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INTRODUCTION

e We consider Echo State Networks (ESNs) in the context of
Natural Language Processing (NLP).
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INTRODUCTION

e We consider Echo State Networks (ESNs) in the context of
Natural Language Processing (NLP).

e More specifically, we introduce ESNs with pre-trained word em-
beddings as inputs (GloVe, BERT) for text classification.

o We show that ESNs are efficient candidates for text classifica-
tion tasks.

e Some works about text classification with ESNs have already
been done, but along different lines (different training paradigms).
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DATASETS

e TREC-6 / TREC-50. Question classification with 6/50 classes.
Train set / Test set: 5452 / 500 examples.

EFFICIENT TEXT CLASSIFICATION WITH ECHO STATE NETWORKS CABESSA ET AL.



INTRODUCTION DATASETS ECcHO STATE NETWORKS RESULTS CONCLUSIONS
[ 0000000 00000000000 00

DATASETS

e TREC-6 / TREC-50. Question classification with 6/50 classes.
Train set / Test set: 5452 / 500 examples.

e SST-2. Sentiment classification with 2 classes.
Train set / Test set: 67349 / 1821 examples.
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e TREC-6 / TREC-50. Question classification with 6/50 classes.
Train set / Test set: 5452 / 500 examples.

e SST-2. Sentiment classification with 2 classes.
Train set / Test set: 67349 / 1821 examples.

e IMDb. Sentiment classification with 2 classes.
Train set / Test set: 25000 / 25,000 example.

EFFICIENT TEXT CLASSIFICATION WITH ECHO STATE NETWORKS CABESSA ET AL.



DATASETS
°

DATASETS

e TREC-6 / TREC-50. Question classification with 6/50 classes.
Train set / Test set: 5452 / 500 examples.

e SST-2. Sentiment classification with 2 classes.
Train set / Test set: 67349 / 1821 examples.

e IMDb. Sentiment classification with 2 classes.
Train set / Test set: 25000 / 25,000 example.

e AG News. Topic classification with 4 classes.
Train set / Test set: 120000 / 7600 examples.
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EcHO STATE NETWORKS

Echo Sate Networks (ESNs) are specific kinds of recurrent
neural networks. An ESN consists of:
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EcHO STATE NETWORKS

Echo Sate Networks (ESNs) are specific kinds of recurrent
neural networks. An ESN consists of:

e An input layer

inputs reservoir outputs
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EcHO STATE NETWORKS

Echo Sate Networks (ESNs) are specific kinds of recurrent
neural networks. An ESN consists of:

e An input layer

e A reservoir of neurons: random, recurrent and sparse

inputs reservoir outputs

Wres
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Echo Sate Networks (ESNs) are specific kinds of recurrent
neural networks. An ESN consists of:
e An input layer
e A reservoir of neurons: random, recurrent and sparse
e An output layer

inputs reservoir outputs
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EcHO STATE NETWORKS
Echo Sate Networks (ESNs) are specific kinds of recurrent
neural networks. An ESN consists of:
e An input layer
e A reservoir of neurons: random, recurrent and sparse
e An output layer
* Only the output weights are trained!

inputs reservoir outputs
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ESNS: DYNAMICS
e We consider leaky integrator ESNs (LI-ESNs):

inputs reservoir outputs

Wies
(1) = froo(Winult + 1) + Wioex(1))
x(t+1) = (1-a)x(t)+ax(t+1) « leaking rate
Y1) = four(Woux(t+1))
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ESNS: INITIALIZATION

e Input weights Wy, € RNe*(14Nu) (fixed):

Sampled from U(—a,a), where a is the input scaling.

inputs reservoir outputs

%(t+1)
x(t+1)
YE+D) = four(Woux(t+1))
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ESNS: INITIALIZATION
e Input weights Wy, € RNe*(14Nu) (fixed):
Sampled from U(—a,a), where a is the input scaling.

e Reservoir weights Wyes € RVe XNz (fixed):
Sampled from U(—1,1), set to 0 with sparsity rate 0.99, and rescaled to
have a specific spectral radius' p < 1.

inputs reservoir outputs
R(+1) = freo(Winu(t +1) + Wresx(t))
x(t+1) = (1—a)x(t)+ax(t+1)
YE+1) = four(Woux(t+1))

Wies

The largest absolute value of the eigenvalues of Wes.
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ESNS: INITIALIZATION
e Input weights Wy, € RNe*(14Nu) (fixed):
Sampled from U(—a,a), where a is the input scaling.

e Reservoir weights Wyes € RVe XNz (fixed):
Sampled from U(—1,1), set to 0 with sparsity rate 0.99, and rescaled to
have a specific spectral radius' p < 1.

o Output weights Wy € RNy >*(1+Nz) (trainable!):

Here, closed-form solution of a simple Ridge Regression.

inputs reservoir outputs

K(t+1) = fres(Winult +1) + Wieex(t))
x(t+1) = (1—a)x(t)+ax(t+1)
YE+1) = four(Woux(t+1))

The largest absolute value of the eigenvalues of Wes.
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ESNSs: HYPERPARAMETERS

e Input scaling a: influences the nonlinearity of the reservoir:

Larger input scalings drive the reservoir units into larger activation values,

hence into more non-linear regimes.

inputs reservoir outputs
K(t+1) = freo(Winult + 1) + Wiesx(1))
x(t+1) = (1—-a)x(t)+ax(t+1)
YE+1) = four(Woux(t+1))

Wies
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ESNSs: HYPERPARAMETERS

e Input scaling a: influences the nonlinearity of the reservoir:
Larger input scalings drive the reservoir units into larger activation values,
hence into more non-linear regimes.

e Spectral Radius p: modulates the effect of past inputs:

Larger spectral radii correspond to longer input memories.

inputs reservoir outputs

K(t+1) = freo(Winult + 1) + Wiesx(1))
x(t+1) = (1—-a)x(t)+ax(t+1)
YE+H1) = four(Woux(t+1))

Wies
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ESNSs: HYPERPARAMETERS

e Input scaling a: influences the nonlinearity of the reservoir:
Larger input scalings drive the reservoir units into larger activation values,
hence into more non-linear regimes.

e Spectral Radius p: modulates the effect of past inputs:

Larger spectral radii correspond to longer input memories.
e Leaking rate c:: controls the speed of the reservoir updating.

Larger leaking rates generate faster reacting reservoirs (reduced contribu-

tion of previous state in the updated state).

inputs reservoir outputs
K(t+1) = freo(Winult + 1) + Wiesx(1))
x(t+1) = (1—-a)x(t)+ax(t+1)
YE+H1) = four(Woux(t+1))

Wies
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ESNSs: INPUT FEATURES

e We consider the pre-trained dynamic word embedding BERT
as input features.

inputs reservoir outputs

Wres
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ESNSs: INPUT FEATURES

e We consider the pre-trained dynamic word embedding BERT
as input features.

e BERT-base: 12 encoder layers of the transformer model.

inputs reservoir outputs
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ESNSs: INPUT FEATURES

e We consider the pre-trained dynamic word embedding BERT
as input features.

e BERT-base: 12 encoder layers of the transformer model.

e Any input text is embedded into a sequence of 768-dimensional
vectors. Other embeddings can be considered: FastText (300d),

GloVe (300d), etc.

inputs reservoir outputs
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ESNs: TRAINING

Tnputs
texts

L L Lo inputs reservoir outputs
= (wiwi ) = (whwd, ) T = (wgwd )

Wi
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1. Embedding E;, E,, E,
Embedded Weer
texts -
N Ny
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Reservoir
states
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states 1 co
Labels | c
. Ridge regression 5 T _1~T~slabel
4. Learning :> (closed-form solution) B= (X X+ /\I) XY
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ESNS: TRAINING (BATCH PARALLELIZATION)

1. Embeddings

=——-=

1 batch (256)
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ESNS: TRAINING (BATCH PARALLELIZATION)

1. Embeddings 2. ESN

=——-=

1 batch (256)
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ESNS: TRAINING (BATCH PARALLELIZATION)

1. Embeddings 2. ESN
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1 batch (256)
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ESNS: TRAINING (BATCH PARALLELIZATION)

1. Embeddings 2. ESN 3. Pooling

=——-=

1 batch (256)
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ESNS: TRAINING (BATCH PARALLELIZATION)

1. Embeddings 2. ESN 3. Pooling

=+
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1 batch (256)
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ESNS: TRAINING (BATCH PARALLELIZATION)

1. Embeddings 2. ESN 3. Pooling
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1 batch (256)
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ESNS: TRAINING (BATCH PARALLELIZATION)

1. Embeddings 2. ESN 3. Pooling

) w—

1 batch (256)
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ESNS: TRAINING (BATCH PARALLELIZATION)

1. Embeddings 2. ESN 3. Pooling

=+
§

) w—

1 batch (256)

4. Ridge regression

:> B = (X"X 4 A1)71XTylabel

— —]
X ylabel
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BERT EMBEDDING

12 ( ENCODER )

2 ( ENCODER J
1 ( ENCODER )

[CLS) Help  Prince Mayuko

BERT
Figure: Jay Alamr’s blog: https://jalammar.github.io/illustrated-bert/
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BI-LSTM

u(0) u(l) u(2) u(T)
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Bi-LSTM

[BERT] [BERT]

u?O) u?l) u?Q) e u(T)
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Bi-LSTM
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Bi-LSTM

LSTM
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Figure: Jay Alamr’s blog: https://jalammar.github.io/illustrated-bert/
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RESULTS: EFFECT OF EMBEDDING

» The quality of the pre-trained embedding plays an important
role (might be counter intuitive).
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Pre-trained embeddings

Figure: Test accuracy (%) on the IMDb dataset. ESN with mean pooling and reservoir
size 1000 employing 5 different pre-trained word embeddings as features. Results are
averaged over 5 random seeds.
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» The representational properties of the BERT embedding are
not destroyed by the random input projection Wyy,.
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» The representational properties of the BERT embedding are
not destroyed by the random input projection Wyy,.

e Take N = 750 BERT-embedded words: e,

.,eN
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RESULTS: EFFECT OF EMBEDDING

» The representational properties of the BERT embedding are
not destroyed by the random input projection Wyy,.

e Take N = 750 BERT-embedded words: ey, ..., exn

e Pairwise cosine distances before and after Wy, projection:

dij = dcos(ei, ej) and d;j = dcos(Wineia Winej)
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RESULTS: EFFECT OF EMBEDDING

» The representational properties of the BERT embedding are
not destroyed by the random input projection Wy,

e Take N = 750 BERT-embedded words: ey, ..., exn

e Pairwise cosine distances before and after Wy, projection:
dij = dcos(ei,ej) and d;j = dCOS(Winei,Winej)

e Mean squared error between the distances d;; and d;j (repre-
sents the distortion of the cosine distances induced by Wjy,)

MSEd,d/ =

(1]\,){( o (diy—diy)*.

2/ {(i,5):1<j}
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RESULTS: EFFECT OF EMBEDDING

» The representational properties of the BERT embedding are
not destroyed by the random input projection Wjiy,.

0.0007 -
0.0006 -

~. 0.0005 -

d,d’

0.0004 -

MSE,

0.0003 -
0.0002 -
0.0001 -

500 1000 3000 5000
Reservoir dimension

Figure: MSE, 4 as a function of the reservoir dimension Ny of Wy, € RN=X768 The
matrices Wi, are the input weights of ESNs of sizes N, € {500, 1000, 3000, 5000}
whose input scalings have been optimized by BO on the IMDb dataset. Results are
averaged over 5 random seeds. Larger input projections lead to smaller MSE, 4 values.
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RESULTS: EFFECT OF THE RESERVOIR

» The temporal dynamics captured by the reservoir significantly
improves the results.

TREC-6
96 -

Test accuracy
© © © ©
28 8 B

©
o

1000 2000 3000 4000 5000
Reservoir size

——- RR-baseline —4— ESN

Dac

EFFICIENT TEXT CLASSIFICATION WITH ECHO STATE NETWORKS CABESSA ET AL.



INTRODUCTION DATASETS EcHO STATE NETWORKS REsuLTS CONCLUSIONS
o o 0000000 00000000000 e}

RESULTS: EFFECT OF THE RESERVOIR

» The temporal dynamics captured by the reservoir significantly
improves the results.

e ESN = EMB + RES + POOL + RIDGE

TREC-6
96 -

Test accuracy
© © © ©
28 8 B

©
o

1000 2000 3000 4000 5000
Reservoir size

—=—- RR-baseline —4— ESN
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RESULTS: EFFECT OF THE RESERVOIR

» The temporal dynamics captured by the reservoir significantly
improves the results.

e ESN = EMB + RES + POOL + RIDGE
e RR-baseline = EMB + + POOL + RIDGE

TREC-6

Test accuracy

1000 2000 3000 4000 5000
Reservoir size

—=- RR-baseline —4— ESN
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RESULTS: EFFECT OF THE RESERVOIR

» The temporal dynamics captured by the reservoir significantly
improves the results.

e ESN = EMB + RES + POOL + RIDGE
e RR-baseline = EMB + + POOL + RIDGE

= ESN vs RR-baseline allows to assess the proper contribution of
the reservoir.

TREC-6
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294-
©
5
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o
©
B 92-
()
R
91-
90
1000 2000 3000 4000 5000

Reservoir size
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RESULTS: EFFECT OF THE RESERVOIR

» The temporal dynamics captured by the reservoir significantly
improves the results.
e ESN = EMB + RES + POOL + RIDGE
¢ RR-baseline = EMB + + POOL + RIDGE
= ESN vs RR-baseline allows to assess the proper contribution of
the reservoir.

TREC-50

Test accuracy

1000 2000 3000 4000 5000
Reservoir size

—=- RR-baseline —4— ESN
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RESULTS: EFFECT OF THE RESERVOIR

» The temporal dynamics captured by the reservoir significantly
improves the results.

e ESN = EMB + RES + POOL + RIDGE

¢ RR-baseline = EMB + + POOL + RIDGE

= ESN vs RR-baseline allows to assess the proper contribution of
the reservoir.

SST-2

1000 2000 3000 4000 5000
Reservoir size

——- RR-baseline  —#— ESN

EFFICIENT TEXT CLASSIFICATION WITH ECHO STATE NETWORKS CABESSA ET AL.



INTRODUCTION DATASETS ECHO STATE NETWORKS REsuLTS CONCLUSIONS
o o 0000000 00000000000 e}

RESULTS: EFFECT OF THE RESERVOIR

» The temporal dynamics captured by the reservoir significantly
improves the results.

e ESN = EMB + RES + POOL + RIDGE
e RR-baseline = EMB + + POOL + RIDGE

= ESN vs RR-baseline allows to assess the proper contribution of

the reservoir.
IMDB
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RESULTS: EFFECT OF THE RESERVOIR

» The temporal dynamics captured by the reservoir significantly
improves the results.

e ESN = EMB + RES + POOL + RIDGE
e RR-baseline = EMB + + POOL + RIDGE

= ESN vs RR-baseline allows to assess the proper contribution of
the reservoir.

AG-news

1000 2000 3000 4000 5000
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REsuLTs: COMPARISON WITH BI-LSTM AND BERT
FINE-TUNED

[ ]
2
TREC-6 TREC-50 SST-2 IMDb AG News
RR-baseline 89.80 75.60 85.34 88.46 90.45
ESN-500 90.44 £ 0.45 74.60 + 0.61 83.79 £ 0.37 87.66 £ 0.14 90.11 £ 0.11
ESN-1000 92.36 £ 0.75 78.60 + 0.74 84.63 £ 0.11 88.36 £ 0.08 90.73 £0.18
ESN-3000 94.68 £ 0.51 83.36 £+ 0.34 85.63 £ 0.25 89.14 £+ 0.05 91.12 £0.14
ESN-5000 95.28 + 0.45 84.04 +£0.43 86.23 + 0.32 89.46 + 0.08 91.30 £0.18
Bi-LSTM 92.95 77.81 86.27 91.77 93.18
BERT-ft 96.60 79.40 92.20 93.60 94.24
BERT-ft* 97.20 — 93.50 94.60 / 95.63 94.75

Table: Test accuracy, in percentage (%). The ESN results are averaged over 5 random
seeds. The Bi-LSTM networks have 2 hidden layers of 128 units. BERT-ft (our results)
and BERT-ft* (literature) denote the BERT model downloaded as pre-trained and then
fine-tuned on the datasets.

21 GPU, 32 GB, NVIDIA V100
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REsuLTs: COMPARISON WITH BI-LSTM AND BERT

°
3

TREC-6 TREC-50 SST-2 IMDb AG News
RR-baseline 7.32 8.16 105.52 97.09 153.58
ESN-500 9.47 £0.11 13.39 + 0.54 115.10 £ 1.41 163.73 £ 0.47 297.90 + 3.33
ESN-1000 9.63 £ 0.14 13.81 +0.36 115.42 + 0.96 165.48 + 0.43 297.37 + 4.82
ESN-3000 10.68 + 0.15 14.88 +0.23 116.39 + 0.84 174.91 £ 0.16 208.79 + 4.95
ESN-5000 16.24+0.38 19.91+0.46 121.94+1.37 192.48+0.30 304.08 £5.17
Bi-LSTM 97.02 95.92 1201.88 1630.05 2855.07
BERT-ft 556.38 549.17 4065.53 6235.73 64566.63
BERT-ft* - - - - -

Table: Training time, in seconds (s.), of the different models over the five datasets
TREC-6, TREC-50, SST-2, IMDb and AG News. The ESN results are averaged over
5 random seeds. The Bi-LSTM networks have 2 hidden layers of 128 units. BERT-ft
(our results) and BERT-ft* (literature) denote the BERT fine-tuned model.

31 GPU, 32 GB, NVIDIA V100
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CON

REsuLTS: COMPARISON WITH
FINE-TUNED

TREC-6 TREC-50 SST-2

IMDb  AG News
Bi-LSTM (128) 6.0 4.8 9.9 8.5 9.4
BERT ft (ours) 343 27.6 33.3 324 212.3

Table: Ratios between the training times of the Bi-LSTM (128) or BERT fine-tuned
models and the ESN-5000. The ESN-5000 networks are trained from 4.8 up to 9.9

times faster than Bi-LSTM (128), and from 27.6 up to 212.3 times faster than the
BERT fine-tuned.

41 GPU, 32 GB, NVIDIA V100
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RESULTS: EFFECT OF EMBEDDING (AGAIN)

>
TREC-6 TREC-50 IMDb
accuracy accuracy accuracy
time time time

GloVe-ESNs 91.12+£0.48 83.96+0.23 87.78+0.11
2.64 +0.12 7.02+0.14 38.47£0.14

95.28 £0.45 84.04+0.43  89.46 +£0.08
BERT-ESNs 16.24£0.38 1991+0.46 192.48+0.30

Table: Test accuracy (%) and training time (sec.) of the GloVe-feature and BERT-
feature ESNs on the TREC-6, TREC-50 and IMDb datasets. The BERT-feature ESNs

achieve higher accuracies, but with higher training times also.

CABESSA ET AL.
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e Hyperparameter tuning via Bayesian optimization (BO) takes
time (even if significantly faster than grid search).
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e Hyperparameter tuning via Bayesian optimization (BO) takes
time (even if significantly faster than grid search).

e The consideration of bi-directional ESNs does not significantly
improve the results.
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CONCLUSIONS

e Hyperparameter tuning via Bayesian optimization (BO) takes
time (even if significantly faster than grid search).

e The consideration of bi-directional ESNs does not significantly
improve the results.

* ESNs can be considered as robust, efficient and fast candidates
for text classification tasks.

* Transformer-based models like BERT achieve impressive per-
formance but are very resource-consuming.

* By contrast, our work fits within the context of light and fast-
to-train models for NLP.

EFFICIENT TEXT CLASSIFICATION WITH ECHO STATE NETWORKS CABESSA ET AL.



INTRODUCTION DATASETS EcHO STATE NETWORKS RESULTS CONCLUSIONS
o o 0000000 00000000000 oe

CONCLUSIONS

Thank youl!
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