X|

2. consider I x J synfire rings (Rq,a)qcQ,acx, Where I = || and J = |Q)|
3. consider K synfire rings (Rout,a)acy, Where K = |5

4. for all state ¢ € Q do

5: for all input symbol a € ¥ do

6: add a fibre of input connections from u, to Rg,q

7: end for

8: end for

9. for all transition (q,a,q’) € graph(éa) (resp. (q,a,q’,0) € graph(d1)) do
10: for all input symbol a’ € ¥ do

11: add a fibre of inter-ring connections from Rg,q to Ry 4

12: add a fibre of output connections from Ry, to Rout,o

13: end for

14: end for

15: set weights wffffmt, wire  and wgﬁfput appropriately

16: set weights wi"? and wf;’;i”put appropriately
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AUTOMATA & HODGKIN-HUXLEY RNNS WITH
SYNFIRE RINGS

Since the construction is generic, one has the following result:

THEOREM

Any finite state automaton can be simulated by some
Hodgkin-Huxley based neural network composed of synfire rings.
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CONCLUSIONS

» We introduced a bio-inspired paradigm of neural computation
based on the concept of synfire rings.
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CONCLUSIONS

» We introduced a bio-inspired paradigm of neural computation
based on the concept of synfire rings.

» We intend to extend the results towards the simulation of Tur-
ing machines.

» We intend to study the issue of learning within the synfire ring
architecture.

» Utopia: achieve the realization of biological neural computers.

Thank you!
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