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Introduction

I We follow the so-called mind-computer analogy approach
to cognitive science.

I We study the computational capabilities of basic models of
recurrent neural networks.

I We show that recurrent neural networks provide a natural
model of computation beyond the Turing limits.
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Turing machine

A Turing machine (TM) consists of an infinite tape, a read-write
head, and a finite program.

1 0

Finite
Program
state qin

Tape 1 10 0

input u

I input u is accepted byM ifM(u) reaches the state qacc

I input u is rejected byM ifM(u) reaches the state qrej
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Turing machine with advice

A Turing machine with advice (TM/A) is a Turing machine
provided with an additional advice tape and advice function
α : N −→ {0, 1}∗.

Finite
Program
state qin

Tape

Advice
Tape

0 1 10 01

input u

advice α(|u|)
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Turing machine with advice

A Turing machine with advice (TM/A) is a Turing machine
provided with an additional advice tape and advice function
α : N −→ {0, 1}∗.

Finite
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state qadv

Tape

Advice
Tape
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input u

10 11 1 110 00 0

advice α(|u|)
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Classical Computation

Environment

Device
initial state

Closed-box and amnesic...
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Interactive Computation

Environment

Device
initial state

Sequentially interactive and memory active...
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Interactive Turing machine
An Int-TM provided with additional advice input and output
tapes and advice function α : N −→ {0, 1}∗
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Lemma

Turing machines with advice are strictly more powerful than
Turing machines.

Lemma

Interactive Turing machines with advice are strictly more
powerful than interactive Turing machines.
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Recurrent Neural Networks
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Dynamics: static synaptic weights
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xi(t + 1) = σ
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aij · xj(t) +
M∑

j=1

bij · uj(t) + ci


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Results

Static Architecture

Q
Turing

Siegelmann & Sontag 95 (classical comp.)

Cabessa & Siegelmann 12 (interactive comp.)

R

Super-Turing
Siegelmann & Sontag 94 (classical comp.)

Cabessa & Siegelmann 12 (interactive comp.)

Cabessa & Villa 12 (interactive comp.)
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Dynamics: evolving synaptic weights
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Results

Evolving Architecture

Q
Super-Turing

Cabessa & Siegelmann 11 (classical comp.)

Cabessa & Villa 13 (interactive comp.)

R
Super-Turing

Cabessa & Siegelmann 11 (classical comp.)

Cabessa & Villa 13 (interactive comp.)
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Summary

Static Evolving

Q Turing Super-Turing

R Super-Turing Super-Turing

Recurrent Neural Networks and Super-Turing Computation J. Cabessa



Introduction Turing Machines Recurrent Neural Networks Conclusion

Conclusions

I Evolving-RNNs provide a natural abstract computational model
beyond the Turing limits.

I Architectural Evolution is an alternative way to the power of
the continuum to achieve super-Turing capabilities.

I The results support the idea that architectural evolution might
play a crucial role in the computational capabilities of biolog-
ical neural networks.

I Future work: study the computational power of more biolog-
ically oriented neural models involved in more bio-inspired
computational frameworks.

I The results do not prove that the brain is super-Turing...
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