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Descriptive Set Theory provides a general framework for
classification problems.

Descriptive Set Theory
classification of definable sets

Theoretical Computer Science
classification of abstract machines

Mathematical Logic
classification of well-formed formulae

…

Algebra
classification of algebraic structures
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ω-languages

A language is a set of words.
An ω-language is a set of infinite words.

Definition

An alphabet is simply a set whose elements are called
letters.
A word is a sequence of letters of given alphabet. An
infinite word is an infinite sequence of letters.
A language is a set of words.
An ω-language is a set of infinite words.
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Example

We will usually consider the alphabet A = {0, 1}.
Words on A: w0 = 01101, w1 = 11101, . . .
Infinite words on A: α = 0000 · · · , β = 1001010 · · · , . . .
Language on A: L = {00, 011, 10, 1101}.
ω-Language on A: L = {0000 · · · , 100 · · · , 1100 · · · }.
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An abstract machine M can be identified with the languages
L(A) that it recognizes.

Example

The following Muller automaton A can be identified with the
ω-language L(A) of infinite words with infinitely many 1’s.

1q0

0

q

1

1

0

Hence abstract machines can be considered as specific
ω-languages!
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A decision problem P can be identified the languages LP of all
its solutions.

Example

For instance, consider the following decision problem and
language:

P: Given a finite graph G, is G acyclic or not?
LP: the set of all acyclic finite graphs (language of
solutions).

Then the question “is G is acyclic?” is equivalent to the
question “does G ∈ LP?”.

Hence decision problems can be considered as specific
languages!
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Therefore a classification of languages induces in particular:
A classification of abstract machines;
A classification of decision problems;

Sub-hierarchy of 
abstract machines

Sub-hierarchy of 
decision problems

Hierarchy of 
languages
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In fact, a given classification of languages induces a
classification of “anything that can be coded by a language”!

Therefore descriptive set theory provides a general approach of
classification problems.
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The Cantor space

The Cantor space is the space of all infinite words of bits.

Definition

Consider the alphabet A = {0, 1}. The Cantor space C is the set
of all infinite words on A.

C = {000000 · · · ,

100000 · · · ,

110000 · · · ,

110000 · · · ,

...
. . .}
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Lemma

The Cantor space C is uncountable. More precisely,
card(C) = card(R).

Proof.

A diagonal argument.
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Elements of the Cantor space C are infinite words of bits.
Elements of the Cantor space C “are” the infinite branches of
the infinite binary tree.

…

…

…
…

…

…
…

…

…

0

1

0

0

0

0

0

0

1

1

1

1

1

The Cantor space

Element 010······ of the Cantor space
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Subsets of the Cantor space are the ω-languages over
A = {0, 1}.
Subsets of the Cantor space C “are” set of infinite branches of
the infinite binary tree.

0

1 0

0

1

0

1

…

…
…

…

1

…

…
0

0

10

1

The Cantor space

An ω-language L over A={0,1}
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Example

The ω-languages of all infinite words starting by 010.

0

…

…
…

…

0

0

1

1

0

1

…

…
0

0
1

10

1

The Cantor space

The ω-language of
all infinite words starting by 010
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Summary:

Elements of C are infinite words of bits.
Subsets of C are ω-languages over bits.
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The Borel hierarchy

The Borel hierarchy is the most common classification of
subsets of a given topological space. In our case, we first equip
the Cantor space C with the following topology:

The basic open sets are the prefix ω-languages i.e.

B is a basic open set
iff

B contains all infinite words
that begin with a given prefix p.

The open sets are the arbitrary unions of basic open sets.
The closed sets are the complements of open sets.
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Example

A basic open set: the ω-language consisting of all infinite words
beginning with 010.
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The Cantor space

A basic open set:
the ω-language of all infinite

words starting by 010
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Definition

The class of Borel sets of C is the σ-algebra generated by the
open sets, i.e. Borel subsets of C are the ω-languages that can
be obtained from open sets by the operations of countable
union and complementation.
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The Borel hierarchy classifies Borel sets according to how
many times the operations of countable unions and
complementation appear in their definitions.

Definition

The Borel finite levels of the Borel hierarchy are defined by
induction on n as follows:

Σ0
1 = {A ⊆ C : A is open}

Σ0
n+1 = {

⋃
n∈N An : An ∈ Σ0

n}

Π0
n = {A : A{ ∈ Σ0

n}
∆0

n = {A : A ∈ Σ0
n ∩Π0

n}
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The Wadge hierarchy

The Wadge hierarchy a drastic refinement of the Borel
hierarchy.

Definition

Let A and B subsets of the Cantor space C (i.e. two
ω-languages). The continuous reduction ≤W is defined by:

A ≤W B iff there exists f continuous s.t. A = f−1(B)
iff there exists f continuous s.t. x ∈ A ⇔ f (x) ∈ B

Then as usual

A <W B iff A ≤W B and B 6≤W A

A ≡W B iff A ≤W B and B ≤W A
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A ≤W B means intuitively than A is “less complicated” than B.
Indeed we have . . .

A ≤W B iff x ∈ A ⇔ f (x) ∈ B for some f continuous

Assume that for any element x, 
you know whether x ∈ B or not 

Does a given a ∈ A ? 

If f(a) ∈ B, then a ∈ A 

/If f(a) ∈ B, then a ∈ A /

In other terms, the belonging problem in A reduces via f to the
belonging problem in B.
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Definition

The collection of all subsets of C (i.e. all ω-languages)
ordered by the relation ≤W is called the Wadge hierarchy.
The collection of all Borel subsets of C ordered by the
relation ≤W is called the Borel Wadge hierarchy.
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Theorem

The Wadge hierarchy of Borel subsets of finite ranks has width

2 and height ω1
ω1

ω1
ω···

1︸ ︷︷ ︸
ω times

(huge!).

height
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The Wadge hierarchy is a very refined classification of
ω-languages.
The Wadge hierarchy is a very refined classification of
“anything that can be coded as ω-languages”.
The Wadge hierarchy of more complex languages (like tree
languages) also exists.
Descriptive set theory provides a general framework for
classification problems.
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